WATER QUALITY PERMIT

PAYMENT SUBMITTAL FORM

Use this form to submit the Application Fee, if the mailing the payment.

- Complete items 1 through 5 below.
- Staple the check or money order in the space provided at the bottom of this document.
- Do not mail this form with the application form.
- Do not mail this form to the same address as the application.
- Do not submit a copy of the application with this form as it could cause duplicate permit entries.

BY OVERNIGHT/EXPRESS MAIL

Mail this form and the check or money order to:

BY REGULAR U.S. MAIL

Texas Commission on Environmental Quality	Texas Commission on Environmental Quality
Financial Administration Division	Financial Administration Division
Cashier's Office, MC-214	Cashier's Office, MC-214
P.O. Box 13088	12100 Park 35 Circle
Austin, Texas 78711-3088	Austin, Texas 78753

Fee Code: WQP Waste Permit No: <u>WQ0010232001</u>

- 1. Check or Money Order Number: 180817
- 2. Check or Money Order Amount: <u>\$ 2,050.00</u>
- 3. Date of Check or Money Order: 7.12.19
- 4. Name on Check or Money Order: TCEQ
- 5. APPLICATION INFORMATION

26 國際

Name of Project or Site: South Kuehler Wastewater Treatment Plant

Physical Address of Project or Site: <u>1608 Coco Drive, New Braunfels, TX</u>

If the check is for more than one application, attach a list which includes the name of each Project or Site (RE) and Physical Address, exactly as provided on the application.

Staple Check or Money Order in This Space

New Braunfels Utilities Remit Address	Frost Bank New Braunfels, TX	30-9/1140	Jul 12, 2019 DATE	180817 CHECK NO.
©O BOX 310289 New Braunfels, TX 78131 (830)629-8400	General Fund		contra cu dias Pasal New periodias in anno de linea Salal New periodias di anno de linea Salal New Periodias Salal New Rosentes de linea Salad Periodia Dellas Pasal New periodias - New New Resultante di Maria - New Salad Resultante Ratal New Periodias - New Salad	
Two Thousand Fifty Dollars And 00 Cents	Length Grand (Lengthan, Bergar Totalan), and an orthogonal fragmatic sections of the Water and company in the pair of weath of the Annahola in a section of the Water and Annahola and Annahola and Annahola and Annahola and a section of the Water and Annahola annahola and Annahola and Annahola and Annahola and Annahola and Annahola annahola and Annahola annahola annahola annahola annahol	States (1974) Annual Parlie Value (1974) a travel heard draw (1974) additional Ultima (1978) Conference (1979) Annual Conference (1979) (1978) Conference (1979) Annual Conference (1979) (1979) Annual Conference (1979) Annual Conference (1970) Annual Conference (1970) Annual Conference (1970) Annual Conference (1970) Annual Conference (1970) Annual Conference (1970) Annual Conference (1970) Annual Conference (1970) Annual Conference (1970) Annual Conference (1970) Annual Conference (1970) Annual Conference (1970) Annual Conference (1970)	Control Laboratory and the second states of the sec	2,050.00
to the Order of: TEXAS COMMISSION ON I	ENVIRONMENTAL	the Collector Strands, 1995	Nasia New Boundary - Open Paradole Minis Dublics Manageratics - Minis Du	na Brita Indua
QUALITY (TCEQ) PO BOX 13089 AUSTIN, TX 78711-3089	A STATE TO ALL STATE TO ALL STATE STATES AND ALL STATES AND ALL STATES AND ALL STATES AND ALL ALL ALL ALL ALL ALL ALL ALL ALL AL		Jamie Jessen	 Marchaeler Marchaeler
		nn e seres und n. Association The Bugelattice of conserve and many property of more based and pro- reger of conserve of seres, many		 Mileta Net Mileta Net Mileta Patrick Rep Mileta Patrick Rep Mileta Patrick Rep
a unanes, Aterus New Graundela Utilidae, Metus New Graundela Unitnes, Ateru	i New Graunfelo Utilitas. Naktu Nove Graunfelo Utilitas. Paktu Nove Graunfelo Utilitas. Baktu Na	90005908"	HIGHTS CHATTER CARRANTY DEPENDED DI	<u>, anno - Analas i asasa</u>

.TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION CHECKLIST

Complete and submit this checklist with the application.

APPLICANT: <u>New Braunfels Utilities</u>

PERMIT NUMBER: WQ0010232001

Indicate if each of the following items is included in your application.

	Y	Ν		Y	Ν
Administrative Report 1.0	\boxtimes		Original USGS Map	\boxtimes	
Administrative Report 1.1	\boxtimes		Affected Landowners Map	\boxtimes	
SPIF	\boxtimes		Landowner Disk or Labels	\boxtimes	
Core Data Form	\boxtimes		Buffer Zone Map	\boxtimes	
Technical Report 1.0	\boxtimes		Flow Diagram	\boxtimes	
Technical Report 1.1	\boxtimes		Site Drawing	\boxtimes	
Worksheet 2.0	\boxtimes		Original Photographs	\boxtimes	
Worksheet 2.1		\boxtimes	Design Calculations	\boxtimes	
Worksheet 3.0		\boxtimes	Solids Management Plan	\boxtimes	
Worksheet 3.1		\boxtimes	Water Balance		\boxtimes
Worksheet 3.2		\boxtimes			
Worksheet 3.3		\boxtimes			
Worksheet 4.0	\boxtimes				
Worksheet 5.0		\boxtimes			
Worksheet 6.0	\boxtimes				
Worksheet 7.0		\boxtimes			

For TCEQ Use Only Segment Number ______County _____ Expiration Date ______Region _____ Permit Number

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

APPLICATION FOR A DOMESTIC WASTEWATER PERMIT ADMINISTRATIVE REPORT 1.0

TCER If you have questions about completing this form please contact the Applications Review and Processing Team at 512-239-4671.

Section 1. Application Fees (Instructions Page 29)

Indicate the amount submitted for the application fee (check only one).

Flow	New/Major Ameno	dment Renewal						
<0.05 MGD	\$350.00	\$315.00 🗆						
≥0.05 but <0.10 MGD	\$550.00	\$515.00 🗆						
≥0.10 but <0.25 MGD	\$850.00	\$815.00 						
≥0.25 but <0.50 MGD	\$1,250.00	\$1,215.00 🗆						
≥0.50 but <1.0 MGD	\$1,650.00	\$1,615.00 🗆						
≥1.0 MGD	\$2,050.00	\$2,015.00 🗆						
Minor Amendment (for any flow) \$150.00								
Payment Information:								
Mailed Check/Mon	ey Order Number: <u>18</u>	80817						
Check/Mon	ey Order Amount: <u>\$ 1</u>	2,050.00						
Name Print								
EPAY Voucher Nu	on test text.							
Copy of Payment Voucher enclosed? Yes □								
Section 2. Type of Appli	cation (Instructi	ions Page 29)						
□ New TPDES		New TLAP						
⊠ Major Amendment <u>with</u> Re	newal 🗆	Minor Amendment <u>with</u> Renewal						
□ Major Amendment <u>without</u>	Renewal] Minor Amendment <u>without</u> Renewal						
□ Renewal without changes □ Minor Modification of permit								
For amendments or modifications, describe the proposed changes: <u>Include plant phases of 9.5</u> <u>MGD and 15.4 MGD into the permit, relocate the outfall, change disinfection method from</u> <u>chloring gas to LW</u> and allow for two outfalls and two types of disinfection during								

chlorine gas to UV, and allow for two outfalls and two types of disinfection during construction.

For existing permits:

Permit Number: WQ00<u>10232001</u> EPA I.D. (TPDES only): TX<u>0067881</u> Expiration Date: <u>2/1/2020</u>

Section 3. Facility Owner (Applicant) and Co-Applicant Information (Instructions Page 29)

A. The owner of the facility must apply for the permit.

What is the Legal Name of the entity (applicant) applying for this permit?

<u>New Braunfels Utilities</u>

(The legal name must be spelled exactly as filed with the Texas Secretary of State, County, or in the legal documents forming the entity.)

If the applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at <u>http://www15.tceq.texas.gov/crpub/</u>

CN: <u>600522957</u>

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in *30 TAC § 305.44*.

Prefix (Mr., Ms., Miss): <u>Mr.</u>

First and Last Name: Ryan Kelso

Credential (P.E, P.G., Ph.D., etc.):

Title: <u>COO, New Braunfels Utilities</u>

B. Co-applicant information. Complete this section only if another person or entity is required to apply as a co-permittee.

What is the Legal Name of the co-applicant applying for this permit?

<u>N/A</u>

(*The legal name must be spelled exactly as filed with the TX SOS, with the County, or in the legal documents forming the entity.*)

If the co-applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at: <u>http://www15.tceq.texas.gov/crpub/</u>

CN: Click here to enter text.

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in *30 TAC § 305.44*.

Prefix (Mr., Ms., Miss):
First and Last Name:
Credential (P.E, P.G., Ph.D., etc.):
Title: Click here to enter text.

Provide a brief description of the need for a co-permittee:

C. Core Data Form

Complete the Core Data Form for each customer and include as an attachment. If the customer type selected on the Core Data Form is **Individual**, complete **Attachment 1** of Administrative Report 1.0.

Attachment: See Attachment A

Section 4. Application Contact Information (Instructions Page 30)

This is the person(s) TCEQ will contact if additional information is needed about this application. Provide a contact for administrative questions and technical questions.

A.	Prefix (Mr., Ms., Miss): <u>Mr.</u>
	First and Last Name: <u>Steve Barry</u>
	Credential (P.E, P.G., Ph.D., etc.): <u>P.E.</u>
	Title: <u>Project Engineer</u>
	Organization Name: Jones & Carter, Inc.
	Mailing Address: <u>1535 Sawdust Road, Suite 400</u>
	City, State, Zip Code: The Woodlands, TX 77380
	Phone No.: <u>281-363-4039</u> Ext.: Fax No.:
	E-mail Address: <u>sbarry@jonescarter.com</u>
	Check one or both: 🛛 Administrative Contact 🖾 Technical Contact
B.	Prefix (Mr., Ms., Miss): Mr.
	First and Last Name: Brent Lundmark
	Credential (P.E, P.G., Ph.D., etc.):
	Title: Water Treatment & Compliance Manager
	Organization Name: New Braunfels Utilities
	Mailing Address: P.O. Box 310289
	City, State, Zip Code: New Braunfels, TX 78130
	Phone No.: 830-608-8900 Ext.: Fax No.:
	E-mail Address: blundmark@nbutexas.com
	Check one or both: 🛛 Administrative Contact 🗋 Technical Contact

Section 5. Permit Contact Information (Instructions Page 30)

Provide two names of individuals that can be contacted throughout the permit term.

А.	Prefix (Mr., Ms., Miss): <u>Mr.</u>	
	First and Last Name: John Harrell	
	Credential (P.E, P.G., Ph.D., etc.):	
	Title: <u>President</u>	
	Organization Name: <u>New Braunfels Utilities</u>	
	Mailing Address: <u>263 Main Plaza</u>	
	City, State, Zip Code: <u>New Braunfels, TX 78130</u>	
	Phone No.: <u>830-608-8900</u> Ext.:	Fax No.:
	E-mail Address: jharrell@nbutexas.com	
B.	Prefix (Mr., Ms., Miss): <u>Mr</u>	
	First and Last Name: <u>Ryan Kelso</u>	
	Credential (P.E, P.G., Ph.D., etc.):	
	Title: <u>COO</u>	
	Organization Name: <u>New Braunfels Utilities</u>	
	Mailing Address: <u>263 Main Plaza</u>	
	City, State, Zip Code: <u>New Braunfels, TX 78130</u>	
	Phone No.: <u>830-608-8900</u> Ext.:	Fax No.: Click here to enter text
	E-mail Address: rkelso@nbutexas.com	

Section 6. Billing Information (Instructions Page 30)

The permittee is responsible for paying the annual fee. The annual fee will be assessed to permits *in effect on September 1 of each year*. The TCEQ will send a bill to the address provided in this section. The permittee is responsible for terminating the permit when it is no longer needed (using form TCEQ-20029).

Prefix (Mr., Ms., Miss): <u>Mr.</u>	
First and Last Name: <u>Brent Lundmark</u>	
Credential (P.E, P.G., Ph.D., etc.):	er text.
Title: <u>Water Treatment & Compliance Manager</u>	
Organization Name: <u>New Braunfels Utilities</u>	
Mailing Address: <u>P.O. Box 310289</u>	
City, State, Zip Code: <u>New Braunfels, TX 78130</u>	
Phone No.: <u>830-608-8900</u> Ext.:	Fax No.:
E-mail Address: blundmark@nbutexas.com	

Section 7. DMR/MER Contact Information (Instructions Page 31)

Provide the name and complete mailing address of the person delegated to receive and submit

Prefix (Mr., Ms., Miss): <u>Mr.</u>
First and Last Name: <u>Brent Lundmark</u>
Credential (P.E, P.G., Ph.D., etc.):
Title: <u>Water Treatment & Compliance Manager</u>
Organization Name: New Braunfels Utilities
Mailing Address: <u>P.O. Box 310289</u>
City, State, Zip Code: <u>New Braunfels, TX 78130</u>
Phone No.: <u>830-608-8900</u> Ext.: Fax No.:
E-mail Address: <u>blundmark@nbutexas.com</u>

DMR data is required to be submitted electronically. Create an account at:

https://www.tceq.texas.gov/permitting/netdmr/netdmr.html.

Section 8. Public Notice Information (Instructions Page 31)

A. Individual Publishing the Notices

Prefix (Mr., Ms., Miss): <u>Ms.</u>

First and Last Name: Pam Quidley

Credential (P.E, P.G., Ph.D., etc.):

Title: Communications & Marketing Manager

Organization Name: <u>New Braunfels Utilities</u>

Mailing Address: 263 Main Plaza

City, State, Zip Code: <u>New Braunfgels, TX 78130</u>

Phone No.: <u>830-312-7940</u> Ext.:

Fax No.:

E-mail Address: pquidley@nbutexas.com

B. Method for Receiving Notice of Receipt and Intent to Obtain a Water Quality Permit Package

Indicate by a check mark the preferred method for receiving the first notice and instructions:

- ⊠ E-mail Address
- □ Fax
- □ Regular Mail

C. Contact person to be listed in the Notices

Prefix (Mr., Ms., Miss): <u>Mr</u>

First and Last Name: Brent Lundmark

Credential (P.E, P.G., Ph.D., etc.):

Title: Water Treatment & Compliance Manager

Organization Name: New Braunfels Utilities

Phone No.: <u>830-608-8900</u> Ext.:

E-mail: <u>blundmark@nbutexas.com</u>

D. Public Viewing Information

If the facility or outfall is located in more than one county, a public viewing place for each county must be provided.

Public building name: <u>New Braunfels Utilities</u>

Location within the building: <u>Front Desk</u>

Physical Address of Building: 263 Main Plaza

City: <u>New Braunfels, TX 78130</u> County: <u>Comal</u>

Contact Name: Pam Quidley

Phone No.: <u>830-312-7940</u> Ext.:

E. Bilingual Notice Requirements:

This information **is required** for **new, major amendment, and renewal applications**. It is not required for minor amendment or minor modification applications.

This section of the application is only used to determine if alternative language notices will be needed. Complete instructions on publishing the alternative language notices will be in your public notice package.

Please call the bilingual/ESL coordinator at the nearest elementary and middle schools and obtain the following information to determine whether an alternative language notices are required.

1. Is a bilingual education program required by the Texas Education Code at the elementary or middle school nearest to the facility or proposed facility?

🖾 Yes 🗆 No

If **no**, publication of an alternative language notice is not required; **skip to** Section 9 below.

2. Are the students who attend either the elementary school or the middle school enrolled in a bilingual education program at that school?

🖾 Yes 🗆 No

3. Do the students at these schools attend a bilingual education program at another location?

□ Yes ⊠ No

4. Would the school be required to provide a bilingual education program but the school has waived out of this requirement under 19 TAC §89.1205(g)?

🗆 Yes 🖾 No

5. If the answer is yes to question 1, 2, 3, or 4, public notices in an alternative language are required. Which language is required by the bilingual program? <u>Spanish</u>

Section 9. Regulated Entity and Permitted Site Information (Instructions Page 33)

A. If the site is currently regulated by TCEQ, provide the Regulated Entity Number (RN) issued to this site. **RN**102078011

Search the TCEQ's Central Registry at <u>http://www15.tceq.texas.gov/crpub/</u> to determine if the site is currently regulated by TCEQ.

B. Name of project or site (the name known by the community where located):

South Kuehler Wastewater Treatment Plant

C. Owner of treatment facility: <u>New Braunfels Utilities</u>

Ownership of Facility:	\boxtimes	Public		Priv	ate 🗆]	Both	l		Federal
------------------------	-------------	--------	--	------	-------	---	------	---	--	---------

D. Owner of land where treatment facility is or will be:

Prefix (Mr., Ms., Miss): <u>Mr.</u>

First and Last Name: <u>Ryan Kelso</u>

Mailing Address: 263 Main Plaza

City, State, Zip Code: <u>New Braunfels, TX 78130</u>

Phone No.: <u>830-608-8900</u> E-mail Address: <u>rkelso@nbutexas.com</u>

If the landowner is not the same person as the facility owner or co-applicant, attach a lease agreement or deed recorded easement. See instructions.

Attachment:

E. Owner of effluent disposal site:

Prefix (Mr., Ms., Miss): <u>N/A</u>	
First and Last Name:	nter text.
Mailing Address:	Text.
City, State, Zip Code:	nter text
Phone No.:	E-mail Address:

If the landowner is not the same person as the facility owner or co-applicant, attach a lease agreement or deed recorded easement. See instructions.

Attachment:

F. Owner of sewage sludge disposal site (if authorization is requested for sludge disposal on property owned or controlled by the applicant):

Prefix (Mr., Ms., Miss): <u>N/A</u>	
First and Last Name:	ner text
Mailing Address:	
City, State, Zip Code:	iter text.
Phone No.:	E-mail Address:

If the landowner is not the same person as the facility owner or co-applicant, attach a lease agreement or deed recorded easement. See instructions.

Attachment:

Section 10. TPDES Discharge Information (Instructions Page 34)

A. Is the wastewater treatment facility location in the existing permit accurate?

🖾 Yes 🗆 No

If **no**, **or a new permit application**, please give an accurate description:

B. Are the point(s) of discharge and the discharge route(s) in the existing permi
--

\boxtimes	Yes	No

If **no**, **or a new or amendment permit application**, provide an accurate description of the point of discharge and the discharge route to the nearest classified segment as defined in 30 TAC Chapter 307:

The description in the permit is accurate, but the outfall will be moved about 500 feet upstream.

City nearest the outfall(s): <u>New Braunfels</u>

County in which the outfalls(s) is/are located: Comal

Outfall Latitude: <u>29.686403 deg N</u>	Longitude: <u>98.099436 deg W</u>
--	-----------------------------------

C. Is or will the treated wastewater discharge to a city, county, or state highway right-of-way, or a flood control district drainage ditch?

🗆 Yes 🛛 No

If **yes**, indicate by a check mark if:

	Authorization granted		Authorization pending
--	-----------------------	--	-----------------------

For **new and amendment** applications, provide copies of letters that show proof of contact and the approval letter upon receipt.

Attachment:

D. For all applications involving an average daily discharge of 5 MGD or more, provide the names of all counties located within 100 statute miles downstream of the point(s) of discharge.

Comal County, Guadalupe County, Gonzales County, Dewitt County

Section 11. TLAP Disposal Information (Instructions Page 36)

A. For TLAPs, is the location of the effluent disposal site in the existing permit accurate?

🗆 Yes 🖾 No

If **no, or a new or amendment permit application**, provide an accurate description of the disposal site location:

B. City nearest the disposal site:

- **C.** County in which the disposal site is located:
- **D.** Disposal Site Latitude:

Longitude:

- E. For TLAPs, describe the routing of effluent from the treatment facility to the disposal site:
- **F.** For **TLAPs**, please identify the nearest watercourse to the disposal site to which rainfall runoff might flow if not contained:

Section 12. Miscellaneous Information (Instructions Page 37)

- A. Is the facility located on or does the treated effluent cross American Indian Land?
 - □ Yes ⊠ No N/A Not a TLAP Application
- **B.** If the existing permit contains an onsite sludge disposal authorization, is the location of the sewage sludge disposal site in the existing permit accurate?
 - \Box Yes \Box No \boxtimes Not Applicable

If No, or if a new onsite sludge disposal authorization is being requested in this permit

application, provide an accurate location description of the sewage sludge disposal site.

Click here to enter text.		

- **C.** Did any person formerly employed by the TCEQ represent your company and get paid for service regarding this application?
 - 🗆 Yes 🛛 No

If yes, list each person formerly employed by the TCEQ who represented your company and was paid for service regarding the application:

D.	Do	vou	owe	anv	fees	to	the	TCEQ?
~	00	, ou	0110	urry	reco	ιu	unc	I CLQ.

🗆 Yes 🖾 No

If **yes**, provide the following information:

Account number:

Amount past due:

- **E.** Do you owe any penalties to the TCEQ?
 - 🗆 Yes 🖾 No

If **yes**, please provide the following information:

Enforcement order number:

Amount past due:

Section 13. Attachments (Instructions Page 38)

Indicate which attachments are included with the Administrative Report. Check all that apply:

- Lease agreement or deed recorded easement, if the land where the treatment facility is located or the effluent disposal site are not owned by the applicant or co-applicant.
- Original full-size USGS Topographic Map with the following information:
 - Applicant's property boundary
 - Treatment facility boundary
 - Labeled point of discharge for each discharge point (TPDES only)
 - Highlighted discharge route for each discharge point (TPDES only)
 - Onsite sewage sludge disposal site (if applicable)
 - Effluent disposal site boundaries (TLAP only)
 - New and future construction (if applicable)
 - 1 mile radius information

- 3 miles downstream information (TPDES only)
- All ponds.
- Attachment 1 for Individuals as co-applicants
- Other Attachments. Please specify: <u>See Table of Attachments</u>

Section 14. Signature Page (Instructions Page 39)

If co-applicants are necessary, each entity must submit an original, separate signature page.

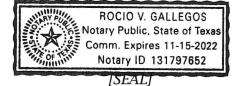
Permit Number: WQ0010232001

Applicant: New Braunfels Utilities

Certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I further certify that I am authorized under 30 Texas Administrative Code § 305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request.


Signatory name (typed or printed): Ryan Kelso

Signatory title: COO, New Braunfels Utilities

Signature:

(Use blue ink)

Subscribed an	d Sworn to before 1	me by the s	said	Ryan	Kelso	
on this	25th	day of	Ju	UY .	, 20 9.	
My commissio	on expires on the	15th	_day of	Novem	ber, 20 22.	

Date: 7/25/19

Notary Public

County, Texas

DOMESTIC ADMINISTRATIVE REPORT 1.1

The following information is required for new and amendment applications.

Section 1. Affected Landowner Information (Instructions Page 41)

- **A.** Indicate by a check mark that the landowners map or drawing, with scale, includes the following information, as applicable:
 - ☑ The applicant's property boundaries
 - The facility site boundaries within the applicant's property boundaries
 - The distance the buffer zone falls into adjacent properties and the property boundaries of the landowners located within the buffer zone
 - The property boundaries of all landowners surrounding the applicant's property (Note: if the application is a major amendment for a lignite mine, the map must include the property boundaries of all landowners adjacent to the new facility (ponds).)
 - The point(s) of discharge and highlighted discharge route(s) clearly shown for one mile downstream
 - The property boundaries of the landowners located on both sides of the discharge route for one full stream mile downstream of the point of discharge
 - The property boundaries of the landowners along the watercourse for a one-half mile radius from the point of discharge if the point of discharge is into a lake, bay, estuary, or affected by tides
 - The boundaries of the effluent disposal site (for example, irrigation area or subsurface drainfield site) and all evaporation/holding ponds within the applicant's property
 - □ The property boundaries of all landowners surrounding the effluent disposal site
 - □ The boundaries of the sludge land application site (for land application of sewage sludge for beneficial use) and the property boundaries of landowners surrounding the applicant's property boundaries where the sewage sludge land application site is located
 - □ The property boundaries of landowners within one-half mile in all directions from the applicant's property boundaries where the sewage sludge disposal site (for example, sludge surface disposal site or sludge monofill) is located
- **B.** Indicate by a check mark that a separate list with the landowners' names and mailing addresses cross-referenced to the landowner's map has been provided.
- C. Indicate by a check mark in which format the landowners list is submitted:
 - ☑ Readable/Writeable CD □ Four sets of labels
- **D.** Provide the source of the landowners' names and mailing addresses: <u>Comal County Appraisal</u> <u>District</u>
- **E.** As required by *Texas Water Code § 5.115*, is any permanent school fund land affected by this application?
 - 🗆 Yes 🖾 No

If **yes**, provide the location and foreseeable impacts and effects this application has on the land(s):

Section 2. Original Photographs (Instructions Page 44)

Provide original ground level photographs. Indicate with checkmarks that the following information is provided.

- At least one original photograph of the new or expanded treatment unit location
- At least two photographs of the existing/proposed point of discharge and as much area downstream (photo 1) and upstream (photo 2) as can be captured. If the discharge is to an open water body (e.g., lake, bay), the point of discharge should be in the right or left edge of each photograph showing the open water and with as much area on each respective side of the discharge as can be captured.
- □ At least one photograph of the existing/proposed effluent disposal site
- A plot plan or map showing the location and direction of each photograph

Section 3. Buffer Zone Map (Instructions Page 44)

- **A.** Buffer zone map. Provide a buffer zone map on 8.5 x 11-inch paper with all of the following information. The applicant's property line and the buffer zone line may be distinguished by using dashes or symbols and appropriate labels.
 - The applicant's property boundary;
 - The required buffer zone; and
 - Each treatment unit; and
 - The distance from each treatment unit to the property boundaries.
- **B.** Buffer zone compliance method. Indicate how the buffer zone requirements will be met. Check all that apply.
 - ⊠ Ownership
 - □ Restrictive easement
 - ☑ Nuisance odor control
 - □ Variance
- **C.** Unsuitable site characteristics. Does the facility comply with the requirements regarding unsuitable site characteristic found in 30 TAC § 309.13(a) through (d)?

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

FOR AGENCIES REVIEWING DOMESTIC TPDES WASTEWATER PERMIT APPLICATIONS

TCEQ USE ONLY:	
Application type:RenewalMajor A	AmendmentNinor AmendmentNew
County:	Segment Number:
Admin Complete Date:	
Agency Receiving SPIF:	
Texas Historical Commission	U.S. Fish and Wildlife
Texas Parks and Wildlife Department	U.S. Army Corps of Engineers

This form applies to TPDES permit applications only. (Instructions, Page 53)

The SPIF must be completed as a separate document. The TCEQ will mail a copy of the SPIF to each agency as required by the TCEQ agreement with EPA. If any of the items are not completely addressed or further information is needed, you will be contacted to provide the information before the permit is issued. Each item must be completely addressed.

Do not refer to a response of any item in the permit application form. Each attachment must be provided with this form separately from the administrative report of the application. The application will not be declared administratively complete without this form being completed in its entirety including all attachments.

The following applies to all applications:

1. Permittee: <u>New Braunfels Utilities</u>

Permit No. WQ00 <u>10232001</u>

EPA ID No. TX <u>0067881</u>

Address of the project (or a location description that includes street/highway, city/vicinity, and county):

1608 Coco Drive, Comal County, New Braunfels, TX

Provide the name, address, phone and fax number of an individual that can be contacted to answer specific questions about the property.

Prefix (Mr., Ms., Miss): <u>Mr.</u> First and Last Name: <u>Brent Lundmark</u> Credential (P.E, P.G., Ph.D., etc.): Title: <u>Water Treatment & Compliance Manager</u> Mailing Address: <u>P.O. Box 310289</u> City, State, Zip Code: <u>New Braunfels, TX 78130</u> Phone No.: <u>830-608-8900</u> Ext.: E-mail Address: <u>blundmark@nbutexas.com</u>

- 2. List the county in which the facility is located: <u>Comal</u>
- 3. If the property is publicly owned and the owner is different than the permittee/applicant, please list the owner of the property.
 The property owner is the permittee
- 4. Provide a description of the effluent discharge route. The discharge route must follow the flow of effluent from the point of discharge to the nearest major watercourse (from the point of discharge to a classified segment as defined in 30 TAC Chapter 307). If known, please identify the classified segment number.

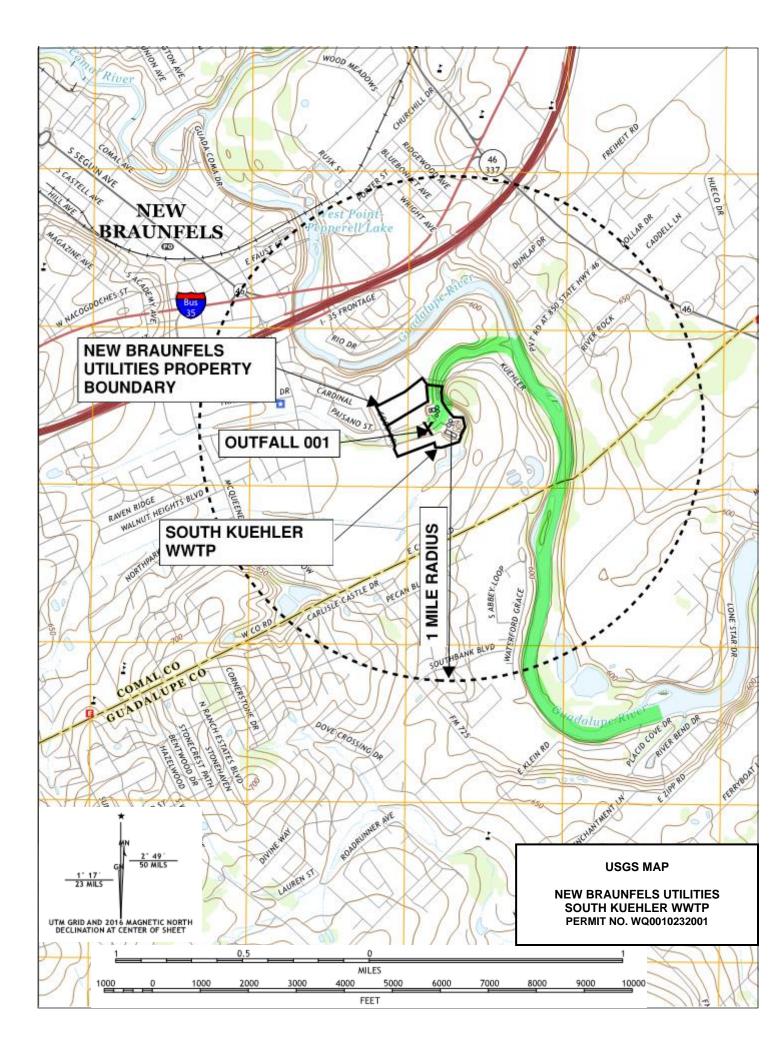
<u>Discharge is to an unnamed tributary of the Guadalupe River; thence to the Guadalupe</u> <u>River Below Comal River in Segment No. 1804 of the Guadalupe River Basin</u>

5. Please provide a separate 7.5-minute USGS quadrangle map with the project boundaries plotted and a general location map showing the project area. Please highlight the discharge route from the point of discharge for a distance of one mile downstream. (This map is required in addition to the map in the administrative report).

Provide original photographs of any structures 50 years or older on the property.

Does your project involve any of the following? Check all that apply.

- Proposed access roads, utility lines, construction easements
- □ Visual effects that could damage or detract from a historic property's integrity
- ☑ Vibration effects during construction or as a result of project design
- Additional phases of development that are planned for the future
- □ Sealing caves, fractures, sinkholes, other karst features


- Disturbance of vegetation or wetlands
- 6. List proposed construction impact (surface acres to be impacted, depth of excavation, sealing of caves, or other karst features):

About 10 acres of land will be disturbed during construction. No caves or karst features will be sealed.

Describe existing disturbances, vegetation, and land use:
 <u>The land is used as a wastewater treatment plant site. Some trees will be cleared during construction.</u>

THE FOLLOWING ITEMS APPLY ONLY TO APPLICATIONS FOR NEW TPDES PERMITS AND MAJOR AMENDMENTS TO TPDES PERMITS

- 8. List construction dates of all buildings and structures on the property: <u>The last expansion project for the South Kuehler Plant occurred in 1991.</u>
- 9. Provide a brief history of the property, and name of the architect/builder, if known. <u>The property was woodlands owned by the City of New Braunfels</u>

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY **DOMESTIC WASTEWATER PERMIT APPLICATION**

DOMESTIC TECHNICAL REPORT 1.0

The Following Is Required For All Applications Renewal, New, And Amendment

Section 1. Permitted or Proposed Flows (Instructions Page 51)

A. Existing/Interim I Phase

Design Flow (MGD): <u>4.2</u> 2-Hr Peak Flow (MGD): <u>12.6</u> Estimated construction start date: <u>------</u> Estimated waste disposal start date: <u>------</u>

B. Interim II Phase

Design Flow (MGD): <u>9.3</u> 2-Hr Peak Flow (MGD): <u>27.9</u> Estimated construction start date: <u>August 2020</u> Estimated waste disposal start date: <u>July 2023</u>

C. Final Phase

Design Flow (MGD): <u>15.4</u> 2-Hr Peak Flow (MGD): <u>46.2</u> Estimated construction start date: <u>January 2026</u> Estimated waste disposal start date: <u>December 2029</u>

D. Current operating phase: <u>4.2 MGD</u> Provide the startup date of the facility: <u>1991</u>

Section 2. Treatment Process (Instructions Page 51)

A. Treatment process description

Provide a detailed description of the treatment process. Include the type of

Page 1 of 80

treatment plant, mode of operation, and all treatment units. Start with the plant's head works and finish with the point of discharge. Include all sludge processing and drying units. **If more than one phase exists or is proposed in the permit, a description of** *each phase* **must be provided**. Process description:

See	<u>Attachment H</u>

Port or pipe diameter at the discharge point, in inches: <u>36</u>

B. Treatment Units

In Table 1.0(1), provide the treatment unit type, the number of units, and dimensions (length, width, depth) **of each treatment unit, accounting for** *all* **phases of operation**.

Treatment Unit Type	Number of Units	Dimensions (L x W x D)
See Attachment H		

C. Process flow diagrams

Provide flow diagrams for the existing facilities and **each** proposed phase of construction.

Attachment: <u>See Attachment I</u>

Section 3. Site Drawing (Instructions Page 52)

Provide a site drawing for the facility that shows the following:

- The boundaries of the treatment facility;
- The boundaries of the area served by the treatment facility;
- If land disposal of effluent, the boundaries of the disposal site and all storage/holding ponds; and
- If sludge disposal is authorized in the permit, the boundaries of the land application or disposal site.

Attachment: <u>See Attachment J</u>

Provide the name and a description of the area served by the treatment facility.

The wastewater treatment plant serves central and south New Braunfels

Section 4. Unbuilt Phases (Instructions Page 52)

Is the application for a renewal of a permit that contains an unbuilt phase or

phases?

Yes □ No ⊠

If yes, does the existing permit contain a phase that has not been constructed within five years of being authorized by the TCEQ?

Yes 🗆 🛛 No 🗆

If yes, provide a detailed discussion regarding the continued need for the unbuilt phase. Failure to provide sufficient justification may result in the Executive Director recommending denial of the unbuilt phase or phases.

Section 5. Closure Plans (Instructions Page 53)

Have any treatment units been taken out of service permanently, or will any units be taken out of service in the next five years? No 🖂

Yes □

If yes, was a closure plan submitted to the TCEQ?

Yes □ No 🗆

If yes, provide a brief description of the closure and the date of plan approval.

Section 6. Permit Specific Requirements (Instructions Page 53)

For applicants with an existing permit, check the Other Requirements or Special Provisions of the permit.

A. Summary transmittal

Have plans and specifications been approved for the existing facilities and each proposed phase?

Yes 🖂 No 🗆

If yes, provide the date(s) of approval for each phase: Unknown

Provide information, including dates, on any actions taken to meet a requirement or provision pertaining to the submission of a summary transmittal letter. Provide a copy of an approval letter from the TCEQ, if applicable.

No action required

B. Buffer zones

Have the buffer zone requirements been met?

Yes 🖂 No 🗆

Provide information below, including dates, on any actions taken to meet the conditions of the buffer zone. If available, provide any new documentation relevant to maintaining the buffer zones.

No action required

C. Other actions required by the current permit

Does the *Other Requirements* or *Special Provisions* section in the existing permit require submission of any other information or other required actions? Examples include Notification of Completion, progress reports, soil monitoring data, etc.

Yes 🗆 🛛 No 🖂

If yes, provide information below on the status of any actions taken to meet the conditions of an *Other Requirement* or *Special Provision*.

D. Grit and grease treatment

1. Acceptance of grit and grease waste

Does the facility have a grit and/or grease processing facility onsite that treats and decants or accepts transported loads of grit and grease waste that are discharged directly to the wastewater treatment plant prior to any treatment?

Yes □ No ⊠

If No, stop here and continue with Subsection E. Stormwater Management.

2. Grit and grease processing

Describe below how the grit and grease waste is treated at the facility. In your description, include how and where the grit and grease is introduced to the treatment works and how it is separated or processed. Provide a flow diagram showing how grit and grease is processed at the facility.

3. Grit disposal

Does the facility have a Municipal Solid Waste (MSW) registration or permit for grit_disposal?

Yes 🗆 🛛 No 🗆

If No, contact the TCEQ Municipal Solid Waste team at 512-239-0000. Note: A registration or permit is required for grit disposal. Grit shall not be combined with treatment plant sludge. See the instruction booklet for additional information on grit disposal requirements and restrictions.

Describe the method of grit disposal.

4. Grease and decanted liquid disposal

Note: A registration or permit is required for grease disposal. Grease shall not be combined with treatment plant sludge. For more information, contact the TCEQ Municipal Solid Waste team at 512-239-0000.

Describe how the decant and grease are treated and disposed of after grit separation.

E. Stormwater management

1. Applicability

Does the facility have a design flow of 1.0 MGD or greater in any phase?

Yes 🖂 🛛 No 🗆

Does the facility have an approved pretreatment program, under 40 CFR Part 403?

Yes ⊠ No □

If no to both of the above, then skip to Subsection F, Other Wastes Received.

2. MSGP coverage

Is the stormwater runoff from the WWTP and dedicated lands for sewage disposal currently permitted under the TPDES Multi-Sector General Permit (MSGP), TXR050000?

Yes 🛛 No 🗆

If yes, please provide MSGP Authorization Number and skip to Subsection F, Other Wastes Received:

TXR05 <u>R076</u> or TXRNE

If no, do you intend to seek coverage under TXR050000?

Yes 🗆 🛛 No 🗆

3. Conditional exclusion

Alternatively, do you intend to apply for a conditional exclusion from permitting based TXR050000 (Multi Sector General Permit) Part II B.2 or TXR050000 (Multi Sector General Permit) Part V, Sector T 3(b)?

Yes 🗆 🛛 No 🗆

If yes, please explain below then proceed to Subsection F, Other Wastes

Received:

4. Existing coverage in individual permit

Is your stormwater discharge currently permitted through this individual TPDES or TLAP permit?

Yes 🗆 🛛 No 🗆

If yes, provide a description of stormwater runoff management practices at the site that are authorized in the wastewater permit then skip to Subsection F, Other Wastes Received.

Click here to enter text.

5. Zero stormwater discharge

Do you intend to have no discharge of stormwater via use of evaporation or other means?

Yes 🗆 🛛 No 🗆

If yes, explain below then skip to Subsection F. Other Wastes Received.

Note: If there is a potential to discharge any stormwater to surface water in the state as the result of any storm event, then permit coverage is required under the MSGP or an individual discharge permit. This requirement applies to all areas of facilities with treatment plants or systems that treat, store, recycle, or reclaim domestic sewage, wastewater or sewage sludge (including dedicated lands for sewage sludge disposal located within the onsite property boundaries) that meet the applicability criteria of above. You have the option of obtaining coverage under the MSGP for direct discharges, (recommended), or obtaining coverage under this individual permit.

6. Request for coverage in individual permit

Are you requesting coverage of stormwater discharges associated with your treatment plant under this individual permit?

Yes 🗆 🛛 No 🗆

If yes, provide a description of stormwater runoff management practices at the site for which you are requesting authorization in this individual wastewater permit and describe whether you intend to comingle this discharge with your treated effluent or discharge it via a separate dedicated stormwater outfall. Please also indicate if you intend to divert stormwater to the treatment plant headworks and indirectly discharge it to water in the state.

Note: Direct stormwater discharges to waters in the state authorized through this individual permit will require the development and implementation of a stormwater pollution prevention plan (SWPPP) and will be subject to additional monitoring and reporting requirements. Indirect discharges of stormwater via headworks recycling will require compliance with all individual permit requirements including 2-hour peak flow limitations. All stormwater discharge authorization requests will require additional information during the technical review of your application.

F. Discharges to the Lake Houston Watershed

Does the facility discharge in the Lake Houston watershed? Yes \square No \boxtimes

If yes, a Sewage Sludge Solids Management Plan is required. See Example 5 in the instructions.

G. Other wastes received including sludge from other WWTPs and septic waste

1. Acceptance of sludge from other WWTPs

Does the facility accept or will it accept sludge from other treatment plants at the facility site? _____

Yes 🗆 🛛 No 🖂

If yes, attach sewage sludge solids management plan. See Example 5 of the instructions.

In addition, provide the date that the plant started accepting sludge or is anticipated to start accepting sludge, an estimate of monthly sludge

acceptance (gallons or millions of gallons), an estimate of the BOD₅

concentration of the sludge, and the design BOD₅ concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

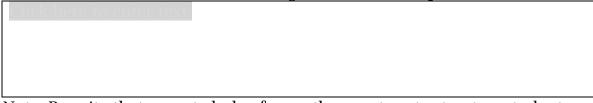
Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.

2. Acceptance of septic waste

Is the facility accepting or will it accept septic waste?

Yes 🗆 🛛 No 🖂

If yes, does the facility have a Type V processing unit?


Yes □ No ⊠

If yes, does the unit have a Municipal Solid Waste permit?

Yes □ No ⊠

If yes to any of the above, provide a the date that the plant started accepting septic waste, or is anticipated to start accepting septic waste, an estimate of monthly septic waste acceptance (gallons or millions of gallons), an estimate of the BOD₅ concentration of the septic waste, and the design

BOD₅ concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.

3. Acceptance of other wastes (not including septic, grease, grit, or RCRA, CERCLA or as discharged by IUs listed in Worksheet 6)

Is the facility accepting or will it accept wastes that are not domestic in nature excluding the categories listed above?

Yes □ No ⊠

If yes, provide the date that the plant started accepting the waste, an estimate how much waste is accepted on a monthly basis (gallons or millions of gallons), a description of the entities generating the waste, and any distinguishing chemical or other physical characteristic of the waste. Also note if this information has or has not changed since the last permit action.

Section 7. Pollutant Analysis of Treated Effluent (Instructions Page 58)

Is the facility in operation? Yes \boxtimes No \square

If no, this section is not applicable. Proceed to Section 8.

If yes, provide effluent analysis data for the listed pollutants. *Wastewater treatment facilities* complete Table 1.0(2). W*ater treatment facilities* discharging filter backwash water, complete Table 1.0(3).

Note: The sample date must be within 1 year of application submission.

Pollutant	Average	Max	No. of	Sample	Sample
Pollulalli	Conc.	Conc.	Samples	Туре	Date/Time
CBOD ₅ , mg/l	4.97	5.00	1	Comp	4-16-19 / 0800
Total Suspended Solids, mg/l	4.15	4.18	2	comp	4-16-19 / 0800
Ammonia Nitrogen, mg/l	0.318	0.318	1	comp	4-16-19 / 0800
Nitrate Nitrogen, mg/l	28.8	28.8	1	comp	4-2-19 / 0800
Total Kjeldahl Nitrogen, mg/l	3.0	3.0	1	comp	4-2-19 / 0800
Sulfate, mg/l	100.0	100.0	1	Comp	4-2-19 / 0800
Chloride, mg/l	172.0	172.0	1	comp	4-2-19 / 0800
Total Phosphorus, mg/l	2.55	2.55	1	comp	4-12-19 / 0800
pH, standard units	7.42	7.42	1	Grab	4-11-19 / 1346
Dissolved Oxygen*, mg/l	8.23	8.23	1	Grab	5-28-19 / 0857
Chlorine Residual, mg/l	1.9	1.9	1	Grab	4-11-19 / 1346
<i>E.coli</i> (CFU/100ml) freshwater	<1	<1	1	Grab	4-11-19 / 1346
Entercocci (CFU/100ml)	N/A	N/A	N/A	N/A	N/A

Table 1.0(2) - Pollutant Analysis for Wastewater Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
saltwater					
Total Dissolved Solids, mg/l	518	518	1	Grab	4-11-19 / 1346
Electrical Conductivity, µmohs/cm, †	1072	1072	1	Grab	4-11-19 / 1346
Oil & Grease, mg/l	< 5	< 5	1	Grab	4-15-19 / 1006
Alkalinity (CaCO ₃)*, mg/l	132.0	132.0	1	comp	4-2-19 / 0800

*TPDES permits only

†TLAP permits only

Table 1.0(3) - Pollutant Analysis for Water Treatment Facilities

Pollutant	Average	Max	No. of	Sample	Sample
POllulall	Conc.	Conc.	Samples	Туре	Date/Time
Total Suspended Solids, mg/l	N/A	N/A	N/A	N/A	N/A
Total Dissolved Solids, mg/l	N/A	N/A	N/A	N/A	N/A
pH, standard units	N/A	N/A	N/A	N/A	N/A
Fluoride, mg/l	N/A	N/A	N/A	N/A	N/A
Aluminum, mg/l	N/A	N/A	N/A	N/A	N/A
Alkalinity (CaCO ₃), mg/l	N/A	N/A	N/A	N/A	N/A

Section 8. Facility Operator (Instructions Page 60)

Facility Operator Name: Orlando Pena

Facility Operator's License Classification and Level: <u>Class A</u>

Facility Operator's License Number: <u>WW0004005</u>

Section 9. Sewage Sludge Management and Disposal (Instructions Page 60)

A. Sludge disposal method

Identify the current or anticipated sludge disposal method or methods from the

Page 12 of 80

following list. Check all that apply.

☑ Permitted landfill

Permitted or Registered land application site for beneficial u		Pe	ermitted	or Regis	stered l	and	application	site	for	beneficia	l us
--	--	----	----------	----------	----------	-----	-------------	------	-----	-----------	------

- □ Land application for beneficial use authorized in the wastewater permit
- Permitted sludge processing facility
- □ Marketing and distribution as authorized in the wastewater permit
- Composting as authorized in the wastewater permit
- Permitted surface disposal site (sludge monofill)
- Surface disposal site (sludge monofill) authorized in the wastewater permit
- Transported to another permitted wastewater treatment plant or permitted sludge processing facility. If you selected this method, a written statement or contractual agreement from the wastewater treatment plant or permitted sludge processing facility accepting the sludge must be included with this application.
- □ Other:

B. Sludge disposal site

Disposal site name: <u>Mesquite Creek Landfill</u> TCEQ permit or registration number: <u>MSW-66B</u> County where disposal site is located: Comal

C. Sludge transportation method

Method of transportation (truck, train, pipe, other): <u>Truck</u>

Name of the hauler: <u>Residuals Transport</u>

Hauler registration number: <u>24346</u>

Sludge is transported as a:

Liquid 🗆	semi-liquid 🗆	
Liquia 🗆	seim-nquiu 🗆	

semi-solid 🖂	
--------------	--

solid \square

Section 10. Permit Authorization for Sewage Sludge Disposal (Instructions Page 60)

A. Beneficial use authorization

Does the existing permit include authorization for land application of sewage sludge for beneficial use?

Yes 🗆 🛛 No 🖂

If yes, are you requesting to continue this authorization to land apply sewage sludge for beneficial use?

Yes □ No □

If yes, is the completed **Application for Permit for Beneficial Land Use of Sewage Sludge (TCEQ Form No. 10451)** attached to this permit application (see the instructions for details)?

Yes 🗆 🛛 No 🗆

B. Sludge processing authorization

Does the existing permit include authorization for any of the following sludge processing, storage or disposal options?

Sludge Composting	Yes 🗆	No 🖂
Marketing and Distribution of sludge	Yes 🗆	No 🖂
Sludge Surface Disposal or Sludge Monofill	Yes 🗆	No 🖂
Temporary storage in sludge lagoons	Yes □	No 🖂

If yes to any of the above sludge options and the applicant is requesting to continue this authorization, is the completed **Domestic Wastewater Permit Application: Sewage Sludge Technical Report (TCEQ Form No. 10056)** attached to this permit application?

Yes 🗆 🛛 No 🗆

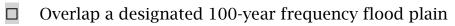
Section 11. Sewage Sludge Lagoons (Instructions Page 61)

Does this facility include sewage sludge lagoons?

Yes 🗆 🛛 No 🖾

If yes, complete the remainder of this section. If no, proceed to Section 12.

A. Location information


The following maps are required to be submitted as part of the application. For each map, provide the Attachment Number.

- Original General Highway (County) Map: Attachment:
- USDA Natural Resources Conservation Service Soil Map: Attachment:
- Federal Emergency Management Map: Attachment:
- Site map:

Attachment:

Discuss in a description if any of the following exist within the lagoon area.

Check all that apply.

- Soils with flooding classification
- Overlap an unstable area
- □ Wetlands
- Located less than 60 meters from a fault
- \Box None of the above

Attachment:

If a portion of the lagoon(s) is located within the 100-year frequency flood plain, provide the protective measures to be utilized including type and size of protective structures:

B. Temporary storage information

Provide the results for the pollutant screening of sludge lagoons. These results are in addition to pollutant results in Section 7 of Technical Report 1.0.

Nitrate Nitrogen, mg/kg:

Total Kjeldahl Nitrogen, mg/kg:

Total Nitrogen (=nitrate nitrogen + TKN), mg/kg:

Phosphorus, mg/kg:

Potassium, mg/kg:
pH, standard units:
Ammonia Nitrogen mg/kg:
Arsenic: Dick here to enter text
Cadmium: Click here to enter text
Chromium: Click here to enter text
Copper: Click here to enter text
Lead: Click here to enter text
Mercury: Click here to enter text
Molybdenum: Click here to enter text.
Nickel: Click here to enter text
Selenium: Click here to enter text
Zinc: Click here to enter text
Total PCBs: Click here to enter text
Provide the following information: Volume and frequency of sludge to the lagoon(s):
Total dry tons stored in the lagoons(s) per 365-day period:
enter text.
Total dry tons stored in the lagoons(s) over the life of the unit:
enter text.
C. Liner information
Does the active/proposed sludge lagoon(s) have a liner with a maximum hydraulic conductivity of 1x10 ⁻⁷ cm/sec? Yes INO
If yes , describe the liner below. Please note that a liner is required.

D. Site development plan

Provide a detailed description of the methods used to deposit sludge in the

lagoon(s):

Attach the following documents to the application.

• Plan view and cross-section of the sludge lagoon(s)

Attachment:

• Copy of the closure plan

Attachment:

• Copy of deed recordation for the site

Attachment:

• Size of the sludge lagoon(s) in surface acres and capacity in cubic feet and gallons

Attachment:

• Description of the method of controlling infiltration of groundwater and surface water from entering the site

Attachment:

• Procedures to prevent the occurrence of nuisance conditions

Attachment:

E. Groundwater monitoring

Is groundwater monitoring currently conducted at this site, or are any wells available for groundwater monitoring, or are groundwater monitoring data otherwise available for the sludge lagoon(s)?

Yes 🗆 No 🗆

If groundwater monitoring data are available, provide a copy. Provide a profile of soil types encountered down to the groundwater table and the depth to the shallowest groundwater as a separate attachment.

Attachment:

Section 12. Authorizations/Compliance/Enforcement

(Instructions Page 63)

A. Additional authorizations

Does the permittee have additional authorizations for this facility, such as reuse authorization, sludge permit, etc?

Yes 🛛 No 🗆

If yes, provide the TCEQ authorization number and description of the authorization:

The permittee has authorization for reclaimed water use, Authorization R10232001

B. Permittee enforcement status

Is the permittee currently under enforcement for this facility?

Yes 🗆 🛛 No 🖂

Is the permittee required to meet an implementation schedule for compliance or enforcement?

Yes □ No ⊠

If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status:

Section 13. RCRA/CERCLA Wastes (Instructions Page 63)

A. RCRA hazardous wastes

Has the facility received in the past three years, does it currently receive, or will it receive RCRA hazardous waste?

Yes 🗆 🛛 No 🖾

B. Remediation activity wastewater

Has the facility received in the past three years, does it currently receive, or will it receive CERCLA wastewater, RCRA remediation/corrective action wastewater or other remediation activity wastewater?

Yes 🗆 🛛 No 🖂

C. Details about wastes received

If yes to either Subsection A or B above, provide detailed information concerning these wastes with the application.

Attachment:

Section 14. Laboratory Accreditation (Instructions Page 64)

All laboratory tests performed must meet the requirements of *30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification*, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
 - periodically inspected by the TCEQ; or
 - located in another state and is accredited or inspected by that state; or
 - performing work for another company with a unit located in the same site; or
 - performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review *30 TAC Chapter 25* for specific requirements.

The following certification statement shall be signed and submitted with every application. See the *Signature Page* section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of *30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.*

Printed Name: Ryan Kelso

Title: COO, New Braunfels Utilities

Signature: Date:

DOMESTIC TECHNICAL REPORT 1.1

The following is required for new and amendment applications

Section 1. Justification for Permit (Instructions Page 66)

A. Justification of permit need

Provide a detailed discussion regarding the need for any phase(s) not currently permitted. Failure to provide sufficient justification may result in the Executive Director recommending denial of the proposed phase(s) or permit.

See Attachment K

B. Regionalization of facilities

Provide the following information concerning the potential for regionalization of domestic wastewater treatment facilities:

1. Municipally incorporated areas

If the applicant is a city, then Item 1 is not applicable. Proceed to Item 2 Utility CCN areas.

Is any portion of the proposed service area located in an incorporated city?

Yes 🛛 No 🗆 Not Applicable 🗆

If yes, within the city limits of: <u>New Braunfels</u>

If yes, attach correspondence from the city.

Attachment: N/A - New Braunfels Utilities is a branch of the City of

New Braunfels

If consent to provide service is available from the city, attach a justification for the proposed facility and a cost analysis of expenditures that includes the cost of connecting to the city versus the cost of the proposed facility or expansion attached.

Attachment:

2. Utility CCN areas

Is any portion of the proposed service area located inside another utility's CCN area?

Yes \Box No \boxtimes

If yes, attach a justification for the proposed facility and a cost analysis of expenditures that includes the cost of connecting to the CCN facilities versus the cost of the proposed facility or expansion.

Attachment:

3. Nearby WWTPs or collection systems

Are there any domestic permitted wastewater treatment facilities or collection systems located within a three-mile radius of the proposed facility?

Yes 🖂 🛛 No 🗆

If yes, attach a list of these facilities that includes the permittee's name and permit number, and an area map showing the location of these facilities.

Attachment: See Attachment O

If yes, attach copies of your certified letters to these facilities **and** their response letters concerning connection with their system.

Attachment: See Attachment O

Does a permitted domestic wastewater treatment facility or a collection system located within three (3) miles of the proposed facility currently have the capacity to accept or is willing to expand to accept the volume of wastewater proposed in this application?

Yes 🗆 🛛 No 🖂

If yes, attach an analysis of expenditures required to connect to a permitted wastewater treatment facility or collection system located within 3 miles versus the cost of the proposed facility or expansion.

Attachment:

|--|

Is this facility in operation?

Yes ⊠ No □

If no, proceed to Item B, Proposed Organic Loading.

If yes, provide organic loading information in Item A, Current Organic Loading

A. Current organic loading

Facility Design Flow (flow being requested in application): <u>15.4 MGD</u>

Average Influent Organic Strength or BOD₅ Concentration in mg/l: <u>310</u>

Average Influent Loading (lbs/day = total average flow X average BOD₅ conc. X 8.34): <u>39,815 lb/day</u>

Provide the source of the average organic strength or BOD₅ concentration. Analysis of 12 months of influent sampling

B. Proposed organic loading

This table must be completed if this application is for a facility that is not in operation or if this application is to request an increased flow that will impact organic loading.

Source	Total Average Flow (MGD)	Influent BOD ₅ Concentration (mg/l)
Municipality	15.4	310
Subdivision		
Trailer park - transient		
Mobile home park		
School with cafeteria and showers		
School with cafeteria, no showers		

Table .	1.1(1) -	Design	Organic	Loading
---------	----------	--------	---------	---------

Source	Total Average Flow (MGD)	Influent BOD ₅ Concentration (mg/l)
Recreational park, overnight use		
Recreational park, day use		
Office building or factory		
Motel		
Restaurant		
Hospital		
Nursing home		
Other		
TOTAL FLOW from all sources	15.4	
AVERAGE BOD ₅ from all sources		310

Section 3. Proposed Effluent Quality and Disinfection (Instructions Page 68)

A. Existing/Interim I Phase Design Effluent Quality

Biochemical Oxygen Demand (5-day), mg/l: <u>10</u>

Total Suspended Solids, mg/l: <u>15</u>

Ammonia Nitrogen, mg/l: ----

Total Phosphorus, mg/l: <u>3</u>

Dissolved Oxygen, mg/l: <u>4.0</u>

Other: <u>E. coli = 126 cfu/100 ml</u>

B. Interim II Phase Design Effluent Quality Biochemical Oxygen Demand (5-day), mg/l: <u>10</u> Total Suspended Solids, mg/l: <u>15</u> Ammonia Nitrogen, mg/l: <u>3</u> Total Phosphorus, mg/l: <u>1.0</u> Dissolved Oxygen, mg/l: <u>4.0</u> Other: <u>E coli = 126 cfu/100 ml</u>

C. Final Phase Design Effluent Quality

Biochemical Oxygen Demand (5-day), mg/l: <u>10</u> Total Suspended Solids, mg/l: <u>15</u> Ammonia Nitrogen, mg/l: <u>3</u> Total Phosphorus, mg/l: <u>1.0</u> Dissolved Oxygen, mg/l: <u>4.0</u> Other: <u>Ecoli = 126 cfu/100 ml</u>

D. Disinfection Method

Identify the proposed method of disinfection.

□ Chlorine: mg/l after minutes detention time at peak flow Dechlorination process: □

Ultraviolet Light: <u>20</u> seconds contact time at peak flow

□ Other: <u>Also see Attachment R – Outfall Use During Expansion</u>

Construction

Section 4. Design Calculations (Instructions Page 68)

Attach design calculations and plant features for each proposed phase. Example 4 of the instructions includes sample design calculations and plant features.

Attachment: See Attachment H

Section 5. Facility Site (Instructions Page 68)

A. 100-year floodplain

Will the proposed facilities be located <u>above</u> the 100-year frequency flood level?

Yes \Box No \boxtimes

If no, describe measures used to protect the facility during a flood event. Include a site map showing the location of the treatment plant within the 100-year frequency flood level. If applicable, provide the size and types of protective structures.

<u>The top of basins within the 100-year flood plain are about the 100 year flood level.</u> There are no motors or electrical equipment located below the 100 year flood level

Provide the source(s) used to determine 100-year frequency flood plain.

FEMA FIRM Panel 480910C0465F - See Attachment P

For a new or expansion of a facility, will a wetland or part of a wetland be filled?

Yes 🗆 🛛 No 🖾

If yes, has the applicant applied for a US Corps of Engineers 404 Dredge and Fill Permit?

Yes 🗆 🛛 No 🗆

If yes, provide the permit number:

If no, provide the approximate date you anticipate submitting your application to the Corps:

B. Wind rose

Attach a wind rose. Attachment: See Attachment Q

Section 6. Permit Authorization for Sewage Sludge Disposal (Instructions Page 69)

A. Beneficial use authorization

Are you requesting to include authorization to land apply sewage sludge for beneficial use on property located adjacent to the wastewater treatment facility under the wastewater permit? Yes □ No ⊠

If yes, attach the completed Application for Permit for Beneficial Land Use of Sewage Sludge (TCEQ Form No. 10451)

Attachment:

B. Sludge processing authorization

Identify the sludge processing, storage or disposal options that will be conducted at the wastewater treatment facility:

- □ Sludge Composting
- □ Marketing and Distribution of sludge
- Sludge Surface Disposal or Sludge Monofill

If any of the above sludge options are selected, attach a completed DOMESTIC WASTEWATER PERMIT APPLICATION: SEWAGE SLUDGE TECHNICAL REPORT (TCEQ Form No. 10056).

Attachment: $\underline{N/A}$

Section 7. Sewage Sludge Solids Management Plan (Instructions Page 69)

Attach a solids management plan to the application. Attachment: See Attachment L

The sewage sludge solids management plan must contain the following information:

- Treatment units and processes dimensions and capacities
- Solids generated at 100, 75, 50, and 25 percent of design flow
- Mixed liquor suspended solids operating range at design and projected actual flow
- Quantity of solids to be removed and a schedule for solids removal
- Identification and ownership of the ultimate sludge disposal site
- For facultative lagoons, design life calculations, monitoring well locations and depths, and the ultimate disposal method for the sludge from the facultative lagoon

An example of a sewage sludge solids management plan has been included as Example 5 of the instructions.

DOMESTIC TECHNICAL REPORT WORKSHEET 2.0

RECEIVING WATERS

The following is required for all TPDES permit applications

Section 1. Domestic Drinking Water Supply (Instructions Page 73)

Is there a surface water intake for domestic drinking water supply located within 5 miles downstream from the point or proposed point of discharge? Yes □ No ⊠

If yes, provide the following:

Owner of the drinking water supply:

Distance and direction to the intake:

Attach a USGS map that identifies the location of the intake.

Attachment:

Section 2. Discharge into Tidally Affected Waters (Instructions Page 73)

Does the facility discharge into tidally affected waters?

Yes 🗆 🛛 No 🖾

If yes, complete the remainder of this section. If no, proceed to Section 3.

A. Receiving water outfall

Width of the receiving water at the outfall, in feet:

B. Oyster waters

Are there oyster waters in the vicinity of the discharge?

Yes 🗆 No 🗆

If yes, provide the distance and direction from outfall(s).

C. Sea grasses

Are there any sea grasses within the vicinity of the point of discharge?

Yes 🗆 🛛 No 🗆

If yes, provide the distance and direction from the outfall(s).

Section 3. Classified Segments (Instructions Page 73)

Is the discharge directly into (or within 300 feet of) a classified segment?

Yes □ No ⊠

If yes, this Worksheet is complete.

If no, complete Sections 4 and 5 of this Worksheet.

Section 4. Description of Immediate Receiving Waters (Instructions Page 75)

Name of the immediate receiving waters: <u>Unnamed tributary of Guadalupe</u> <u>River</u>

A. Receiving water type

Identify the appropriate description of the receiving waters.

- ⊠ Stream
- □ Freshwater Swamp or Marsh
- □ Lake or Pond

Surface area, in acres:

Average depth of the entire water body, in feet:

Average depth of water body within a 500-foot radius of discharge point, in feet:

□ Man-made Channel or Ditch

	Open	Bay
_	open	Day

□ Tidal Stream, Bayou, or Marsh

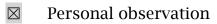
□ Other, specify:

B. Flow characteristics

If a stream, man-made channel or ditch was checked above, provide the following. For existing discharges, check one of the following that best characterizes the area *upstream* of the discharge. For new discharges, characterize the area *downstream* of the discharge (check one).

Intermittent - dry for at least one week during most years

Intermittent with Perennial Pools - enduring pools with sufficient habitat to maintain significant aquatic life uses



Perennial - normally flowing

Check the method used to characterize the area upstream (or downstream for new dischargers).

□ USGS flow records

Historical observation by adjacent landowners

□ Other, specify:

C. Downstream perennial confluences

List the names of all perennial streams that join the receiving water within three miles downstream of the discharge point.

Guadalupe River

D. Downstream characteristics

Do the receiving water characteristics change within three miles downstream of the discharge (e.g., natural or man-made dams, ponds, reservoirs, etc.)?

Yes □ No ⊠

If yes, discuss how.

Click here to enter text.		

E. Normal dry weather characteristics

Provide general observations of the water body during normal dry weather <u>conditions</u>.

Discharge will be into a dry stream

Date and time of observation: <u>6/21/19, 10:00 am</u>

Was the water body influenced by stormwater runoff during observations?

Yes 🗆 🛛 No 🖂

Section 5. General Characteristics of the Waterbody (Instructions Page 74)

A. Upstream influences

Is the immediate receiving water upstream of the discharge or proposed discharge site influenced by any of the following? Check all that apply.

- Oil field activities
 Urban runoff
- Upstream discharges
 Agricultural runoff
- □ Septic tanks

 \Box Other(s), specify

B. Waterbody uses

Observed or evidences of the following uses. Check all that apply.

Domestic water supply	Industrial water supply
Park activities	Other(s), specify

C. Waterbody aesthetics

Check one of the following that best describes the aesthetics of the receiving water and the surrounding area.

- Wilderness: outstanding natural beauty; usually wooded or unpastured area; water clarity exceptional
- Natural Area: trees and/or native vegetation; some development evident (from fields, pastures, dwellings); water clarity discolored
- Common Setting: not offensive; developed but uncluttered; water may be colored or turbid
- Offensive: stream does not enhance aesthetics; cluttered; highly developed; dumping areas; water discolored

DOMESTIC WORKSHEET 4.0

POLLUTANT ANALYSES REQUIREMENTS*

The following is required for facilities with a permitted or proposed flow of 1.0 MGD or greater, facilities with an approved pretreatment program, or facilities classified as a major facility. See instructions for further details.

This worksheet is not required for minor amendments without renewal

Section 1. Toxic Pollutants (Instructions Page 87)

For pollutants identified in Table 4.0(1), indicate the type of sample.

Grab \Box Composite \boxtimes

Date and time sample(s) collected: <u>4/2/2019</u>, 08:00

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (µg/l)
Acrylonitrile	< 50	< 50	1	50
Aldrin	< 0.010	< 0.010	1	0.01
Aluminum	130	130	1	2.5
Anthracene	< 10	< 10	1	10
Antimony	< 5	< 5	1	5
Arsenic	0.6	0.6	1	0.5
Barium	18	18	1	3
Benzene	< 10	< 10	1	10
Benzidine	< 50	< 50	1	50
Benzo(a)anthracene	< 5	< 5	1	5

Table 4.0(1) - Toxics Analysis

TCEQ-10054 (06/01/2017) Domestic Wastewater Permit Application, Technical Reports Page 53 of 80

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (µg/l)
Benzo(a)pyrene	< 5	< 5	1	5
Bis(2-chloroethyl)ether	< 10	< 10	1	10
Bis(2-ethylhexyl)phthalate	< 10	< 10	1	10
Bromodichloromethane	18.5	18.5	1	10
Bromoform	< 10	< 10	1	10
Cadmium	< 1	< 1	1	1
Carbon Tetrachloride	< 2	< 2	1	2
Carbaryl	< 4	< 4	1	5
Chlordane*	< 0.20	< 0.20	1	0.2
Chlorobenzene	< 10	< 10	1	10
Chlorodibromomethane	< 10	< 10	1	10
Chloroform	34.2	34.2	1	10
Chlorpyrifos	< 0.041	< 0.041	1	0.05
Chromium (Total)	< 3	< 3	1	3
Chromium (Tri) (*1)	< 3	< 3	1	N/A
Chromium (Hex)	< 3	< 3	1	3
Copper	<8	<8	1	2
Chrysene	< 5	< 5	1	5
p-Chloro-m-Cresol	< 10	< 10	1	10
4,6-Dinitro-o-Cresol	< 10	< 10	1	50
p-Cresol	< 10	< 10	1	10

	AVG Effluent	MAX Effluent	Number	MAL
Pollutant	Conc.	Conc.	of	(µg/l)
	(µg/l)	(µg/l)	Samples	
Cyanide (*2)	< 10	< 10	1	10
4,4'- DDD	< 0.10	< 0.10	1	0.1
4,4'- DDE	< 0.10	< 0.10	1	0.1
4,4'- DDT	< 0.02	< 0.02	1	0.02
2,4-D	< 0.70	< 0.70	1	0.7
Demeton (O and S)	< 0.0513	< 0.0513	1	0.20
Diazinon	< 0.50	< 0.50	1	0.5/0.1
1,2-Dibromoethane	< 10	< 10	1	10
m-Dichlorobenzene	< 10	< 10	1	10
o-Dichlorobenzene	< 10	< 10	1	10
p-Dichlorobenzene	< 10	< 10	1	10
3,3'-Dichlorobenzidine	< 5	< 5	1	5
1,2-Dichloroethane	< 10	< 10	1	10
1,1-Dichloroethylene	< 10	< 10	1	10
Dichloromethane	< 20	< 20	1	20
1,2-Dichloropropane	< 10	< 10	1	10
1,3-Dichloropropene	< 10	< 10	1	10
Dicofol	< 0.041	< 0.041	1	1
Dieldrin	< 0.020	< 0.020	1	0.02
2,4-Dimethylphenol	< 10	< 10	1	10
Di-n-Butyl Phthalate	< 10	< 10	1	10

	AVG	MAX	Number	
Pollutant	Effluent	Effluent	of	MAL
	Conc.	Conc.	Samples	(µg/l)
	(µg/l)	(µg/l)	F	
Diuron	< 0.080	< 0.080	1	0.09
Endosulfan I (alpha)	< 0.010	< 0.010	1	0.01
Endosulfan II (beta)	< 0.020	< 0.020	1	0.02
Endosulfan Sulfate	< 0.10	< 0.10	1	0.1
Endrin	< 0.020	< 0.020	1	0.02
Ethylbenzene	<10	<10	1	10
Fluoride	700	700	1	500
Guthion	< 0.0513	< 0.0513	1	0.1
Heptachlor	< 0.010	< 0.010	1	0.01
Heptachlor Epoxide	< 0.010	< 0.010	1	0.01
Hexachlorobenzene	< 5	< 5	1	5
Hexachlorobutadiene	< 10	< 10	1	10
Hexachlorocyclohexane (alpha)	< 0.051	< 0.051	1	0.05
Hexachlorocyclohexane (beta)	< 0.051	< 0.051	1	0.05
gamma-Hexachlorocyclohexane	< 0.051	< 0.051	1	0.05
(Lindane)				
Hexachlorocyclopentadiene	< 10	< 10	1	10
Hexachloroethane	< 20	< 20	1	20
Hexachlorophene	< 10	< 10	1	10
Lead	< 0.5	< 0.5	1	0.5
Malathion	< 0.0513	< 0.0513	1	0.1

Pollutant	AVG Effluent Conc.	MAX Effluent Conc.	Number of Samples	MAL (µg/l)
	(µg/l)	(µg/l)		
Mercury	< 0.005	< 0.005	1	0.005
Methoxychlor	< 0.0103	< 0.0103	1	2
Methyl Ethyl Ketone	< 50	< 50	1	50
Mirex	< 0.0103	< 0.0103	1	0.02
Nickel	2	2	1	2
Nitrate-Nitrogen	28800	28800	1	100
Nitrobenzene	< 10	< 10	1	10
N-Nitrosodiethylamine	< 20	< 20	1	20
N-Nitroso-di-n-Butylamine	< 20	< 20	1	20
Nonylphenol	< 333	< 333	1	333
Parathion (ethyl)	< 0.0513	< 0.0513	1	0.1
Pentachlorobenzene	< 20	< 20	1	20
Pentachlorophenol	< 5	< 5	1	5
Phenanthrene	< 10	< 10	1	10
Polychlorinated Biphenyls (PCB's)	< 0.20	< 0.20	1	0.2
(*3)				
Pyridine	< 20	< 20	1	20
Selenium	< 5	< 5	1	5
Silver	< 0.50	< 0.50	1	0.5
1,2,4,5-Tetrachlorobenzene	< 20	< 20	1	20
1,1,2,2-Tetrachloroethane	< 10	< 10	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (µg/l)
Tetrachloroethylene	< 10	< 10	1	10
Thallium	< 0.5	< 0.5	1	0.5
Toluene	< 10	< 10	1	10
Toxaphene	< 0.31	< 0.31	1	0.3
2,4,5-TP (Silvex)	< 0.30	< 0.30	1	0.3
Tributyltin (see instructions for explanation)			1	0.01
1,1,1-Trichloroethane	< 10	< 10	1	10
1,1,2-Trichloroethane	< 10	< 10	1	10
Trichloroethylene	< 10	< 10	1	10
2,4,5-Trichlorophenol	< 50	< 50	1	50
TTHM (Total Trihalomethanes)	59.9	59.9	1	10
Vinyl Chloride	< 10	< 10	1	10
Zinc	71	71	1	5

(*1) Determined by subtracting hexavalent Cr from total Cr.

(*2) Cyanide, amenable to chlorination or weak-acid dissociable.

(*3) The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248,

1260, and 1016.

Section 2. Priority Pollutants

For pollutants identified in Tables 4.0(2)A-E, indicate type of sample.

Grab \Box Composite \boxtimes

Date and time sample(s) collected: <u>4/2/2019</u>, 08:00

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Antimony	< 5	< 5	1	5
Arsenic	0.6	0.6	1	0.5
Beryllium	< 0.5	< 0.5	1	0.5
Cadmium	< 1	< 1	1	1
Chromium (Total)	< 3	< 3	1	3
Chromium (Hex)	< 3	< 3	1	3
Chromium (Tri) (*1)	< 3	< 3	1	N/A
Copper	8	8	1	2
Lead	< 0.5	< 0.5	1	0.5
Mercury	< 0.005	< 0.005	1	0.005
Nickel	2	2	1	2
Selenium	< 5	< 5	1	5
Silver	< 0.5	< 0.5	1	0.5
Thallium	< 0.5	< 0.5	1	0.5
Zinc	71	71	1	5
Cyanide (*2)	< 10	< 10	1	10
Phenols, Total	< 5	< 5	1	10

Table 4.0(2)A - Metals, Cyanide, Phenols

(*1) Determined by subtracting hexavalent Cr from total Cr.

(*2) Cyanide, amenable to chlorination or weak-acid dissociable

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Acrolein	< 50	< 50	1	50
Acrylonitrile	< 50	< 50	1	50
Benzene	< 10	< 10	1	10
Bromoform	< 10	< 10	1	10
Carbon Tetrachloride	< 2	< 2	1	2
Chlorobenzene	< 10	< 10	1	10
Chlorodibromomethane	< 10	< 10	1	10
Chloroethane	< 50	< 50	1	50
2-Chloroethylvinyl Ether	< 10	< 10	1	10
Chloroform	34.2	34.2	1	10
Dichlorobromomethane	18.5	18.5	1	
[Bromodichloromethane]				10
1,1-Dichloroethane	< 5	< 5	1	10
1,2-Dichloroethane	< 10	< 10	1	10
1,1-Dichloroethylene	< 10	< 10	1	10
1,2-Dichloropropane	< 10	< 10	1	10
1,3-Dichloropropylene	< 10	< 10	1	
[1,3-Dichloropropene]				10
1,2-Trans-Dichloroethylene	< 10	< 10	1	10
Ethylbenzene	< 10	< 10	1	10
Methyl Bromide	< 50	< 50	1	50
Methyl Chloride	< 50	< 50	1	50
Methylene Chloride	< 20	< 20	1	20
1,1,2,2-Tetrachloroethane	< 10	< 10	1	10
Tetrachloroethylene	< 10	< 10	1	10

Table 4.0(2)B - Volatile Compounds

TCEQ-10054 (06/01/2017) Domestic Wastewater Permit Application, Technical Reports Page 60 of 80

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Toluene	< 10	< 10	1	10
1,1,1-Trichloroethane	< 10	< 10	1	10
1,1,2-Trichloroethane	< 10	< 10	1	10
Trichloroethylene	< 10	< 10	1	10
Vinyl Chloride	< 10	< 10	1	10

Table 4.0(2)C - Acid Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
2-Chlorophenol	< 10	< 10	1	10
2,4-Dichlorophenol	< 10	< 10	1	10
2,4-Dimethylphenol	< 10	< 10	1	10
4,6-Dinitro-o-Cresol	< 10	< 10	1	50
2,4-Dinitrophenol	< 50	< 50	1	50
2-Nitrophenol	< 20	< 20	1	20
4-Nitrophenol	< 50	< 50	1	50
P-Chloro-m-Cresol	< 10	< 10	1	10
Pentalchlorophenol	< 5	< 5	1	5
Phenol	< 10	< 10	1	10
2,4,6-Trichlorophenol	< 10	< 10	1	10

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Acenaphthene	< 10	< 10	1	10
Acenaphthylene	< 10	< 10	1	10
Anthracene	< 10	< 10	1	10
Benzidine	< 50	< 50	1	50
Benzo(a)Anthracene	< 5	< 5	1	5
Benzo(a)Pyrene	< 5	< 5	1	5
3,4-Benzofluoranthene	< 10	< 10	1	10
Benzo(ghi)Perylene	< 20	< 20	1	20
Benzo(k)Fluoranthene	< 2.5	< 2.5	1	5
Bis(2-Chloroethoxy)Methane	< 10	< 10	1	10
Bis(2-Chloroethyl)Ether	< 10	< 10	1	10
Bis(2-Chloroisopropyl)Ether	< 2.5	< 2.5	1	10
Bis(2-Ethylhexyl)Phthalate	< 10	< 10	1	10
4-Bromophenyl Phenyl Ether	< 10	< 10	1	10
Butyl benzyl Phthalate	< 10	< 10	1	10
2-Chloronaphthalene	< 10	< 10	1	10
4-Chlorophenyl phenyl ether	< 10	< 10	1	10
Chrysene	< 5	< 5	1	5
Dibenzo(a,h)Anthracene	< 5	< 5	1	5
1,2-(o)Dichlorobenzene	< 10	< 10	1	10
1,3-(m)Dichlorobenzene	< 10	< 10	1	10
1,4-(p)Dichlorobenzene	< 10	< 10	1	10
3,3-Dichlorobenzidine	< 5	< 5	1	5
Diethyl Phthalate	< 10	< 10	1	10
Dimethyl Phthalate	< 10	< 10	1	10

Table 4.0(2)D - Base/Neutral Compounds

TCEQ-10054 (06/01/2017) Domestic Wastewater Permit Application, Technical Reports Page 62 of 80

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Di-n-Butyl Phthalate	< 10	< 10	1	10
2,4-Dinitrotoluene	< 10	< 10	1	10
2,6-Dinitrotoluene	< 10	< 10	1	10
Di-n-Octyl Phthalate	< 10	< 10	1	10
1,2-Diphenylhydrazine (as Azo-	< 20	< 20	1	
benzene)				20
Fluoranthene	< 10	< 10	1	10
Fluorene	< 10	< 10	1	10
Hexachlorobenzene	< 5	< 5	1	5
Hexachlorobutadiene	< 10	< 10	1	10
Hexachlorocyclo-pentadiene	< 10	< 10	1	10
Hexachloroethane	< 20	< 20	1	20
Indeno(1,2,3-cd)pyrene	< 5	< 5	1	5
Isophorone	< 10	< 10	1	10
Naphthalene	< 10	< 10	1	10
Nitrobenzene	< 10	< 10	1	10
N-Nitrosodimethylamine	< 50	< 50	1	50
N-Nitrosodi-n-Propylamine	< 20	< 20	1	20
N-Nitrosodiphenylamine	< 20	< 20	1	20
Phenanthrene	< 10	< 10	1	10
Pyrene	< 10	< 10	1	10
1,2,4-Trichlorobenzene	< 10	< 10	1	10

	AVG	MAX		
	Effluent	Effluent	Number	MAL
Pollutant	Conc.	Conc.	of	(µg/l)
	(µg/l)	(µg/l)	Samples	
Aldrin	< 0.010	< 0.010	1	0.01
alpha-BHC			1	
(Hexachlorocyclohexane)	< 0.051	< 0.051		0.05
beta-BHC			1	
(Hexachlorocyclohexane)	< 0.051	< 0.051		0.05
gamma-BHC			1	
(Hexachlorocyclohexane)	< 0.051	< 0.051		0.05
delta-BHC			1	
(Hexachlorocyclohexane)	< 0.051	< 0.051		0.05
Chlordane	< 0.2	< 0.2	1	0.2
4,4-DDT	< 0.02	< 0.02	1	0.02
4,4-DDE	< 0.10	< 0.10	1	0.1
4,4,-DDD	< 0.10	< 0.10	1	0.1
Dieldrin	< 0.020	< 0.020	1	0.02
Endosulfan I (alpha)	< 0.010	< 0.010	1	0.01
Endosulfan II (beta)	< 0.020	< 0.020	1	0.02
Endosulfan Sulfate	< 0.10	< 0.10	1	0.1
Endrin	< 0.020	< 0.020	1	0.02
Endrin Aldehyde	< 0.10	< 0.10	1	0.1
Heptachlor	< 0.010	< 0.010	1	0.01
Heptachlor Epoxide	< 0.010	< 0.010	1	0.01
PCB-1242	< 0.20	< 0.20	1	0.2
PCB-1254	< 0.20	< 0.20	1	0.2
PCB-1221	< 0.20	< 0.20	1	0.2
PCB-1232	< 0.20	< 0.20	1	0.2

TCEQ-10054 (06/01/2017) Domestic Wastewater Permit Application, Technical Reports Page 64 of 80

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
PCB-1248	< 0.20	< 0.20	1	0.2
PCB-1260	< 0.20	< 0.20	1	0.2
PCB-1016	< 0.20	< 0.20	1	0.2
Toxaphene	< 0.31	< 0.31	1	0.3

* For PCBS, if all are non-detects, enter the highest non-detect preceded by a "<".

Section 3. Dioxin/Furan Compounds

- **A.** Indicate which of the following compounds from may be present in the influent from a contributing industrial user or significant industrial user. Check all that apply.
- 2,4,5-trichlorophenoxy acetic acid Common Name 2,4,5-T, CASRN 93-76-5 2-(2,4,5-trichlorophenoxy) propanoic acid Common Name Silvex or 2,4,5-TP, CASRN 93-72-1 2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate Common Name Erbon, CASRN 136-25-4 0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate Common Name Ronnel, CASRN 299-84-3 2,4,5-trichlorophenol Common Name TCP, CASRN 95-95-4 hexachlorophene Common Name HCP, CASRN 70-30-4 For each compound identified, provide a brief description of the conditions of its/their presence at the facility.

B. Do you know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin (TCDD) or any congeners of TCDD may be present in your effluent?

Yes □ No ⊠

If **yes**, provide a brief description of the conditions for its presence.

If any of the compounds in Subsection A **or** B are present, complete Table 4.0(2)F.

For pollutants identified in Table 4.0(2)F, indicate the type of sample.

Grab 🗆 Composite 🗆

Date and time sample(s) collected:

Compound	Toxic Equivalency Factors	Wastewater Concentration (ppq)	Wastewater Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Equivalents (ppt)	MAL (ppq)
2,3,7,8 TCDD	1					10
1,2,3,7,8	0.5					50
2,3,7,8 HxCDDs	0.1					50
1,2,3,4,6,7,8 HpCDD	0.01					50
2,3,7,8 TCDF	0.1					10
1,2,3,7,8 PeCDF	0.05					50
2,3,4,7,8 PeCDF	0.5					50
2,3,7,8 HxCDFs	0.1					50
2,3,4,7,8	0.01					50
OCDD	0.0003					100
OCDF	0.0003					100
PCB 77	0.0001					0.5
PCB 81	0.0003					0.5

TABLE 4.0(2)F - DIOXIN/FURAN COMPOUNDS

Compound	Toxic Equivalency Factors	Wastewater Concentration (ppq)	Wastewater Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Equivalents (ppt)	MAL (ppq)
PCB 126	0.1					0.5
PCB 169	0.03					0.5
Total						

DOMESTIC WORKSHEET 5.0

TOXICITY TESTING REQUIREMENTS

The following is required for facilities with a currently-operating design flow greater than or equal to 1.0 MGD, with an EPA-approved pretreatment program (or those that are required to have one under 40 CFR Part 403), or are required by the TCEQ to perform Whole Effluent Toxicity testing. This worksheet is not required for minor amendments without renewal.

Section 1. Required Tests (Instructions Page 97)

Indicate the number of 7-day chronic or 48-hour acute Whole Effluent Toxicity (WET) tests performed in the four and one-half years prior to submission of the application.

7-day Chronic: <u>0</u>

48-hour Acute: <u>17</u>

Section 2. Toxicity Reduction Evaluations (TREs)

Has this facility completed a TRE in the past four and a half years? Or is the facility currently performing a TRE?

Yes □ No ⊠

If yes, describe the progress to date, if applicable, in identifying and confirming the toxicant.

Section 3. Summary of WET Tests

If the required biomonitoring test information has not been previously submitted via both the Discharge Monitoring Reports (DMRs) and the Table 1 (as found in the permit), provide a summary of the testing results for all valid and invalid tests performed over the past four and one-half years. Make additional copies of this table as needed.

Test Date	Test Species	NOEC Survival	NOEC Sub- lethal

Table 5.0(1) - Summary of WET Tests

DOMESTIC WORKSHEET 6.0

INDUSTRIAL WASTE CONTRIBUTION

The following is required for all publicly owned treatment works (POTWs)

Section 1. All POTWs (Instructions Page 99)

A. Industrial users

Provide the number of each of the following types of industrial users (IUs) that discharge to your POTW and the daily flows from each user. See the Instructions for definitions of Categorical IUs, Significant IUs – non-categorical, and Other IUs.

If there are no users, enter 0 (zero).

Categorical IUs:
Number of IUs: 0
Average Daily Flows, in MGD: 0
Significant IUs – non-categorical:
Number of IUs: 0
Average Daily Flows, in MGD: 0
Other IUs:
Number of IUs: 0
Average Daily Flows, in MGD: 0

B. Treatment plant interference

In the past three years, has your POTW experienced treatment plant interference (see instructions)?

Yes 🗆 🛛 No 🖂

If yes, identify the dates, duration, description of interference, and probable cause(s) and possible source(s) of each interference event. Include the names of the IUs that may have caused the interference.

C. Treatment plant pass through

In the past three years, has your POTW experienced pass through (see instructions)?

Yes 🗆 🛛 No 🖂

If yes, identify the dates, duration, a description of the pollutants passing through the treatment plant, and probable cause(s) and possible source(s) of each pass through event. Include the names of the IUs that may have caused pass through.

D. Pretreatment program

Does your POTW have an approved pretreatment program?

Yes 🖬 🛛 No 🗆

If yes, complete Section 2 only of this Worksheet.

Is your POTW required to develop an approved pretreatment program? Yes No

If yes, complete Section 2.c. and 2.d. only, and skip Section 3.

If no to either question above, skip Section 2 and complete Section 3 for each significant industrial user and categorical industrial user.

Section 2. POTWs with Approved Programs or Those Required to Develop a Program (Instructions Page 100)

A. Substantial modifications

Have there been any **substantial modifications** to the approved pretreatment program that have not been submitted to the TCEQ for approval according to *40 CFR §403.18*?

Yes □ No 🖂

If yes, identify the modifications that have not been submitted to TCEQ, including the purpose of the modification.

Click here to enter text.		

B. Non-substantial modifications

Have there been any **non-substantial modifications** to the approved pretreatment program that have not been submitted to TCEQ for review and acceptance?

Yes 🗆 🛛 No 🖾

If yes, identify all non-substantial modifications that have not been submitted to TCEQ, including the purpose of the modification.

C. Effluent parameters above the MAL

In Table 6.0(1), list all parameters measured above the MAL in the POTW's effluent monitoring during the last three years. Submit an attachment if necessary.

Pollutant	Concentration	MAL	Units	Date
See attachment				
Ν				

Table 6.0(1) - Parameters Above the MAL

D. Industrial user interruptions

Has any SIU, CIU, or other IU caused or contributed to any problems (excluding interferences or pass throughs) at your POTW in the past three years?

Yes 🗆 🛛 No 🖂

If yes, identify the industry, describe each episode, including dates, duration, description of the problems, and probable pollutants.

Section 3. Significant Industrial User (SIU) Information and Categorical Industrial User (CIU) (Instructions Page 100)

A. General information

Company Name: 0
SIC Code: 0
Telephone number: 0 Fax number: 0
Contact name: 0
Address: 0 bere to enter text
City, State, and Zip Code: 0

B. Process information

Describe the industrial processes or other activities that affect or contribute to the SIU(s) or CIU(s) discharge (i.e., process and non-process wastewater).

N/A		

C. Product and service information

Provide a description of the principal product(s) or services performed.

Page 72 of 79

N/A		

D. Flow rate information

See the Instructions for definitions of "process" and "non-process wastewater." Process Wastewater:

Discharge, in gallons/day: 0		
Discharge Type: 🗆 Continuous 🗖 Batch		Intermittent
Non-Process Wastewater:		
Discharge, in gallons/day: 0		
Discharge Type: 🗆 Continuous 🗆 Batch		Intermittent

E. Pretreatment standards

Is the SIU or CIU subject to technically based local limits as defined in the instructions?

Yes 🗆 🛛 No 🖂

Is the SIU or CIU subject to categorical pretreatment standards found in *40 CFR Parts 405-471*?

Yes 🗆 🛛 No 🖂

If subject to categorical pretreatment standards, indicate the applicable category and subcategory for each categorical process.

Category: Subc	0 categories:	<u>to enter text.</u> Click here to	enter text.
0,	0 categories:	<u>o enter text.</u> Click here to	enter text.
Category: Subc	0 categories:	to enter text. Click here to	enter text.
000000171	0 categories:	o enter text. Click here to	enter text.
	0 egories:	<u>o enter text.</u> .ck here to en	iter text.

F. Industrial user interruptions

Has the SIU or CIU caused or contributed to any problems (e.g., interferences, pass through, odors, corrosion, blockages) at your POTW in the past three years?

Yes 🗆 🛛 No 🖂

If yes, identify the SIU, describe each episode, including dates, duration, description of problems, and probable pollutants.

LIST OF ATTACHMENTS NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

- Attachment A Core Data Form (Admin Report 1.0, Section 3.C)
- Attachment B USGS Map (Admin. Report 1.0, Section 13)
- Attachment C Adjacent and Downstream Landowners (Admin. Report 1.1, Section 1.A and C)
- Attachment D Original Photographs (Admin Report 1.1, Section 2)
- Attachment E Buffer Zone Map (Admin Report 1.1, Section 3.A)
- Attachment F Area Water Wells (Admin Report 1.1, Section 3.C)
- Attachment G Wetlands Map (Admin Report 1.1, Section 3.C and Tech. Report 1.1, Section 5.A)

Attachment H – Supplemental Technical Reports (Tech Report 1.0, Section 2.A and B and Tech Report 1.1, Section 4)

- Attachment I Flow Schematics (Tech Report 1.0, Section 2.C)
- Attachment J Site Drawing (Tech Report 1.0, Section 3)
- Attachment K Justification for Plant Construction (Tech Report 1.0, Section 4 and Tech Report 1.1, Section 1.A)
- Attachment L Sewage Sludge Management Plan (Tech Report 1.0 Section 6.F and Tech. Report 1.1, Item 7)
- Attachment M Final Effluent Analysis (Tech Report 1.0, Section 7, worksheet 4.0)
- Attachment N Effluent Parameters Above the MAL (Worksheet 6.0)
- Attachment O Regionalization Surveys (Tech Report 1.1, Section 1.B.3)
- Attachment P FEMA Flood Map (Tech Rep 1.1, Section 5.A)
- Attachment Q Wind Rose (Tech Report 1.1, Section 5.B)
- Attachment R Outfall Use During Expansion Construction (Tech Report 1.1, Section 3.D)

ATTACHMENT A

CORE DATA FORM

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

TCEQ Core Data Form

For detailed instructions regarding completion of this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

	1. UU		auon									
		sion (If other is						,				
New Permit, Registration or Authorization (Core Data Form should be submitted with the program application.)												
🗌 Renewa	Renewal (Core Data Form should be submitted with the renewal form) 🛛 Other Renewal and Major Amendment											
2. Customer	Reference	e Number <i>(if iss</i>	ued)			ink to se		3. F	Regulate	d Entity Referer	nce Number	(if issued)
CN 6005	22957					<u>N numb</u> Registry		R	N 102	078011		
SECTION	II: Cu	stomer Info	ormation									
4. General C	ustomer	Information	5. Effective	Date fo	or Cus	stomer	Inforr	matio	n Updat	es (mm/dd/yyyy)		
New Cus Change in		me (Verifiable wit	_	Update t Secretary						- •	•	Entity Ownership
The Custo	mer Na	me submitted	here may l	be upd	lated	l auto	matic	cally	based	on what is cu	urrent and	active with the
Texas Sec	retary o	f State (SOS)	or Texas C	Comptr	oller	r of P	ublic	Acco	ounts (CPA).		
6. Customer	Legal Na	me (If an individua	l, print last nam	ne first: eg	g: Doe,	, John)		<u>l</u> :	f new Cu	stomer, enter prev	vious Custom	er below:
New Brau	nfels U	tilities										
7. TX SOS/C	PA Filing	Number		Tax ID (11 digits)			g	9. Federal Tax ID (9 digits) 10. DUNS Num			S Number (if applicable,	
			1746001	7837								
11. Type of (Customer	: Corporati	on			Individ	ual		Partnership: 🔲 General 🗌 Limited			
Government:	🛛 City 🗌	County 🗌 Federal [] State 🗌 Othe	r		Sole P	ropriet	orship		Other:		
12. Number	of Employ 21-100	yees	251-500	5	501 ar	nd high	ner	1	I3. Indep	endently Owne No		ited?
14. Custome	e r Role (Pr	oposed or Actual) -	- as it relates to	the Regu	ulated	Entity I	isted or	n this f	orm. Plea	se check one of the	e following:	
Owner	nal Licens	Gee Copera	tor onsible Party			wner 8 oluntar	•		pplicant	Other:		
	263 M	ain Plaza										
15. Mailing Address:												
	City	New Braun	fels	Sta	ate	TX		ZIP	ZIP 78130 ZIP + 4			
16. Country	Mailing Ir	formation (if outs	ide USA)				17. E	-Mail	Addres	S (if applicable)		•
							rkel	so@	nbutez	xas.com		
18. Telephor	ne Numbe	r		19. Ext	Extension or Code 20. Fax Number (if applicable)				ble)			
(830)60)8-8890									()	-	

SECTION III: Regulated Entity Information

 21. General Regulated Entity Information (If 'New Regulated Entity" is selected below this form should be accompanied by a permit application)

 New Regulated Entity
 Update to Regulated Entity Name

 Update to Regulated Entity
 Update to Regulated Entity Information

The Regulated Entity Name submitted may be updated in order to meet TCEQ Agency Data Standards (removal of organizational endings such as Inc, LP, or LLC.)

22. Regulated Entity Name (Enter name of the site where the regulated action is taking place.)

South Kuehler Wastewater Treatment Plant

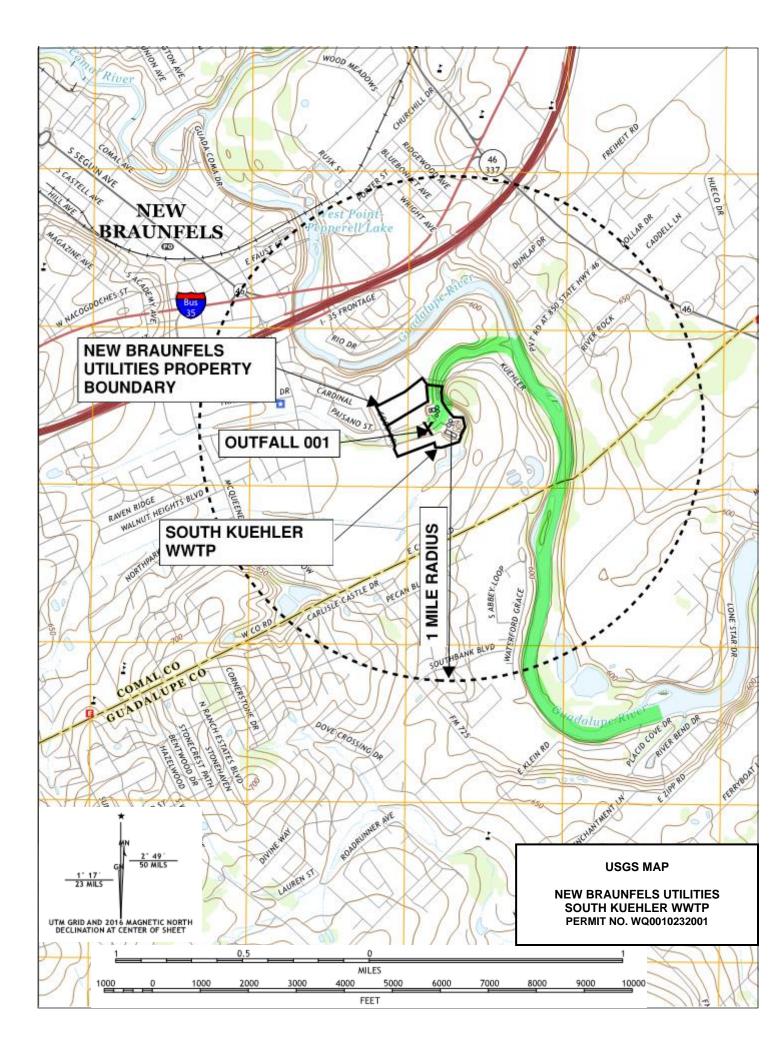
	1608 C	oco Drive										
23. Street Address of												
the Regulated Entity: (<u>No PO Boxes)</u>	City	New Braunfels		State	e TX		ZIP	78130		ZI	P + 4	
24. County	Comal											
	En	ter Physical Lo	ocatio	on Description	if n	o stree	t address i	s prov	ided.		141	
25. Description to Physical Location:												
26. Nearest City								State)		Nea	rest ZIP Code
New Braunfels								ΤХ			78	30
27. Latitude (N) In Decir	nal:	29.686472	deg	ςΝ		28. Le	ongitude (V	V) Ir	Decimal:	98.0	09810	9 deg W
Degrees	Minutes		Seco	nds		Degree	es		Minutes			Seconds
29. Primary SIC Code (4 di	igits) 30.	Secondary SI	C Coc	le (4 digits)		Primar 6 digits)	y NAICS C	ode		econd digits)	ary NAI	CS Code
4952				221320								
33. What is the Primary B	usiness of	this entity? (Do not	repeat the SIC or i	NAICS	descript	tion.)					
Treatment of wastev	vater fron	n domestic a	and c	commercial	sou	irces						
A 11 11	263 Main Plaza											
34. Mailing Address:												
Address.	City	New Braunfe		els State		TX ZIF		ZIP 78130		z	IP + 4	
35. E-Mail Address:	1				jharrell@nbutexas.com							
36. Telepho	one Number			37. Extensio	n or	Code		3	8. Fax Nur	x Number (if applicable)		
(830) 6	08-8900								() -		a
39. TCEQ Programs and ID I form. See the Core Data Form in:				vrite in the permi	ts/reg	istration	numbers that	at will b	e affected by	the upd	lates sub	omitted on this
Dam Safety	Districts			Edwards Aquifer	11	E] Emissions	Invento	ory Air	🗌 Indu	ustrial Ha	zardous Waste
Municipal Solid Waste	New Sor	urce Review Air		OSSF			Petroleum	Storag	e Tank	D PW	S	
								_				
Sludge	Storm W	later		Title V Air] Tires			Use Use	d Oil	
		lata -		M/								
Voluntary Cleanup	Waste W			Wastewater Agri	cultu		Water Rights Other: Reuse			e		
	WQ00102	232001								R1023	2001	

SECTION IV: Preparer Information

40. Name:	Steve Barry	, P.E.		41. Title:	Project Engineer
42. Telephone Number		43. Ext./Code	44. Fax Number	45. E-Mail Address	
(281)363	-4039		(281)363-3459	sbarry@	jonescarter.com

SECTION V: Authorized Signature

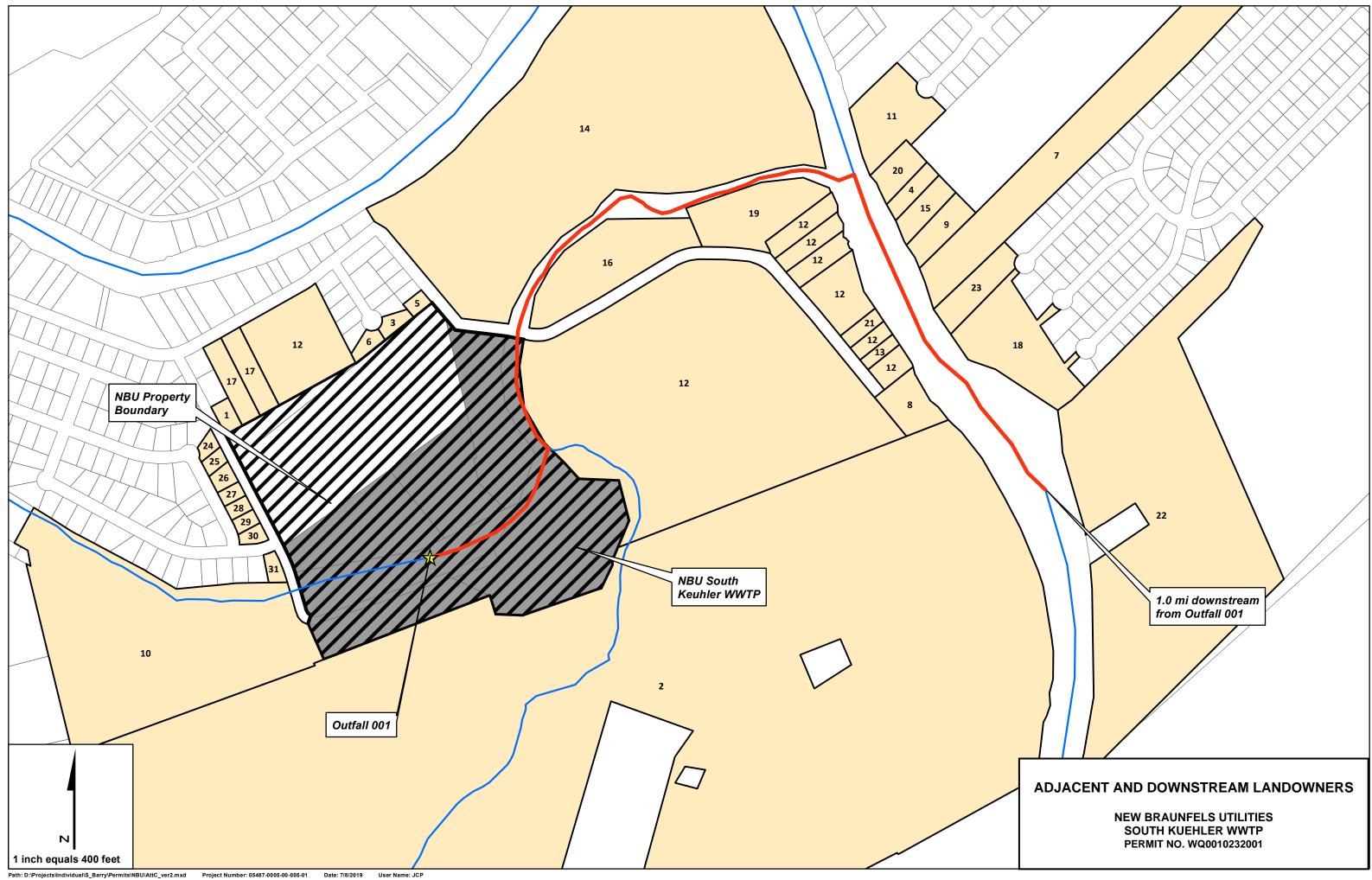
46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39.


Company:	New Braunfels Utilities Job Title: COO, N			New Braunfels Utilities		
Name(In Print) :	Ryan Kelso			Phone:	(830)608-8900	
Signature:	1 halla			Date:	7/26/19	
	10.0					

ATTACHMENT B

USGS MAP

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT



ATTACHMENT C

ADJACENT AND DOWNSTREAM LANDOWNERS

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

ADJACENT AND DOWNSTREAM LANDOWNERS NEW BRAUNFELS UTILITIES SOUTH KEUHLER WASTEWATER TREATMENT PLANT

alt_id	owner	own_addr1	own_city	own_state	own_zip
1	FOOSHEE THOMAS & LAUREN	1419 COCO LANE	NEW BRAUNFELS	тх	78130
2	CAROWEST LAND LTD	112 E PECAN ST STE 175	SAN ANTONIO	тх	78205
3	CASTILLEJA JESUS C & LUCIA	1915 EASTLAWN DR	NEW BRAUNFELS	тх	78130
4	CBP TRUST	842 S HWY 46	NEW BRAUNFELS	тх	78130
5	DELAGARZA BLANCA E	1912 KUEHLER AVE	NEW BRAUNFELS	тх	78130
6	GOMEZ JOE L & MARIA	1910 EASTLAWN DR	NEW BRAUNFELS	тх	78130
7	HARRIS RANDY & KELLYE	850 S HWY 46 #5	NEW BRAUNFELS	тх	78130
8	HERSHEY KEITH F & RUTH	17460 INTERSTATE 35 N STE 160	SCHERTZ	тх	78154
9	HILL SHERRY L	850 HWY 46 S #4	NEW BRAUNFELS	тх	78130
10	HOLLMIG FAMILY PTNRSHP LTD	130 S SEGUIN AVE STE 100	NEW BRAUNFELS	тх	78130
11	JONAS DARRELL J & MAUREEN	4661 SPRING FORK DR	CORPUS CHRISTI	тх	78413
12	KUEHLER ROAD LTD	112 E PECAN ST STE 175	SAN ANTONIO	тх	78205
13	LAYTON DANIEL B	2089 KUEHLER AVE	NEW BRAUNFELS	тх	78130
14	NEW BRAUNFELS CITY OF	550 LANDA ST	NEW BRAUNFELS	тх	78130
15	NIETO RICARDO	850-3 HWY 46 SOUTH	NEW BRAUNFELS	тх	78130
16	R S L R PROPERTIES LLP	1050 TUSCAN RIDGE	NEW BRAUNFELS	тх	78130
17	REID THERESA F	118 SUNSET CIR	SHADY SHORES	тх	76208
18	RIVERTREE PROP OWNERS ASSOC INC	1000 N WALNUT AVE STE 202	NEW BRAUNFELS	тх	78130
19	SCHMIDT RONALD J & JANIE	1150 TUSCAN RDG	NEW BRAUNFELS	тх	78130
20	SHEPHERD MARILYN	850 HWY 46 SOUTH BOX 1	NEW BRAUNFELS	тх	78130
21	VANEPPS CYNTHIA L & GREGORY L POOL	2071 KUEHLER AVE	NEW BRAUNFELS	тх	78130
22	WIND RIVER VALLEY LTD	112 E PECAN ST	SAN ANTONIO	тх	78205
23	BROOKS JOHN & KARION	911 RIVER BANK	NEW BRAUNFELS	тх	78130
24	JF2 ENTERPRISES LLC	220 FRIESENHAHN RD	NEW BRAUNFELS	тх	78132
25	MEINERS MICHAEL G & LISA R	1461 CARDINAL DR	NEW BRAUNFELS	тх	78130
26	FOERSTER GENE R & PATRICIA	1465 CARDINAL DR	NEW BRAUNFELS	ТΧ	78130
27	ERBEN GLEN & MICHELLE	1469 CARDINAL DR	NEW BRAUNFELS	ТΧ	78130
28	AURORA ERICA C	1473 CARDINAL DR	NEW BRAUNFELS	ТΧ	78130

29	WHELAN SANDRA E	1477 CARDINAL DR	NEW BRAUNFELS	ТΧ	78130
30	HEYDEN RICHARD L & CYNDI MILLER	178 LAKEVIEW BLVD	NEW BRAUNFELS	ТΧ	78130
31	JENTSCH JESSICA & ROBERT	362 PAISANO ST	NEW BRAUNFELS	ТΧ	78130

ATTACHMENT D

ORIGINAL PHOTOGRAPHS

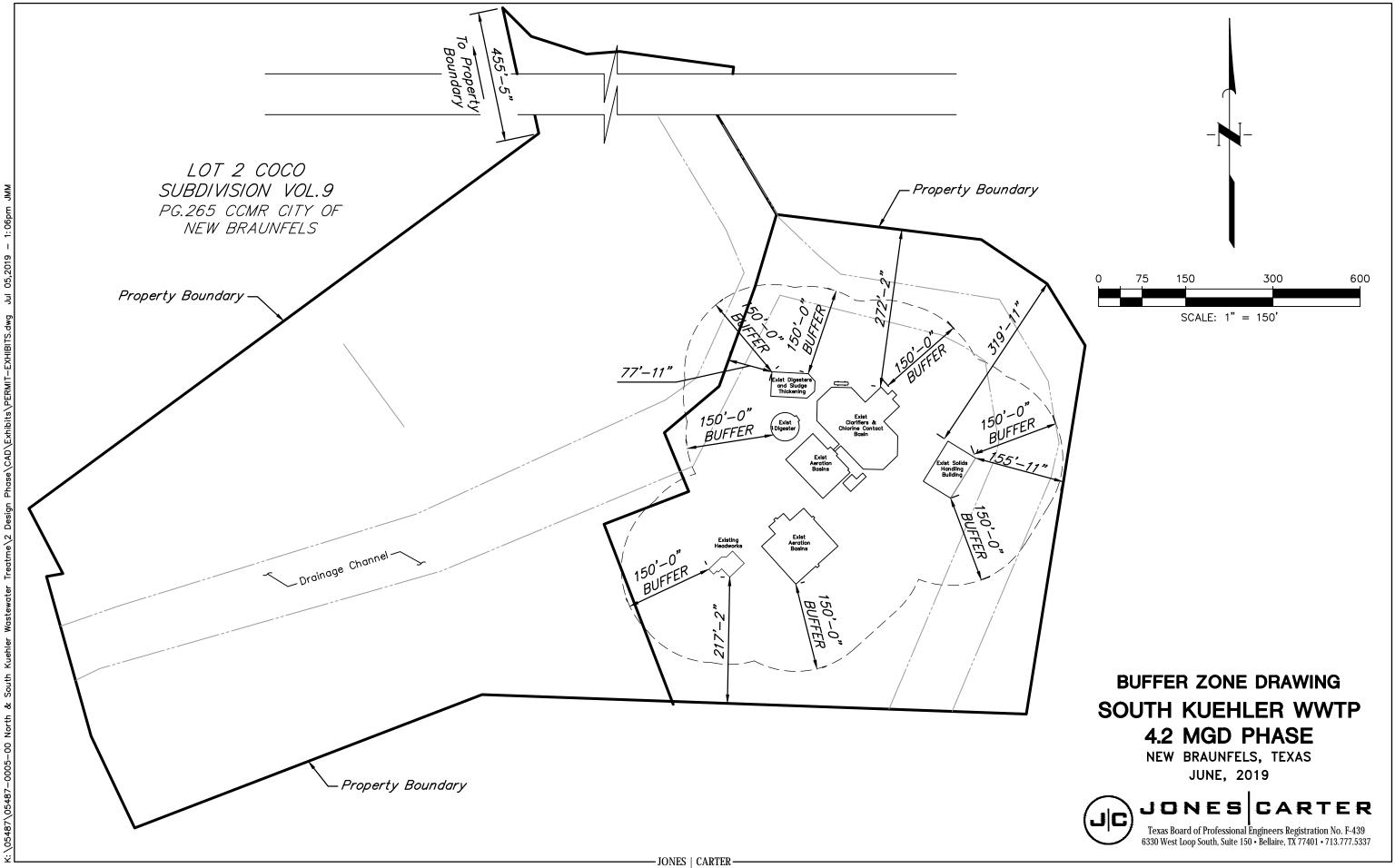
NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

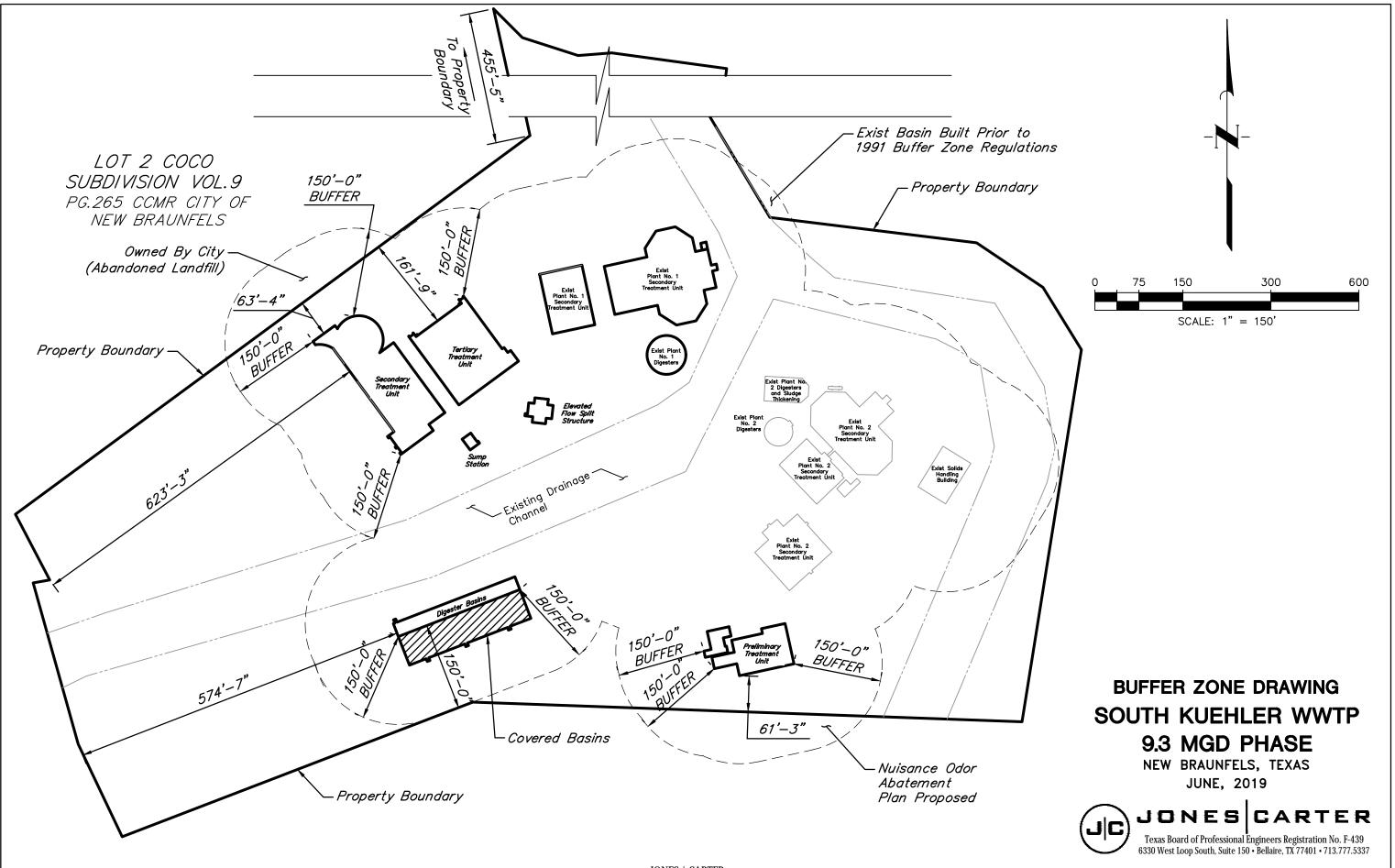
New Braunfels Utilities, South Kuehler WWTP, 6/20/19 – Picture is of existing wastewater treatment plant. Note headworks in right center of picture

New Braunfels Utilities, South Kuehler WWTP, 6/20/19 – Picture is of area where new construction is to be done. Note the headworks in the left center of picture

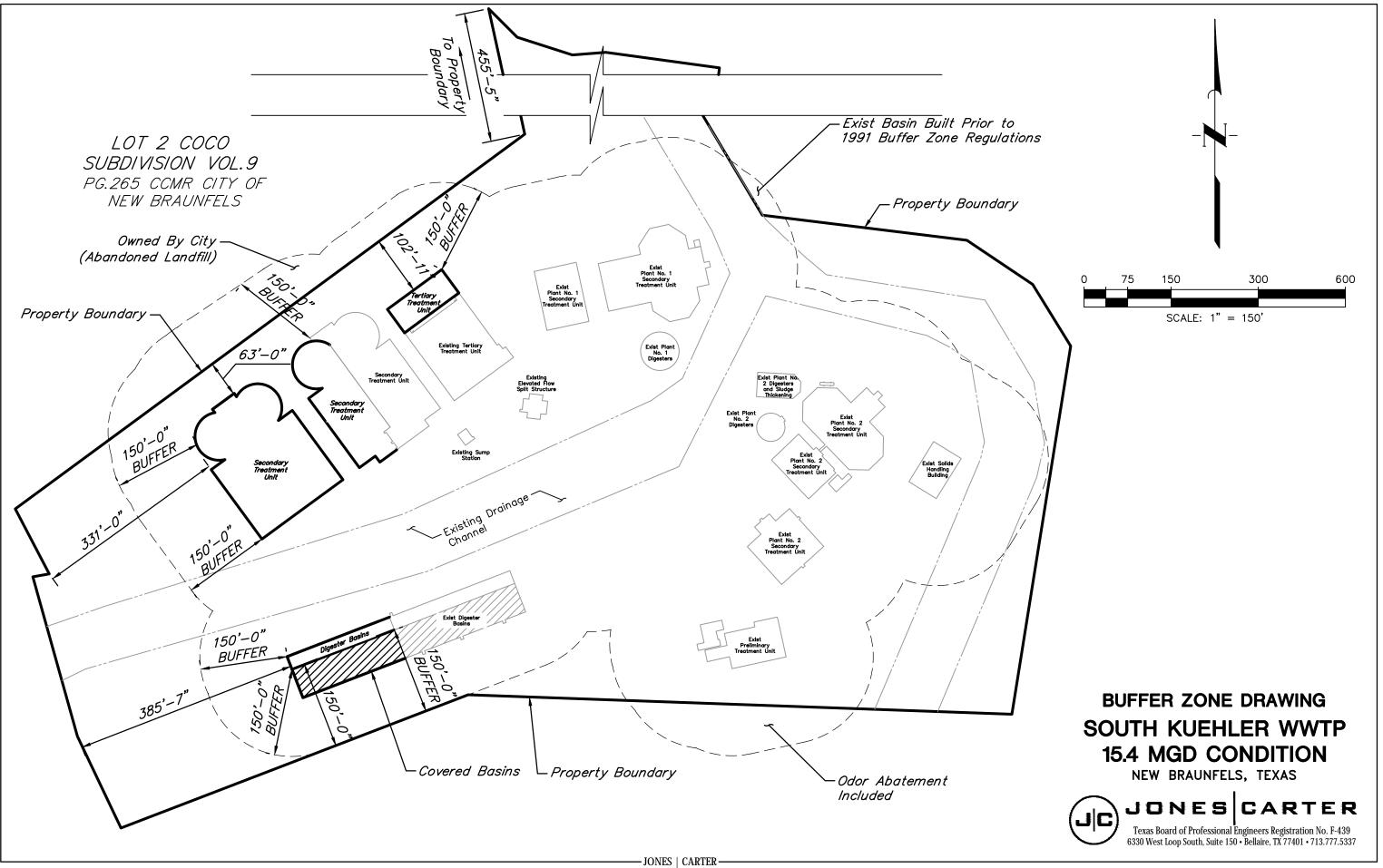
New Braunfels Utilities, North Kuehler WWTP, 6/20/19 – Picture is of existing wastewater treatment plant. Note retaining wall in left of picture

New Braunfels Utilities, South Kuehler WWTP, 6/20/19 – Picture is of proposed receiving stream, facing upstream. Proposed outfall location is at bottom of center of picture


New Braunfels Utilities, South Kuehler WWTP, 6/20/19 – Picture is of proposed receiving stream, facing downstream. Proposed outfall location is at bottom of center of picture


ATTACHMENT E

BUFFER ZONE DRAWING AND ODOR ABATEMENT PLAN


NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

30 ШXН Phase\CAD\Exhibits\PERMIT-Treatme\2 Design Wastewater Ϋ́ South ઝ \05487\05487-0005-00 North ŝ

ы. 3 Phase\CAD\Exhibits\PERM Treatme\2 Design Wastewater Ϋ́ South ઝ \05487\05487-0005-00 North ŝ

ENGINEERING REPORT FOR SOUTH KUEHLER WASTEWATER TREATMENT PLANT NUISANCE ODOR PREVENTION PLAN FOR NEW BRAUNFELS UTILITIES COMAL COUNTY, TEXAS

JULY 2019 J|C Job No. 05487-0005-00

JC JONES CARTER

Texas Board of Professional Engineers Registration No. F-439 | Texas Board of Professional Land Surveying Registration No. 10046100

ENGINEERING REPORT FOR SOUTH KUEHLER WASTEWATER TREATMENT PLANT NUISANCE ODOR PREVENTION PLAN FOR NEW BRAUNFELS UTILITIES COMAL COUNTY, TEXAS

TABLE OF CONTENTS

ENGINEERING REPORT:

Ι.	Existing Site and Surrounding Land Use	1
	Existing Climatological and Wastewater Conditions	
	Potential Odor Generating Units	
	Proposed Solution	

ATTACHMENTS:

APPENDIX A – Wastewater Treatment Plant Aerial
APPENDIX B – Wind Rose for New Braunfels, Texas
APPENDIX C - Climatological Conditions of New Braunfels, Texas
APPENDIX D – Buffer Zone Exhibit
APPENDIX E – Odor Control Product Literature

Engineering Report

The following is a report for the approval of a nuisance odor prevention request associated with the proposed preliminary treatment process unit and lift station at the New Braunfels Utilities South Kuehler Wastewater Treatment Plant.

I. Existing Site and Surrounding Land Use

The wastewater treatment plant (WWTP) facility treats sanitary sewer flow from a portion New Braunfels Utilities (NBU) service area. The site is located in southeast Comal County, approximately 0.4 miles south and 0.7 miles east of the intersection at Interstate Highway 35 and Farm to Market Road 725. The facility is located in the City of New Braunfels city limits. Land use surrounding the existing WWTP is comprised of single-family residential housing, an abandoned land fill, an unnamed tributary, and undeveloped land. The location of the WWTP is shown in Appendix A.

Buffer zone compliance will be met by ownership or restrictive easement with the exception of the preliminary treatment unit. Along the southern boundary of the WWTP, the preliminary process treatment unit does not have the minimum buffer zone distance from the neighboring land owner. The minimum required buffer zone is 150 feet (150'); so in order to meet requirements of 30 TAC §217.38 and 30 TAC §309.13 regarding buffer zones, NBU proposes to cover the proposed treatment units and install an odor control system as described below in this report.

II. Existing Climatological and Wastewater Conditions

Climate in the surrounding area is generally mild and warm with an average annual high temperature of 78.6°F and average low temperature of 55.9°F and an average yearly rainfall of approximately 33.98 inches. The information in this section is taken from historical data collected by U.S. Climate Data and is shown in Appendix C. Prevailing wind direction is from the south southeast and south at the velocities shown in Appendix B. Treated effluent from this facility is discharged under TPDES Permit No. WQ0010232003 and WQ0010232001 from North and South Kuehler Wastewater Treatment Plants respectively. As described in the South Kuehler WWTP Major Amendment application, the North Kuehler WWTP TPDES permit will expire and all flow will be combined as part of the South Kuehler WWTP TPDES permit. To accommodate this, all flow will be diverted to a new, common preliminary treatment unit consisting of screening, grit removal, septage receival, and lift station.

Influent to be treated at the WWTP is comprised predominantly of domestic wastewater. No biological treatment occurs prior to this treatment unit.

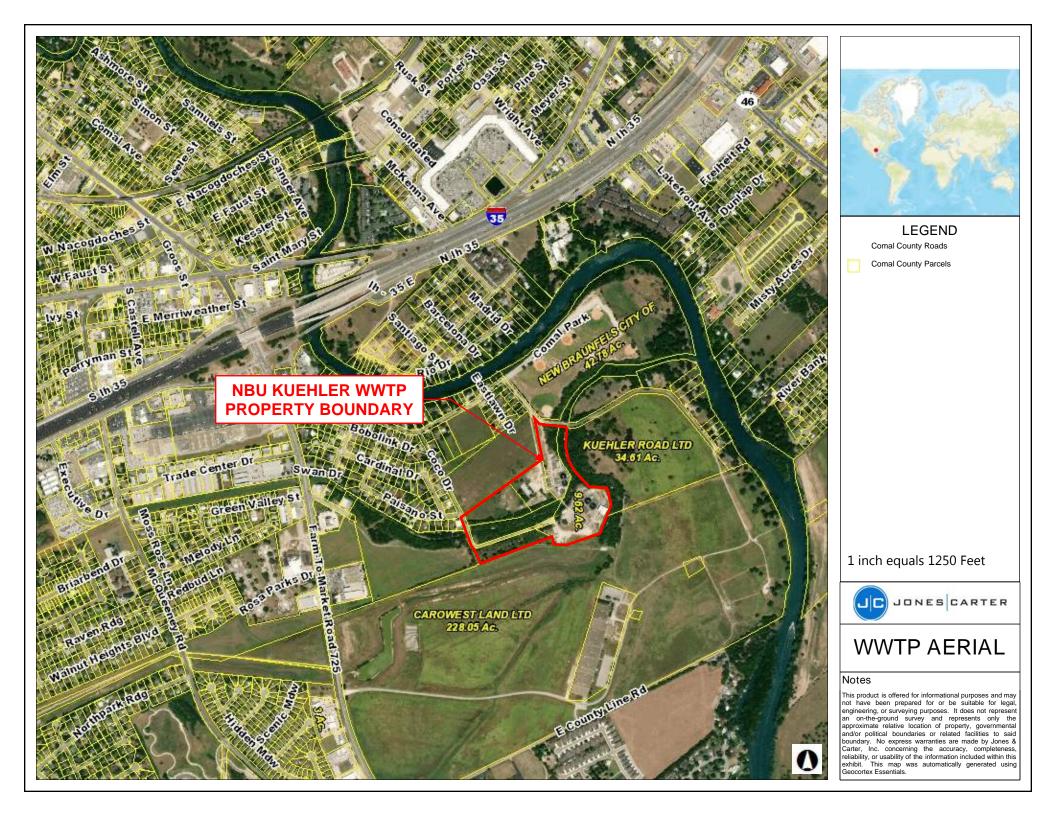
III. Potential Odor Generating Units

The WWTP facility will be comprised of a new, common preliminary treatment unit, two existing secondary treatment units, two proposed secondary treatment units, a new, common tertiary treatment unit, existing and new aerobic digesters, and a sludge dewatering building. All components other than the preliminary treatment unit comply with buffer zone requirements and do not require a nuisance odor prevention plan. The proposed flow will be 9.30 million gallons per day (MGD) and the future flow will be 15.40 MGD. The preliminary process treatment unit will include mechanical screens, manual screens, aerated grit chambers, a screenings garage, a septage receival unit, and a lift station.

A variance is being request for the buffer zone less than 150 feet (150'). Appendix D is a buffer zone map showing both the proposed and existing facilities.

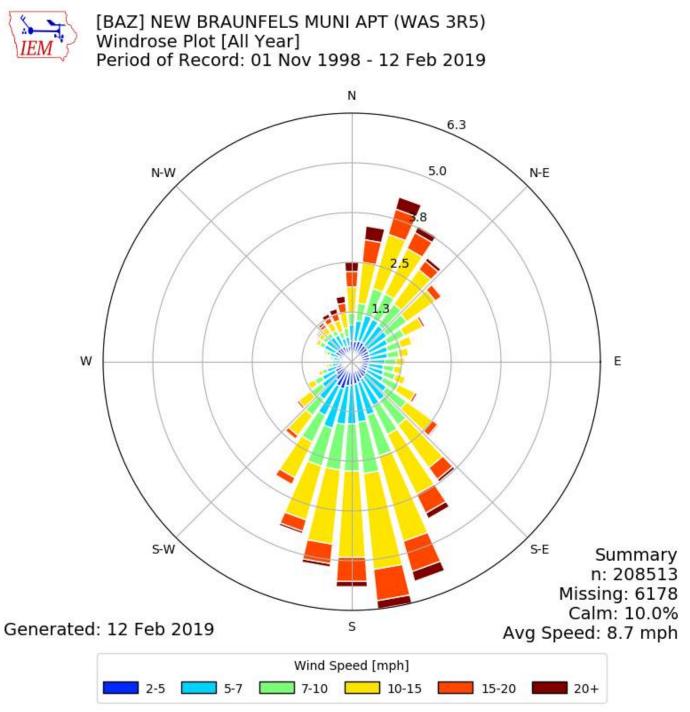
IV. Proposed Solutions

To control nuisance odors from the preliminary process treatment unit, an odor control system consisting of a biotrickling scrubber (BTS) with a granular activated carbon (GAC) polisher is proposed.


All open basins including screening channels, aerated grit chambers and lift station wet well will be covered with concrete top slabs or stainless steel covers. The screenings garage will be completely enclosed during operation and all equipment including screens and conveyors will include an enclosure that contains all material. All basins, equipment, and the garage will be connected to the proposed odor control system. The BTS and GAC odor control equipment controls nuisance odors by removing air from the enclosed space and forcing it through a bio-membrane film, removing any nuisance odors from the air. This solution will provide a method to prevent nuisance odors, and be adjusted accordingly to the odor characteristics as they change over time.

Appendix E contains information on the BTS and GAC odor control system proposed for the WWTP.

K:\05487\05487-0005-00 North & South Kuehler Wastewater Treatme\2 Design Phase\Analysis\Preliminary Treatment\Odor Abatement\NUISANCE ODOR ABATEMENT REPORT.DOC


APPENDIX A

WASTEWATER TREATMENT PLANT AERIAL

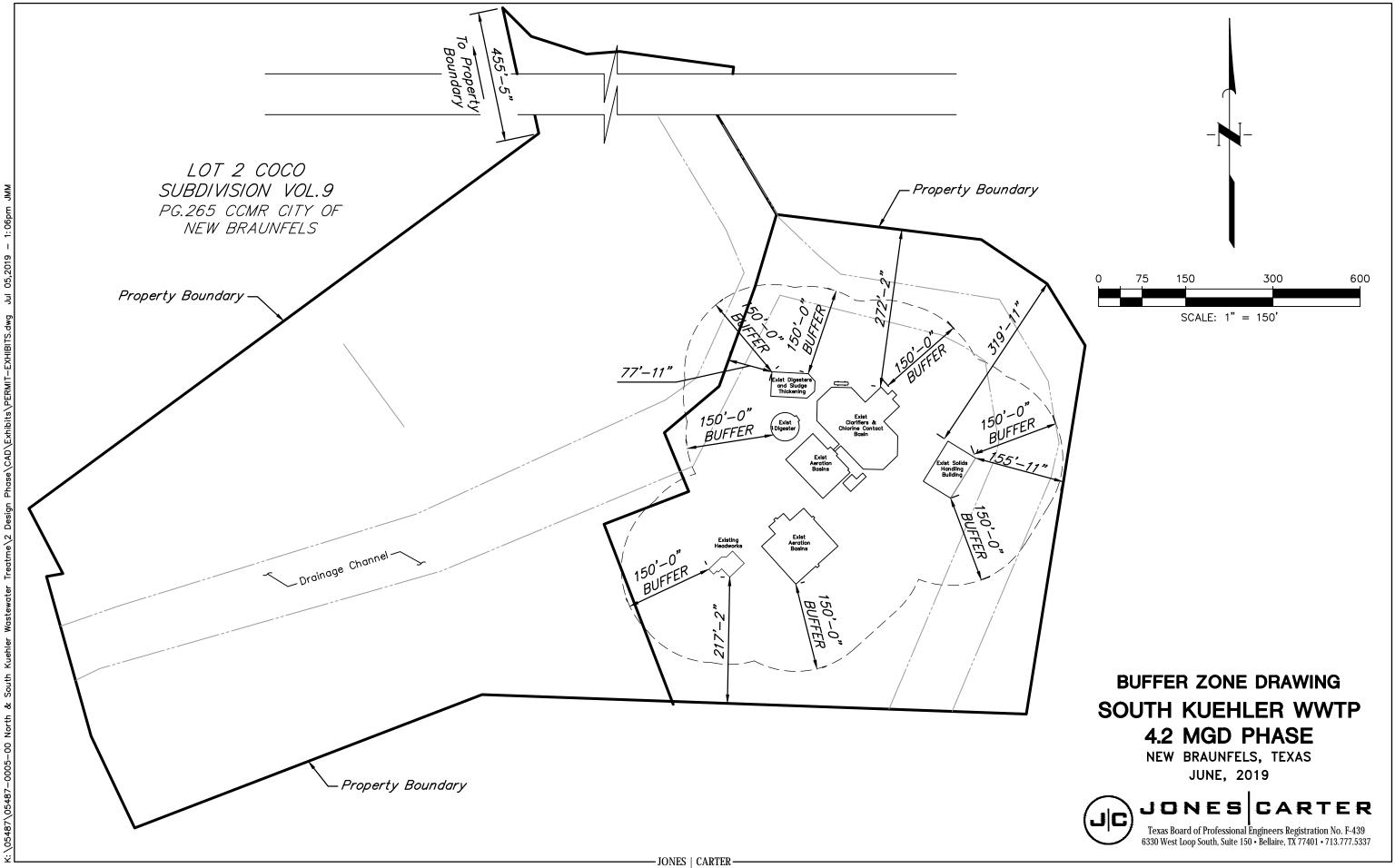
APPENDIX B

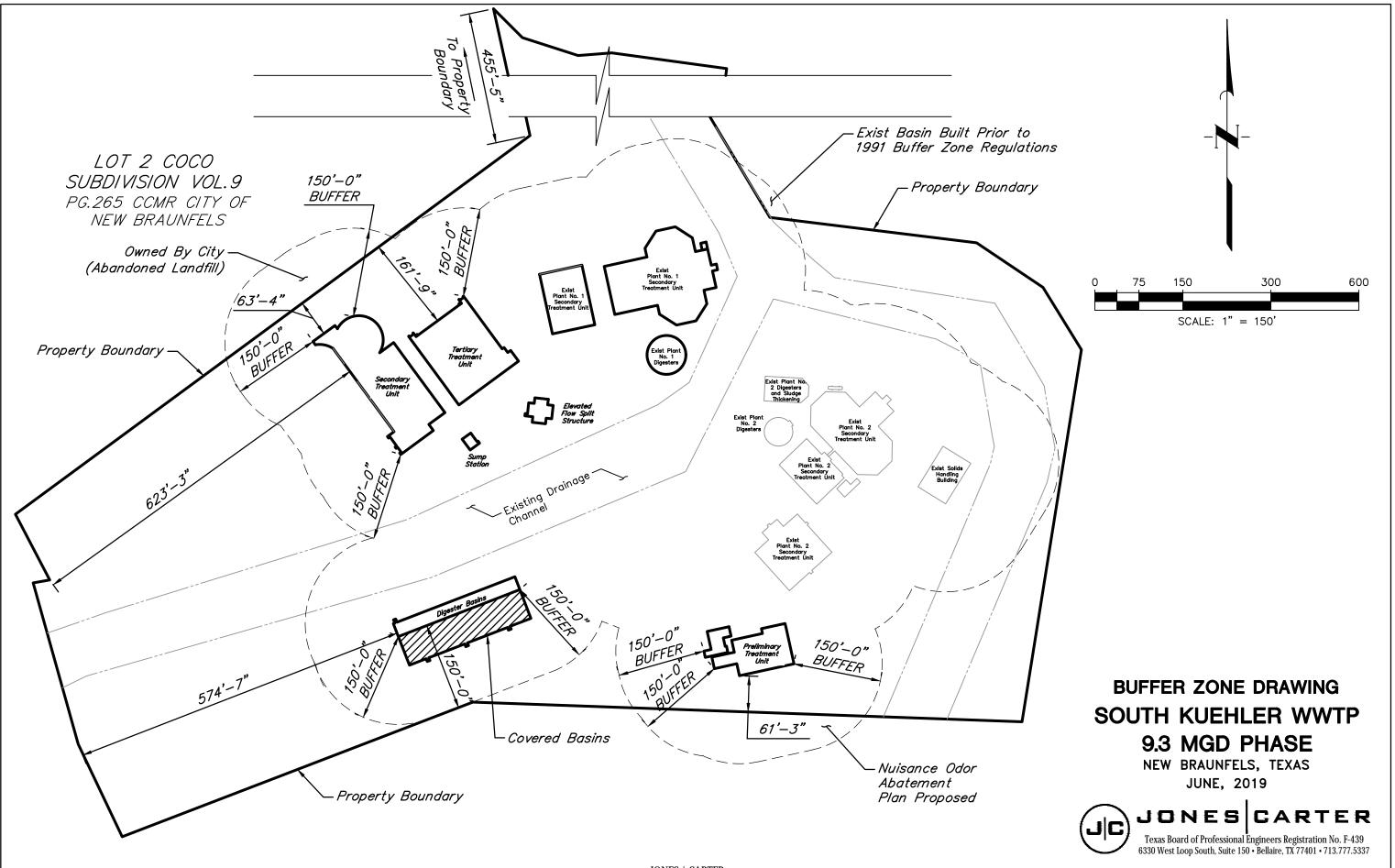
WIND ROSE

APPENDIX C

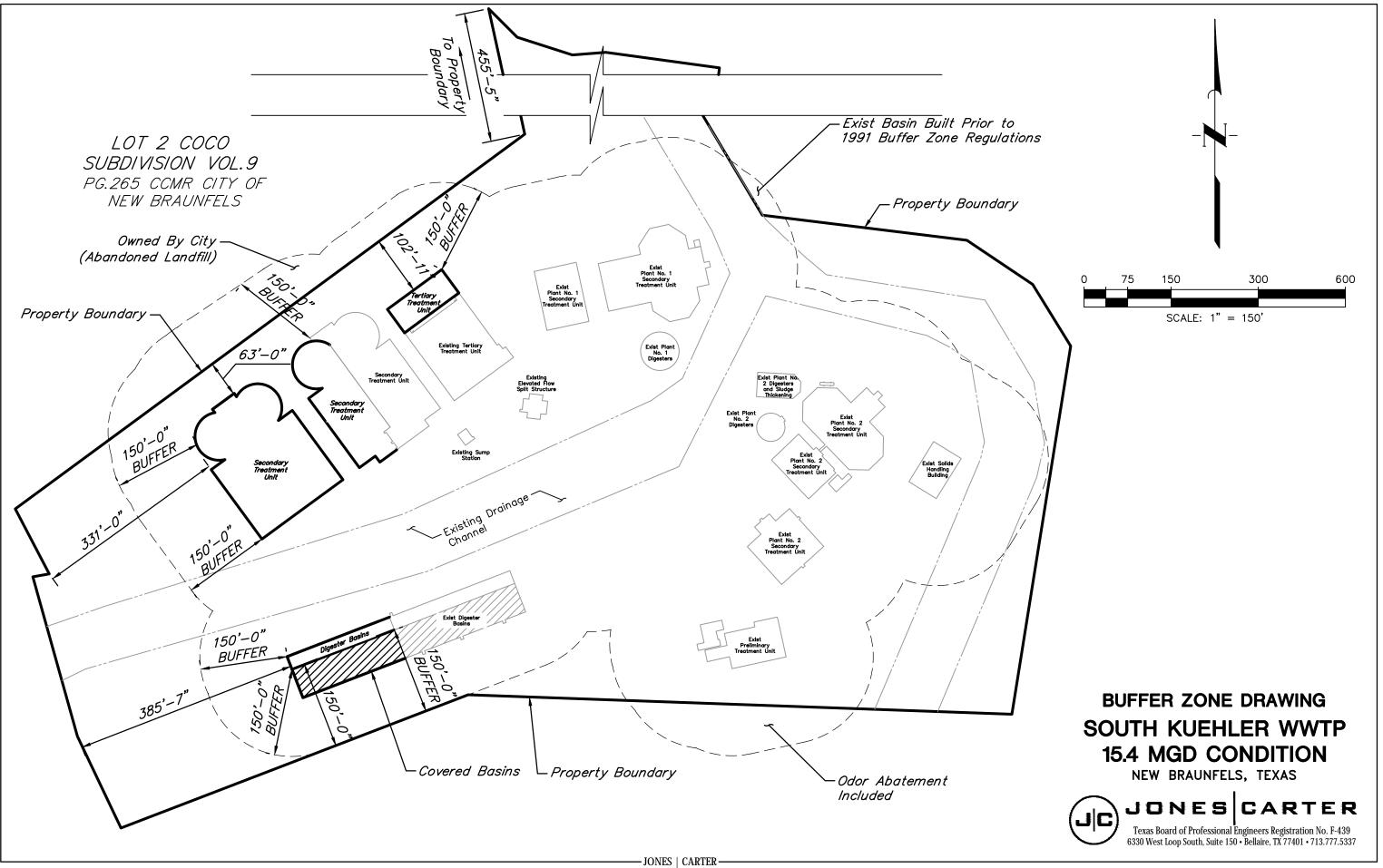
CLIMATOLOGICAL CONDITIONS

Temperature - Precipitation - Sunshine - Snowfall Home United States Texas								US Climate Data on 🚮 📑	
								Enter a location	
Monthly	Daily	History	Geo & Map Weather Forecast				ast	You are here: United States > Texas > New Braunfels	
Climate New Braunfels - Texas °C °F							°C °F	New Braunfels weather averages	
		Jan	Feb	Mar	Apr	May	Jun	Annual high temperature: 78.6°F	
Average high in °F:		61	65	72	79	85	90	Annual low temperature: 55.9°F	Ypa
Average low in °F:		38	41	48	56	64	70	Average temperature: 67.25°F	la di
Av. precipitation in inch:		1.97	1.97	2.6	2.05	3.94	4.76	Average annual precipitation - rainfall: 33.98 inch	
Days with precipitation:		-	-	-	-	-	-	Days per year with precipitation - rainfall: -	
Hours of sunshine:		-	-	-	-	-	-	Annual hours of sunshine: -	Destance
								Av. annual snowfall: -	Sector Pe
		Jul	Aug	Sep	Oct	Nov	Dec		1
Average high in °F:		93	95	89	81	71	62	⊲11	The me
Average low in °F:		73	72	66	57	47	39	_	
Av. precipitation in inch:		2.91	2.13	3.03	3.82	2.44	2.36		Con- Co
Days with precip	itation:	-	-	-	-	-	-		
Hours of sunshin	ie:	-	-	-	-	-	-		
								New Braunfels Climate Graph - Texas Climate Chart	
								Sinch	
								90°F 4inch	
								Zoor 3inch	
								70°F	
								2inch	
									н
								1inch	co
								30°F	
Climate data for								Jan Mar Jun Jun Sep Oct Nov Nov	
Average weather	New Br	aunteis, IX -	- /8130 -	1981-5	010 norm	IdIS			
Jan: January, Fe	b: Febru	ary, Mar: Ma	arch, Apr	April, M	lay: May,	Jun: Jur	ie, Jul: December	Low High Precipitation jChartFX	


Climograph of New Braunfels on your website


© 2019 US Climate Data | version 2.3 | Programming & Design by Your Weather Service | World Climate | Weernetwerk

About us | Disclaimer | Cor


BUFFER ZONE EXHIBITS

APPENDIX D

30 ШXН Phase\CAD\Exhibits\PERMIT-Treatme\2 Design Wastewater Ϋ́ South ઝ \05487\05487-0005-00 North ŝ

ы. 3 Phase\CAD\Exhibits\PERM Treatme\2 Design Wastewater Ϋ́ South ઝ \05487\05487-0005-00 North ŝ

APPENDIX E

ODOR CONTROL PRODUCT LITERATURE

Proposal #M18-146 Prepared on November 20, 2018

SALES REPRESENTATIVE

Curtis Cathey Manufacturers' Representative Environmental Improvements, Inc. e: ccathey@ei2austin.com

p: <u>512.295.3733</u>

m: <u>512.731.3253</u>

12310 World Trade Drive, Suite 108 San Diego, CA 92128 USA +1 (858) 487-2200 (phone) +1 (858) 487-56000 (fax) WWW.eVoqua.com

TABLE OF CONTENTS

- FORWARDING LETTER
- SECTION 1: TECHNICAL INFORMATION
- SECTION 2: COST PROPOSAL
- SECTION 3: EQUIPMENT SPECIFICATIONS

November 20, 2018

K. Grady Turner III, P.E.
Assistant Department Manager
JONES | CARTER Engineering
6330 West Loop South, Suite 150
Bellaire, Texas 77401
Telephone 713.777.5337
Ref: Odor Control System for New Braunfels Utilities – N & S Kuehler WWTP

Dear Mr. Turner,

Thank you for your continued interest in Evoqua's odor control system for this project. Attached please find our technical proposal for the Biotrickling Filter and Carbon Adsorber Odor Control Systems. For this application with 15,000 cfm, we have considered our BTF-1446 followed by our RJC-1300D system. The systems are based on the following design criteria:

DESIGN AND PERFORMANCE REQUIREMENTS

System Location	Outdoors
EVOQUA MODEL NO	BTF-1446 + RJC-1300D
Air Flow Rate per System	15,000 cfm
Average/Peak inlet H ₂ S concentration	25 ppm/ 350 ppm
Total media retention time (EBRT) –	BTF-1446
Bio-Trickling Filter	14.8 seconds
Total media retention time (EBRT) –	BTF-1300D
Carbon Adsorber	3.1 seconds
Overall H2S Removal efficiency	99.5% or less than 0.1 ppm whichever is
	greater

Bio-Trickling Filter System

Evoqua Water Technologies' BTF system is a counter-current biotrickling filter tower manufactured of premium vinyl ester FRP. It consists of biotrickling tower including a mass transfer zone for gas absorption, integral sump, mist eliminator, and skid-mounted process support equipment including duty/standby recirculation pumps, nutrient storage tank, duty/standby nutrient pumps, piping, valves, fittings, instrumentation and controls to make a complete and functional system.

- § Premium vinyl ester FRP construction for superior strength, corrosion resistance and long life
- § Non-proprietary, commercially available nutrient to enhance and accelerate the growth of autotrophic bacteria
- § Nutrient storage tank with nutrient pumps enhances the health of bacteria

- § Magnetic seal-less recirculation pumps provide continuous irrigation to ensure media has optimum conditions to promote growth and ability to handle periodic peaks
- § Integral mist eliminator removes any spray carryover at exhaust stack
- § Two-stage system with multi-mode capability to provide flexible operation and optimum conditions for site specific applications

Carbon Polisher System

Evoqua's carbon polisher system includes high H2S capacity Midas OCM media. Evoqua's Midas media is a virgin bituminous coal based media that is not impregnated. The Midas media has a very high adsorption capacity exceeding 0.30 grams of H_2S adsorption for each cubic centimeter of carbon, giving it a capacity four to five times greater than other types of media. The Midas media also does not require a mist eliminator reducing overall equipment footprint and pressure drop.

Process Support Equipment

The Bio-Trickling Filter System includes a factory-assembled process support skid. Duty and standby exhaust fans and an electrical control panel are included for a complete odor control system. Evoqua has included a typical layout diagram with ductwork for illustration purposes only. We can provide a layout to suit the actual job site. All budgetary pricing EXCLUDES ductwork and dampers.

Evoqua's budgetary Design Proposal is attached. We look forward to working with you on this project. If we can be of any further assistance, please do not hesitate to contact us.

Sincerely,

Heather Davis-Freymuth Technical Sales Engineer

The scope of supply and pricing are based on Evoqua's standard equipment selection, standard terms of sale and warranty terms. Any variations from these standards may affect this budgetary quotation. Additionally, please note that <u>this budgetary quotation is for review and informational purposes only and does not constitute an offer for acceptance.</u>

All of the information set forth in this quotation is confidential and/or proprietary and has been prepared solely for the recipient's use in considering the purchase of the equipment and/or services described herein. Transmission of all or any part of this information to others, or use by the recipient, for other purposes is expressly prohibited without Evoqua Water Technologies prior written consent.

cc: Mr. Curtis Cathey, Environmental Improvements, Inc. Mr. Paul Kranz, Evoqua Water Technologies

SECTION 1

TECHNICAL INFORMATION

Evoqua Water Technologies, 12310 World Trade Drive, Suite 108, San Diego, CA 92128, U.S.A.

PROCESS DESCRIPTION

Evoqua Water Technologies' BTF odor control system is manufactured of FRP. All system components are mounted on the vessel and pre-assembled, pre-piped and pre-wired to the greatest extent possible. The unique design minimizes the system footprint while still providing a high ventilation flow rate

The biological media are randomly dumped in the BTF tower, much like packing media in a conventional scrubber. The bacteria adhere to the media surfaces, and thus come in intimate contact with the H_2S in the air stream. The odorous air flows upward through the media, while water containing nutrients and bacteria is trickled down over the top of the media. The counter current flow enhances mass transfer to the wetted media surfaces, where the biological sulfur-oxidation process takes place. Sulfuric acid and other soluble sulfates are the byproducts of the biological reaction, and are absorbed and removed with the irrigation water. The irrigation water leaves the BTF at a pH around 2

The BTF is first started by inoculation with activated sludge in the recirculating solution. The activated sludge contains millions of bacteria, including several species of sulfur-oxidizing bacteria. As sulfur is oxidized, the pH of the recirculating water drops, and only bacteria that can survive in low pH conditions remain active. In this way the system preferentially favors the growth of sulfur-oxidizing, acidophilic bacteria. As the sulfur-oxidizing bacteria population increases, the H2S removal improves. The population will stabilize in proportion to the average influent H2S load (ppm and flow rate). In about 3-4 weeks the BTF removal efficiency increases from less than 5% to greater than 99%.

Evoqua Water Technologies' BTF odor control systems use a non-proprietary, commercially available fertilizer to provide essential nutrients to optimize the growth of sulfur-oxidizing bacteria. The addition of small amounts of nutrient accelerates the acclimation process, and improves the H2S removal efficiency of the system. This non-hazardous nutrient mix is injected continuously into the irrigation water.

Evoqua Water Technologies' Carbon Polisher Odor Control System is a once-through adsorption system. Odorous compounds (H2S and other malodorous organics) are removed from the air stream through adherence to the activated carbon porous surface. The necessary equipment for the activated carbon adsorption process consists of activated carbon bed(s), grounding rod, and ducting.

Foul air containing residual H2S and other odorous compounds is collected from the bioscrubber and the air is passed to the adsorber. After entering the vessel, the foul air flows through a densely packed bed of activated carbon media. The bed consists of 3 feet of pelletized anthracite carbon media. The activated carbon removes the hydrogen sulfide and other odor causing organic

constituents at high removal efficiency. The cleaned air continues through the vessel and is exhausted through the stack.

SYSTEM FEATURES

The Evoqua BTF offers several advantages over other biological odor control systems on the market. Some of the key features are listed below.

- Low Pressure Drop The arrangement of the media allows air flow to pass through the media easily, thereby enabling relatively high air flow rates with very low pressure drop, comparable to conventional packed systems.
- Small Footprint The high surface area, low-pressure drop combine to allow operation at higher velocities and lower residence times than other biological odor control systems. For a given air flow rate this translates into smaller footprint, smaller equipment, and lower capital cost.
- 3. Biological Nutrient for H₂S removal ZABOCS odor control systems use a non-proprietary, commercially available fertilizer to provide essential nutrients to optimize the growth of sulfur-oxidizing bacteria. The addition of small amounts of nutrient accelerates the acclimation process, and improves the H2S removal efficiency of the system. Principal ingredients include 12% urea Nitrogen, 4% phosphate, 8% soluble potash, and 0.1% chelated iron.
- 4. **Evoqua Water Technologies, LLC, Vapor Phase Odor Control** With more than 2700 installations, Evoqua is the market leader in Municipal Odor Control technologies, no other supplier has the depth of experience and know how that Evoqua brings to this project. Our wide range of odor control technology options including Biological Scrubbers, Biofilters, Chemical Scrubbers and Carbon Adsorbers assures the right technology for your application.
- 5. **Reliability in Design and Fabrication** Evoqua Water Technologies' BTF system incorporates many design innovations. Some of these include:
 - Non-proprietary, commercially available nutrient for preferential and accelerated growth of autotrophic bacteria that remove H₂S as well as metabolize organic compounds.
 - Low pressure drop and long media life.
 - · Atmospheric sump for easy access to sump liquid during operation
 - Extensive Quality Control inspection in accordance with ASTM guidelines, including hardness and wall thickness measurements.

ATTACHMENTS

- § Table 1: BTF Design and Performance Criteria
- § Table 2: BTF Major System Components Sizing
- § Table 3: RJC Design and Performance Criteria & System Sizing
- § Table 4: RJC Estimated Carbon Life
- § Evoqua's ZABOCS Bio-Trickling Filter System Brochure
- § Evoqua's RJC-Series Carbon Adsorber Brochure
- § Evoqua's Midas OCM Media Brochure
- § Fan Cut-Sheets

		BIOTRICKLING FILTER ODOR CONTROL EQUIP	MENT
		EVOQUA TABLE 1: DESIGN & PERFORMANCE CRITEF	
	J	WATER TECHNOLOGIES N & S KUEHLER WWTP	
	File	No. M18-146	
I.	DES	GIN SPECIFICATIONS AND PERFORMANCE REQUIREMENTS:	
	-		
			BTF-1446
	Syst	em Tag No.:	BTF-001
	Tota	I Air Flow Rate, cfm	15,000
	Num	ber of BTF towers	1
	Ave	rage Inlet H2S Conc., ppm	25
	Peal	k Inlet H2S Conc., ppm	350
	Ave	rage H2S Removal Capacity	99.0% removal of inlet concentration or ≤ 0.5 ppm average at outlet, whichever is greater
П.	SYS	TEM PERFORMANCE CALCULATIONS:	
	A.	Operating Parameters	
		Tower Diameter, ft	14.00
		Empty Bed Residence Time, sec	14.8
		Overall Tower Height, ft	29.83
		Liquid Recirculation Rate, gpm	125.0
		Tower Sump Operating pH	1.6 to 3.0
	в.	Estimated Pressure Drop:	
		Pressure Drop/ft. of Packing, in. WC	0.37
		Total Packing Height, ft	24.00
		Pressure Drop through Packing, in. WC	8.88
		Mist Eliminator Losses, in. WC	0.50
		Other Internal Losses, in. WC	0.62
		Total Losses, in. WC	10.00
		20% Safety Factor, in. WC	2.00
		Bioscrubber Design Pressure Drop, in. WC	12.00
	C.	Packing Media Characteristics:	
		Packing Media:	PUF 40 x 40 x 40 Random Packed
	D.	Exhaust Fan:	
		Air Flow Capacity, acfm	15,000
		Upstream Duct Losses up to Fan Inlet, in W.C.	2.00
		Duct Losses between Fan Outlet & Bioscrubber Inlet, in W.C.	0.50
		Pressure Drop across Bioscrubber, in WC	12.00
		Duct Losses between Bioscrubber Outlet & Carbon Adsorber Inlet, in W.C.	1.50
		Pressure Drop across Carbon Adsorber, in WC	3.50
		Total SP, in WC	19.50
		BHP	60.20
		Motor HP	75.0
L			

TABLE 2: MAJOR SYSTEM COMPONENTS & ESTIMATED UTILITIES REQUIREMENTS

GRUENE ROAD WRF

C EVOQUA WATER TECHNOLOGIES

A.	Scrubber Towers:	<u>BTF-1446</u>
	Tower Diameter, ft	14.00
	Straight Shell Height, ft	
	Vessel Inlet Flange Size, ft x ft	7.0 x 1.75
	Inlet Velocity, fpm	1,224
	Vessel Exhaust Stack Dia., ft	3.00
	Exhaust Velocity, fpm	2,122
	Sump Liquid Height, ft	2.00
	Sump Diameter, ft	14.00
	Sump Capacity, gallons	2,303
	Sump Liquid Retention Time, min	18.4
	Scrubber Height:	
	Straight Shell Height, ft	37.50
	Top of Dished Head, ft	39.93
	Top of Exhaust Flange, ft	40.43
	Top of Exhaust Stack, ft	45.20
в.	Tower Internals:	
	Packing Support	FRP Grating, 1.5" Thick
	Scrubber Packing Media	PUF 40 x 40 x 40
		Random Packed
	Recirculation Liquid Distributor	(1) Full Cone Spray Nozzle per header
	Number of Spray Headers	Two (2)
	Demister	Chevron Type
C.	Recirculation Pump:	
	Total Flow Capacity, gpm	125
	TDH, ft.	81
	Motor Horsepower	7.5
	Manufacturer / Model	Iwaki America/MX-505
D.	Make-up Water [Plant Effluent]	
υ.	Flow Rate, Recirculation Mode (continuos), gpm - Normal Operation	3 - 5
	Flow Rate, Intermittent Mode (~1 min cycle per 30 minutes), gpm	110.00
	Pressure, psig - <u>Minimum</u>	50.00
	Pressure, psig - <u>Maximum</u>	60.00
E.	Make-up Water [Plant Effluent] Requirements	
	pH	6.0 - 8.0
	COD, ppm:	100
	BOD, ppm:	30
	Hardness, ppm CaCO3 (at pH = 2):	350
	Temperature, Deg. F:	60 - 95
	Residual Chlorine, ppm Cl:	< 3.0
	TSS, ppm:	< 10.0
	TDS, ppm:	< 2,000
	Total Nitrogen, mg N/L	15.0 - 20.0
	Total Phosphorous, mg P/L Total Potassium, mg K/L	10.0 - 15.0 10.0 - 15.0
		10.0 - 10.0

(CARBON ADSORBER ODOR CONTROL EQUIPMENT <u>TABLE 3</u> : DESIGN & PERFORMANCE CRITERIA, MAJOR SYSTEM COMPONENTS KUEHLER WWTP							
I.	DES	SIGN SPECIFICATIONS AN	ID PERFORMANCE REQUIREME	:NTS:				
				<u>RJC-1300-D</u>				
	Sys	tem Tag No.:		CA-001				
	-	al Air Flow Rate, cfm		15,000				
	Nur	nber of Carbon Adsorbers		1				
	Ave	erage Inlet H2S Conc., ppm		0.5				
	Ave	rage H2S Removal Capaci	у	Inlet H2S >10 ppm: 99.0% removal Inlet H2S 1-10 ppm: 0.1 ppm at outlet				
П.	MA.	JOR SYSTEM COMPONEN	ITS:					
	Α.	Carbon Adsorber Vesse	<u>əl:</u>					
		Tower Diameter, ft		13.00				
		Straight Shell Height, ft		15.25				
		Number of Beds		2.0				
		Carbon Bed Height per B	ed, ft	3.0				
		Superficial Velocity, fpm		56.51				
		Pressure Drop through C	arbon Bed, in. WC	3.5				
		Total Carbon Media Weig	yht, Ibs	21,731				
	в.	<u>Carbon Media:</u>						
		Type of Carbon		MIDAS OCM				
	C.	Ductwork Accessories:						
		FRP Isolation Damper wi	th Chainwheel					
	D.	Miscellaneous Accesso	ries:					
		Carbon Sample Ports, 3	per bed (6 total per vessel)					
		Grounding Rod, 1 per be	d (2 total per vessel)					
		Air Sample Ports, (3 total	per vessel)					
		Differential Pressure Gau	ge, 1 per bed (2 total per vessel)					
		Differential Pressure Gau	ge Pressure Taps, (3 total per ves	sel)				
		Drain Valve, (1 total per v	vessel)					

TABLE 4: ESTIMATED CARBON LIFE KUEHLER WWTP

I. ESTIMATED CARBON LIFE:

CAUTION: The life of carbon depends on several factors including all odor compounds in the incoming air stream which can be adsorbed on carbon, and the humidity of the air stream. The carbon life is presented as an estimate only and Evoqua Water Technologies LLC does not guarantee any life cycle for the carbon.

NOTE: As a minimum, the carbon media physical properties should be checked every five (5) years for compaction over time.

15,000

0.50

Inlet H2S >10 ppm: 99.0% removal Inlet H2S 1-10 ppm: 0.1 ppm at outlet

At Average Inlet H2S Conc.

Total Air Flow Rate, cfm

Average Inlet H2S Conc., ppm

Average H2S Removal Capacity

Carbon Capacity, g H2S/cc carbon	0.30
Average Carbon Density, g carbon/cc	0.45
Carbon Capacity, g H2S/g carbon	0.67
Total Carbon in System, lbs.	21,731
Usable Carbon @ Breakthrough (80% of Capacity), lbs.	17,385
Lbs of H2S Adsorbed for Usable Carbon in System	11,720
Lbs H2S/day	0.95
Theoritical Carbon Life, days	12,290
Theoritical Carbon Life, years	33.7
Estimated Carbon Life, years	5-10

BTF BIOSCRUBBER ODOR CONTROL SYSTEM

BTF BIOSCRUBBER

The patented BTF Bioscrubber is a bio-trickling scrubber system which uses sulfur-oxidizing bacteria to remove H_2S and organic odors from odorous air.

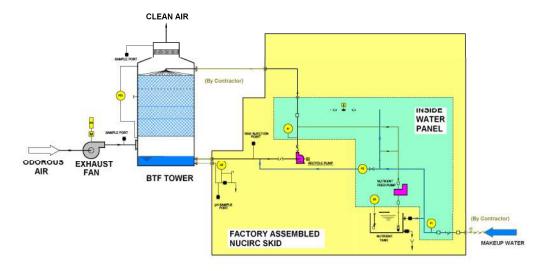
Bioscrubbers are characterized by their very low operating cost, and ability to handle very high H_2S concentrations up to and exceeding 1000 ppm. They are especially well suited for treating raw sewage odors as found in pump stations, headworks operations, and primary sedimentation.

PROCESS DESCRIPTION

The BTF bioscrubber uses random packed polyurethane foam (PUF) cubes as the support media for biomass growth. The media bed is irrigated with water and nutrients either continuously or intermittently. Maekup water is added to maintain the pH in a safe range, typically between pH=1 and 2. This provides an optimum environment for the preferential growth of acidophilic, sulfur-oxidizing bacteria.

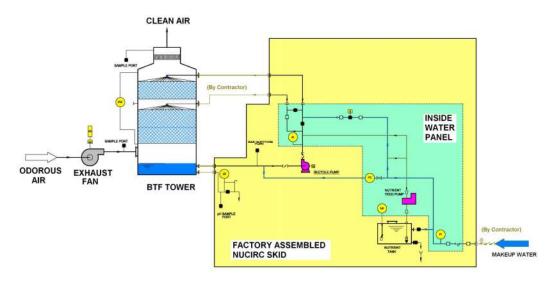
The PUF media has a very high H_2S elimination capacity, in the range of 80 to 100 gm/m³/hr. Better than 99% H_2S removal can be achieved at an empty bed residence time (EBRT) from 8 to 10 sec. Better than 90% odor removal is usually achived with BRT between 15 to 20 sec.

BTF DESIGN PARAMETERS


Each BTF is custom sized to optimize the performance for each application, based on the air flow rate, H_2S and organic odor concentrations, and % removal required. BTF systems can be designed to treat from 1,000 cfm to 15,000 cfm in a single 6-ft to 12-ft.

All BTF systems are fabricated from premium vinyl ester FRP with resin rich interior corrosion liner and exterior UV resistant gel coat. A factory-assembled Nucirc skid is available for improved reliability and ease of installation.

SINGLE STAGE AND 2-STAGE DESIGNS


The BTF may be configured as either a single stage or 2-stage bioscrubber. In the single stage BTF the irrigation water is recirculated continuously over the entire media bed. This is the normal mode of operation for system acclimation, and the preferred mode for very high H2S concentrations. After acclimation the single stage BTF may also be operated with intermittent fresh water irrigation.

In the 2-stage BTF the first stage uses continuous recirculation and the second stage uses intermittent irrigation of fresh water. The 2-stage BTF process provides superior control of organic odors.

PROCESS FLOW DIAGRAM: Single Stage

PROCESS FLOW DIAGRAM: Two-Stage

12316 World Trade Drive, Suite 100, San Diego, CA 92128, U.S.A.

+1 (866) 926-8420 (toll-free) +1 858) 487-2200 (toll)

www.evoqua.com

BULK ACTIVATED CARBON ADSORBER ODOR CONTROL SYSTEMS

Evoqua Water Technologies offers a full range of activated carbon systems for municipal and industrial odor control.

Single Bed Systems

Single bed systems are offered to treat up to 8,000 cfm (13,600 m³/h) of odorous air. Air flow may be vertically upwards or vertically downwards. Systems may be designed to operate under vacuum or forced draft.

Dual Bed Systems

Dual bed systems are designed to provide double the treatment capacity in the same footprint as in the single bed systems. Air enters at the center of the vessel. Half the air passes vertically upward through the upper bed and half down through the lower bed. Exhaust stacks may be internal or external.

High Flow V-Bank Systems

The V-bank uses horizontal flow through two vertical beds and are ideally suited for projects where height constraint, or high air flows are required. The systems have been built to treat up to 60,000 cfm (100,000 m³/h) in a single vessel.

Bulk activated carbon odor control systems are manufactured from premium vinyl ester FRP for optimum strength and corrosion resistance.

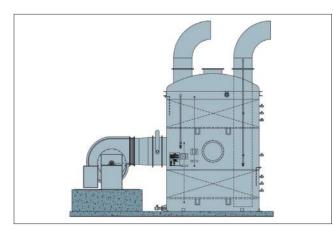
Optional Features

An acoustic enclosure is offered as an option to reduce noise levels in residential locations. The Evoqua RJMC Series Adsorbers are offered in premium vinyl ester FRP for optimum corrosion resistance. Systems are designed to hold a wide range of activated carbon media. Systems are normally sized to provide a minimum of one year media life.

A grease filter/mist eliminator is recommended upstream of the fan to reduce the maintenance and extend the carbon life.

Standard Features

- Air flow rates up to 20,000 cfm in a single unit
- Single or dual-bed systems
- High performance carbon media
- High Volume V-bank designs available



Carbon Adsorbers used as polishing units following a Biotrickling filter.

RJC DESIGN INFORMATION

Model	Airflow Rate	Туре	Diameter	Footprint Dimensions L x W x H*	Inlet Connection O.D.	Carbon Wt**	Operating Wt	Fan Motor	Power Supply
Unit	cfm	No. of carbon	ft	ft	inches	lbs	lbs	HP	FLA at 460V/3Ph/60Hz
	m³∕hr	beds	mm	mm	mm	kgs	kgs	kW	
RJC-0600	2000	Cinala	6.0	11 x 7.0 x 7.75	16 3/8	2,500	4,800	5.0	7.5
KJC-0600	3400	Single	1829	3352 x 2134 x 2362	416	1,136	2,182	3.7	
	3500	c: 1	8.0	14 x 9.0 x 8.5	16 3/8	4,500	8,400	7.5	10.1
RJC-0800	5950	Single	2438	4277 x 2743 x 2565	416	2,045	3,818	5.5	
DIC 1000	5500	c: 1	10.0	16.5 x 11 x 9.5	19 3/8	7,000	13,000	10	13.5
RJC-1000	9350	Single	3048	5030 x 3353 x 2870	492	3,182	5,909	7.5	
DIC 1000	8000	<u> </u>	12.0	18.75 x 13 x 10.25	23 3/4	10,200	19,000	15.0	19.1
RJC-1200	13600	Single	3658	5715 x 3962 x 3124	603	4,636	8,636	11	
DIC 1000D	11000	D	10.0	17.75 x 11 x 16	25 3/4	14,100	23,000	20	25.2
RJC-1000D	18700	Double	3048	5410 x 3353 x 4852	654	6,409	10,455	15	
	13000		11.0	19.5 x 12 x 16.75	28 5/8	17,100	28,000	25.0	31.1
RJC-1100D	22100	Double	3353	5944 x 3658 x 5105	721	7,773	12,727	18.5	
	16000		12.0	20.5 x 13 x 17	31 1/16	20,300	33,000	25.0	31.1
RJC-1200D	27200	Double	3658	6250 x 3962 x 5182	789	9,227	15,000	18.5	
DIC 11005	20000	D 11	14.0	23.25 x 15 x 18.3	34 1/16	27,600	45,000	40.0	49.8
RJC-1400D	34000	Double	4267	7087 x 4572 x 5589	865	12,545	20,455	30.0	

* Height to vessel top, excluding stack | ** Dependent upon media type, values are +/- 7%

Media

Evoqua carbon odor control systems are designed to work with a wide range of media.

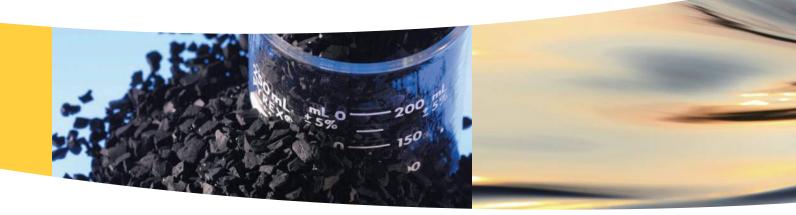
Midas[®] OCM

For H_2S odor removal we recommend Midas[®] Odor Control Media. Midas OCM has the highest odor removal capacity of any media on the market (0.30 g H_2S /cc carbon) and will reduce the frequency of media changeout.

Other Media offered:

- VoCarb[®] UOCH-KP Caustic impregnated odor control media
- VoCarb[®] P60 pelletized, coal-based, virgin activated VOC carbon
- VoCarb[®] 48C, 36C granular, coconut shell activated carbon
- 48C granular, coconut shell activated carbon

Email odorcontrol@evoqua.com or visit www.evoqua.com/bulk to connect with an expert.


181 Thorn Hill Road, Warrendale, PA 15086

+1 (866) 926-8420 (toll-free) +1 (978) 614-7233 (toll) www.evoqua.com

Midas and VoCarb are trademarks of Evoqua, its subsidiaries or affiliates in some countries.

All information presented herein is believed reliable and in accordance with accepted engineering practices. Evoqua makes no warranties as to the completeness of this information. Users are responsible for evaluating individual product suitability for specific applications. Evoqua assumes no liability whatsoever for any special, indirect or consequential damages arising from the sale, resale or misuse of its products.

WESTATES[®] COCONUT SHELL BASED GRANULAR ACTIVATED CARBON - VOCARB[®] 36C CARBON

FOR GAS PHASE ADSORPTION APPLICATIONS

Description

VOCarb[®] 36C is a high activity, granular activated carbon that is manufactured from selected grades of coconut shell. The granular shape of this carbon maximizes its geometric surface area, significantly increasing surface and pore diffusion rates and thereby increasing it's effectiveness for the adsorption of VOCs with a short contact time. The very high surface area and predominately microporous pore size distribution further enhance the effectiveness of this coconut shell based carbon. In addition, VOCarb carbons also have a high retentivity to hold onto and prevent desorption of previously adsorbed organic compounds. The granular shape of VOCarb 36C results in excellent gas contacting but still allows the carbon bed to operate at pressure drops similar to 4mm pelletized carbons. The high density and superior hardness of VOCarb 36C activated carbon provides excellent resistance to dust and fines formation.

Applications

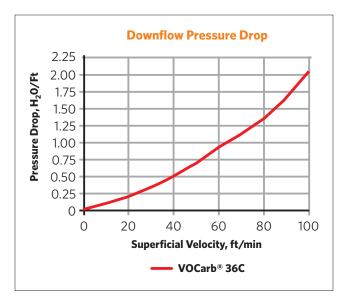
Cost effective VOCarb activated carbons developed by Evoqua have been demonstrated to provide superior performance in an extensive array of gas phase treatment applications. VOCarb activated carbons are available for:

- Chemical process applications
- VOC control from air strippers, soil vapor extraction and air sparge systems
- Control of tank vent emissions
- HVAC
- Odor control
- Solvent recovery of low boiling point solvents
- Use as a catalyst/catalyst support

Quality Control

All VOCarb® activated carbons are extensively quality checked at our State of California certified environmental and carbon testing laboratory located in Los Angeles, CA. Evoqua's laboratory is fully equipped to provide complete quality control analyses using ASTM standard test methods in order to assure the consistent quality of all Westates® carbons.

Our technical staff offers hands-on guidance in selecting the most appropriate system, operating conditions and carbon to meet your needs. For more information, contact your nearest Evoqua representative.


Features and Benefits

- Exceptionally high VOC adsorption capacity
- Excellent VOC retentivity characteristics, works well for the adsorption of small molecules
- Superior hardness minimizes attrition losses during handling, use and service
- Cost effective
- Easily reactivated for recycle and reuse
- Low pressure drop characteristics (similar to 4mm pelletized carbons)
- Backed by technical support and a strong QA/QC program

TYPICAL PROPERTIES

Parameter	VOCarb [®] 36C
Carbon Type	Coconut Shell
Mesh Size, U.S. Sieve	3 x 6
Butane Activity 1	23.5
Hardness No., Wt. %	98
Moisture Content, Wt. %	3
Apparent Density, g/cc	0.45 - 0.51
CTC Activity 1	60

¹Butane activity (D5742) has been adopted by ASTM as a replacement for CTC activity (D3467) as a test method for estimating the micropore volume of an activated carbon.

Warning

The adsorption of organic compounds onto activated carbon generates heat. In rare instances, adsorbed compounds may also react on the carbon surface to generate additional heat. If these heat sources are not properly dissipated, the carbon bed temperature may rise to the point where the carbon can ignite, leading to a fire or other hazardous condition. A description of industry-accepted engineering practices to assure the dissipation of heat and safe operation of the carbon bed can be provided upon request. In certain applications where the risk of ignition is significant, activated carbon may not be a recommended treatment technology. Please contact your Technical Sales Representative for more details.

Wet activated carbon readily adsorbs atmospheric oxygen. Dangerously low oxygen levels may exist in closed vessels or poorly ventilated storage areas. Workers should follow all applicable state and federal safety guidelines for entering oxygen depleted areas.

4800 North Point Parkway, Suite 250, Alpharetta, GA 30022


+1 (866) 926-8420 (toll-free) +1 (978) 614-7233 (toll)

toll) www.evoqua.com

VoCarb and Westates are trademarks of Evoqua, its subsidiaries or affiliates in some countries

All information presented herein is believed reliable and in accordance with accepted engineering practices. Evoqua makes no warranties as to the completeness of this information. Users are responsible for evaluating individual product suitability for specific applications. Evoqua assumes no liability whatsoever for any special, indirect or consequential damages arising from the sale, resale or misuse of its products.

MIDAS® ODOR CONTROL MEDIA (OCM)

Description

Midas[®] OCM is unlike any other odor control media that is available in the marketplace today. A special manufacturing process which combines selected active ingredients and premium quality bituminous coal gives Midas OCM an extraordinarily high H_2S breakthrough capacity. This odor control media is not impregnated and therefore does not suffer the serious drawbacks associated with alkali-impregnated carbons. Midas OCM has an ignition temperature that is similar to virgin coal-based carbons (>450°C) and since it is not impregnated with a strong alkali, is much safer to load, start-up and remove from an adsorber system.

Midas OCM is a high surface area macroporous media with a large pore volume. The lack of an impregnant means all of Midas OCM's pore volume and surface area are available for storing the sulfur produced during the catalytic oxidation of H_2S and for the adsorption of any volatile organic compounds (VOCs) that may be present in the gas stream. The high H_2S and acidic gas loading capacity of Midas OCM is not affected by the presence of high CO₂ levels. The 4mm pellet diameter offers a low pressure drop to gas flows and a superior hardness offers excellent resistance to dust and fines formation.

APPLICATIONS

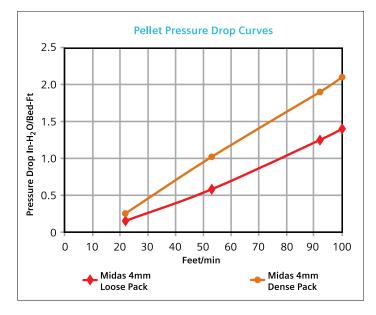
Midas[®] OCM can be successfully used in any application where impregnated or other odor control carbons are currently used including:

- Sewage treatment plants
- Refineries and pulp and paper mills
- Odor Control
- Removal of acidic gases such as HCl and SO₂
- VOC removal

FEATURES AND BENEFITS:

- Exceptionally high H₂S loading capacity
- Longer bed life means fewer service interruptions, lower O&M costs
- High ignition temperature
- Not impregnated, safe to handle (non-corrosive)
- No dangerous pH problem when spent (non-corrosive)
- Low pressure drop
- Backed by technical support and strong QA/QC program

QUALITY CONTROL


All Midas OCM undergoes extensive quality control at our State certified environmental and carbon testing laboratory located in Los Angeles, CA. The Evoqua laboratory is fully equipped to provide complete quality control analyses using ASTM standard test methods in order to assure the consistent quality of all Midas OCM carbon.

Our technical staff offers hands-on guidance in selecting the most appropriate system, operating conditions and carbon to meet your needs. For more information, contact your nearest representative.

MIDAS® OCM SPECIFICATIONS

Carbon Type	Bituminous Coal		
Mean Pellet Diameter, mm	3.9 - 4.1		
Apparent Density, g/cc	0.43-0.46		
Hardness No.	95 min		
Butane Activity	26 min		
H_2S Capacity, gH_2S/cc^{**}	0.30 min		

⁺⁺ The H₂S breakthrough capacity is determined using ASTM standard method D6646-01. Testing is accomplished by passing a moist (85% RH) stream of air containing 1 vol. % H₂S and the selected concentration of CO₂ through a 1 inch inner diameter tube with a nine-inch deep bed of closely packed carbon at a rate of 1,450 cc/min and monitoring to a 50 ppmv H₂S breakthrough. The results are reported as grams of H₃S adsorbed per cc of carbon.

Safety Note: Unlike impregnated carbons used in odor control applications, Midas® OCM does not need to undergo long term conditioning prior to being put into service. The adsorption of VOCs and the conversion of H₂S to elemental sulfur will lead to the generation of heat within a media bed. Like any carbon bed, this heat of reaction and adsorption needs to be dissipated in order to fully assure the safe operation of the bed. If these heat sources are not properly dissipated, the carbon bed temperature may rise to the point where the carbon can ignite, leading to a fire or other hazardous condition. A description of industry-accepted engineering practices to assure the dissipation of heat and safe operation of the carbon bed can be provided upon request. Wet Midas OCM readily adsorbs atmospheric oxygen. Dangerously low oxygen levels may exist in closed vessels or poorly ventilated storage areas. Workers should follow all applicable state and federal safety guidelines for entering oxygen depleted areas.

To be effective, Midas OCM requires that oxygen and moisture be present in the vapor stream being treated. The minimum acceptable oxygen concentration is 0.5 vol% and should be at least 10 times the combined concentration of H_2S and other reduced sulfur compounds. Optimum performance can be obtained when the relative humidity of the gas being treated always ranges between 60 and 95%. Pre-humidification of Midas OCM immediately prior to it being placed into service assures full performance from initial system startup.

Midas OCM should NOT be used in applications where water condensation (free water) occurs. For example, this includes high humidity applications where temperature fluctuations cause the vapor temperature to drop below its dew point, causing water to condense in the carbon bed. The exposure of Midas OCM to condensed water can adversely effect performance.

4800 North Point Parkway, Suite 250, Alpharetta, GA 30022

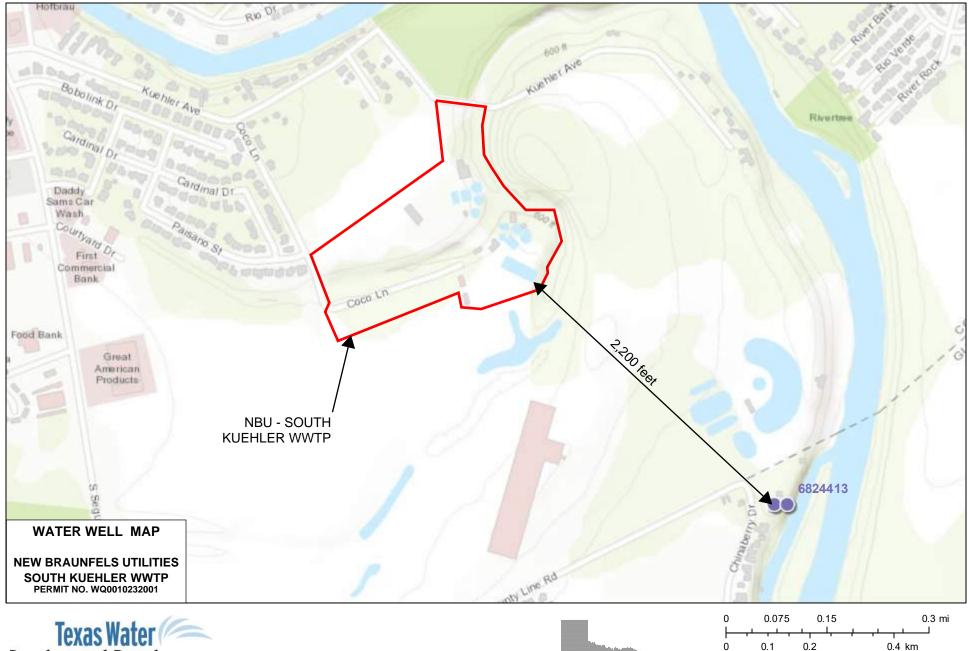
+1 (866) 926-8420 (toll-free) +1 (978) 614-7233 (toll) WWW.evoqua.com

Midas is a trademark of Evogua, its subsidiaries or affiliates, in some countries.

All information presented herein is believed reliable and in accordance with accepted engineering practices. Evoqua makes no warranties as to the completeness of this information. Users are responsible for evaluating individual product suitability for specific applications. Evoqua assumes no liability whatsoever for any special, indirect or consequential damages arising from the sale, resale or misuse of its products.

© 2014 Evoqua Water Technologies Ltd Subject to change without notice ES-MIDAS-DS-0614

ATTACHMENT F


AREA WATER WELLS

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT


July 2019

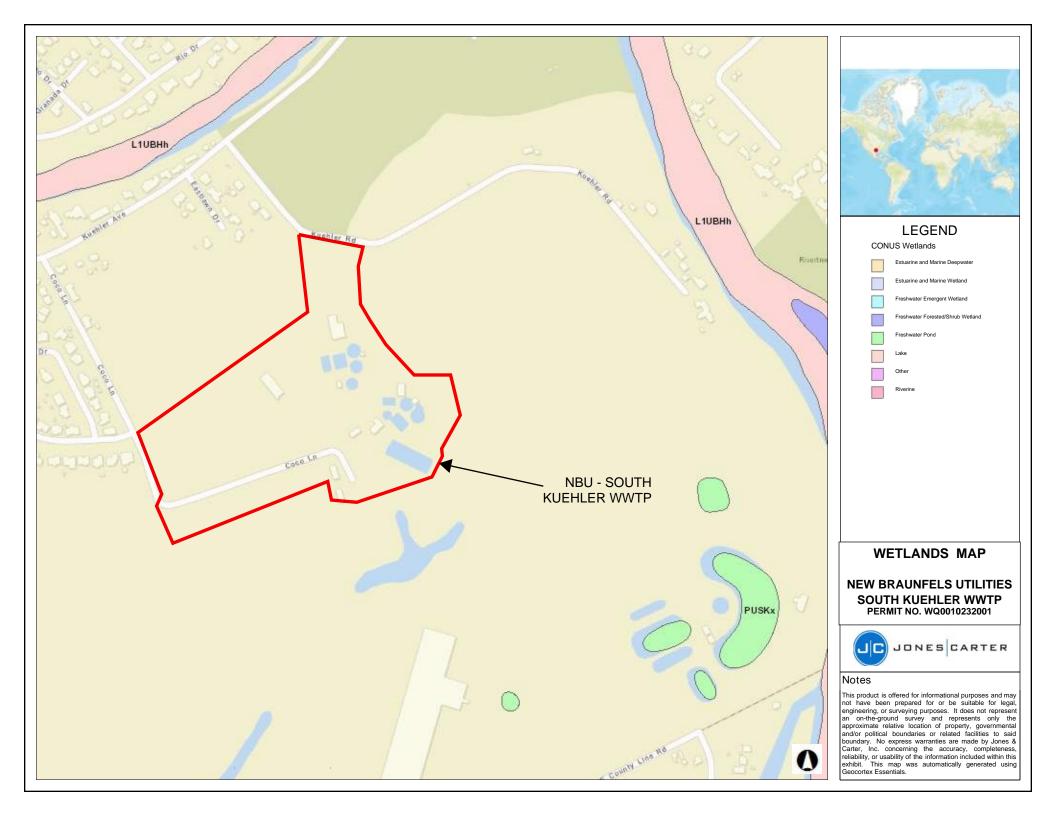
Groundwater Data, Texas

Texas Water Development Board June 6, 2019

The data in Water Data Interactive represents the best available inform ation provided by the TW DB and third-party cooperators of the TW DB. The TWDB provides inform aton via this web site as a public service. Neither the State of Texas nor the TWDB assumes any legal tability or responsibility or makes any guarantees or warranties as to the accuracy, completeness or suitability of the information for any particular purpose. The TWDB systematically revises or removes data discovered to be incorrect. If you find inaccurate information or have questions, please contact WDI-Support@twdb.texas.gov.

1:9.028

Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS,


ATTACHMENT G

WETLANDS MAP

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

July 2019

ATTACHMENT H

SUPPLEMENTAL TECHNICAL REPORTS

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

July 2019

SUPPLEMENTAL TECHNICAL REPORT DOMESTIC WASTEWATER PERMIT MAJOR AMENDMENT for

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT COMAL COUNTY, TEXAS

Ollev Clas 07 loalia

JULY 2019 JC Job No. 05487-0005-00

I. INTRODUCTION

The purpose of this report is to provide additional information pertaining to items in the Domestic Administrative Report and the Domestic Technical Report for the major amendment application to the New Braunfels Utilities South Kuehler Wastewater Treatment Plant (WWTP). The permit includes the existing operational Phase of 4.2 MGD and the future phases of 9.3 MGD and 15.4 MGD.

The current and future facilities are located at 1608 Coco Drive, New Braunfels, Texas 78130.

II. LOCATION INFORMATION

Please see Item 7 of the Domestic Administrative Report 1.0 for specific location information. A USGS Map with the required site information in the Attachments section of this application.

III. TREATMENT UNITS

(For Item 3 of Technical Report 1.0)

The current facility is sized to treat 4.2 MGD. Future facilities will be constructed in two operational phases with total design flows as described in Section I. A detailed description of the treatment process for each phase is presented below:

The existing phase of the facility is a permanent concrete plant designed and constructed to treat the plant capacity of 4.20 MGD. It operates as a suspended growth activated sludge process with a singlestage nitrification mode. Phosphorous is removed using alum added upstream of the secondary clarifiers. The existing treatment units include a screening structure with mechanical screens, an aerated grit chamber, aeration basins, secondary clarifiers, chlorine contact basins, a dechlorination basin, a flow measurement basin, aerobic digesters, gravity thickener, submerged membrane thickening basins, and a belt press dewatering facility. In this phase, raw sewage enters the screening structure from the gravity collection system and offsite lift station. Screened flow then enters the aerated grit chambers, where fine grit is separated and removed. Then flow enters a rapid mix basin immediately upstream of the aeration basin where it is mixed with return activated sludge to create mixed liquor and flows through the aeration basins which will be operated in a single-stage nitrification mode to consume organics and breakdown ammonia. From the aeration basins, the mixed liquor flows to the clarifier loading basin where alum is added to precipitate phosphorous, and then it flows into the secondary clarifier for clarification. After clarification, the treated effluent flows to the chlorine contact basin for disinfection, then to the dechlorination basin for dechlorination. From there, the effluent flows over a v-notch weir for flow measurement and to the outfall and receiving stream. Sludge that is removed from the secondary clarifiers is transported by air lifts to the gravity thickener, where it then flows to the submerged membrane thickener basins where permeate is removed through the membrane with pumps. Sludge then flows to the aerobic digesters where volatile organics are reduced to stabilize the sludge. Digested sludge is then pumped to belt presses where the sludge is dewatered before being hauled offsite.

The proposed Phase II facility will include the portions of the existing treatment facilities for the South Kuehler WWTP as well as portions of the existing North Kuehler WWTP. As described elsewhere in this major amendment application, the existing North Kuehler WWTP will become part of the expanded South Kuehler WWTP. The existing screening structure and aerated grit chamber at both the North

Kuehler WWTP and South Kuehler WWTP will be decommissioned and demolished. The existing chlorine contact basin at both the North Kuehler WWTP and South Kuehler WWTP will be converted into a pump station that sends flow to the new common tertiary treatment unit. New process units will include a screening structure with a mechanical screens, aerated grit chambers, submersible lift station, elevated flow splitter, anaerobic basin, anoxic basin, aeration basin, secondary clarifier, tertiary intermittently backwashed granular dual media filters, ultraviolet disinfection basin, post aeration basin, flow measurement basin, aerobic digesters, and positive displacement blowers. The existing belt press dewatering facility will also be expanded.

In this phase, raw sewage will enter the new common screening structure from the gravity collection system and offsite lift station. Screened flow will then enter the aerated grit chambers, where fine grit is separated and removed. Then flow will enter a submersible lift station where it will be pumped to an elevated flow splitter. The elevated flow splitter will split flow proportionately to the three parallel secondary treatment trains. The secondary trains at the existing South Kuehler WWTP and North Kuehler WWTP will operate with the same process as described above under the existing phase. The proposed secondary treatment train to be constructed in Phase II will consist of an anaerobic basin, anoxic basin, aeration basin, and secondary clarifier operating as a biological nutrient removal, conventional activated sludge process with single stage nitrification. Phosphorous will be removed with a biological nutrient removal process with alum addition as a secondary treatment method. Nitrogen removal is limited to treatment of the return activated sludge side stream. The intent of the partial nitrogen removal is only to help promote the biological phosphorous removal process by reducing the amount of nitrates in the process. The anoxic basin and nitrogen removal is not required for TPDES discharge permit compliance. Return activated sludge will be air lifted into a rapid mix basin where it will mix with a portion of the influent flow and then flow through the anoxic basin to breakdown nitrates by consuming oxygen and off gassing nitrogen. Flow will then enter the anaerobic basin where it will mix with the remainder of the influent flow to create mixed liquor. In the anaerobic basin, phosphorous will be released by PAOs prior to flowing into the aeration basin where phosphorous will PAOs will absorb phosphorous in larger quantities than it originally stored. The aeration basin will be operated in a single-stage nitrification mode to consume organics and breakdown ammonia. From the aeration basins, the mixed liquor flows to the clarifier loading basin where alum will be added as a secondary means to coagulate phosphorous not absorbed in the process, and then it flows into secondary clarifier for clarification. After clarification, flow from all three parallel secondary treatment trains will flow to the tertiary intermittently backwashed granular dual media filters. Filtered effluent will then flow through an ultraviolet (UV) disinfection basin. From there, the effluent flows through a Parshall flume for flow measurement, through a post aeration basin for oxygen addition, and to the outfall and receiving stream. Sludge that is removed from the secondary clarifiers at each of the two exiting treatment units is transported with air lifts to the gravity thickener, where it then flows to the submerged membrane thickener basins where permeate is removed through the membrane with pumps, and then flows to the aerobic digesters where volatile organics are reduced to stabilize the sludge. Sludge that is removed from the secondary clarifier at the new treatment unit pumped to the submerged membrane thickener basins where permeate is removed through the membrane with pumps, and then flows to the aerobic digesters where volatile organics are reduced to stabilize the sludge. Thickened sludge from all digesters is then pumped to a new digester basin for further digestion where is combined with the sludge from all three secondary treatment units before being pumped to belt presses where the sludge is dewatered before being hauled offsite.

The proposed Phase III facility will include all of the treatment units of the Phase II facility. The existing screening structure will house a new additional screen, the existing lift station will house new pumps, the existing UV disinfection basin will house new additional UV modules, and the existing house a new additional belt press. New process units include anaerobic basins, anoxic basins, aeration basins, secondary clarifiers, tertiary dual media filters, aerobic digesters, and positive displacement blowers.

In this phase, raw sewage will enter the new common screening structure from the gravity collection system and offsite lift station. Screened flow will then enter the aerated grit chambers, where fine grit is separated and removed. Then flow will enter a submersible lift station where it will be pumped to an elevated flow splitter. The elevated flow splitter will split flow proportionately to the four parallel secondary treatment trains. The secondary trains at the existing South Kuehler WWTP and North Kuehler WWTP will operate with the same process as described above under the existing phase. The proposed secondary treatment trains added in Phase II and Phase III will be identical and will consist of anaerobic basins, anoxic basins, aeration basins, and secondary clarifiers operating as a biological nutrient removal, conventional activated sludge process with single stage nitrification. Phosphorous will be removed with a biological nutrient removal process with alum addition as a secondary treatment method. Nitrogen removal is limited to treatment of the return activated sludge side stream. The intent of the partial nitrogen removal is only to help promote the biological phosphorous removal process by reducing the amount of nitrates in the process. The anoxic basin and nitrogen removal is not required for TPDES discharge permit compliance. Return activated sludge will be air lifted into a rapid mix basin where it will mix with a portion of the influent flow and then flow through anoxic basins to breakdown nitrates by consuming oxygen and off gassing nitrogen. Flow will then enter anaerobic basins where it will mix with the remainder of the influent flow to create mixed liquor. In the anaerobic basins, phosphorous will be released by PAOs prior to flowing into aeration basins where phosphorous will PAOs will absorb phosphorous in larger quantities than it originally stored. The aeration basins will be operated in a single-stage nitrification mode to consume organics and breakdown ammonia. From the aeration basins, the mixed liquor flows to the clarifier loading basins where alum will be added as a secondary means to coagulate phosphorous not absorbed in the process, and then it flows into secondary clarifiers for clarification. After clarification, flow from all four parallel secondary treatment trains will flow to the tertiary intermittently backwashed granular dual media filters. Filtered effluent will then flow through a UV disinfection basin. From there, the effluent flows through a Parshall flume for flow measurement, through a post aeration basin for oxygen addition, and to the outfall and receiving stream. Sludge that is removed from the secondary clarifiers at each of the two exiting treatment units is transported by air lifts to the gravity thickener, where it then flows to the submerged membrane thickener basins where permeate is removed through the membrane with pumps, and then flows to the aerobic digesters where volatile organics are reduced to stabilize the sludge. Sludge that is removed from the secondary clarifier at the new treatment unit pumped to the submerged membrane thickener basins where permeate is removed through the membrane with pumps, and then flows to the aerobic digesters where volatile organics are reduced to stabilize the sludge. Thickened sludge from all digesters is then pumped to a new digester basin for further digestion where is combined with the sludge from all three secondary treatment units before being pumped to belt presses where the sludge is dewatered before being hauled offsite.

IV. DESIGN CALCULATIONS AND FEATURES

(For Item 3b of Technical Report 1.0 & Item 4 of Technical Report 1.1)

Design calculations are provided as part of this report on the following pages for both future phases of construction.

The current facilities and all future expansions will be equipped with design features to prevent overflows or bypassing of untreated wastewater. These features include the following:

- Redundant electrical power supply. Power can be provided from two different sub stations, which will be capable of being served from two different power sources
- All process and equipment alarms for items such as equipment failures, high levels, etc. will be

automatically sent to NBU's SCADA system where it will notify the Operator 24/7.

- Standby equipment will be provided at all major treatment units and pump stations to ensure operation in the event of equipment being out of service for repair or maintenance (i.e. standby pump in the lift station, standby blower at each blower bank, standby screen at the influent, redundant channel of UV modules for disinfection, etc.) to prevent overflows and/or bypass of untreated wastewater.
- High level alarms are included in the lift station, clarified effluent transfer pump stations, aerobic digesters to notify the Operator to prevent overflows

I. SCOPE

The proposed Phase II facility will be a permanent concrete plant with suspended growth activated sludge process with biological nutrient removal and single stage nitrification. The facility will include portions of existing treatment units at the existing North Kuehler Wastewater Treatment Plant (WWTP), portions of existing structure and aerated grit chamber and both the North Kuehler WWTP and South Kuehler WWTP will be decommissioned and demolished. The existing chlorine contact basin at both the North Kuehler WWTP and South Kuehler WWTP will be converted into a pump station that sends flow to the new tertiary treatment unit. New process units include a screening structure with a mechanical screens, aerated grit chambers, submersible lift station, elevated flow splitter, anaerobic basin, post aeration basin, aerobic digesters, and positive displacement blowers. The existing belt press dewatering facility will also be expanded.

II. WASTEWATER TREATMENT PLANT DESIGN

A. DESIGN CRITERIA

1. Daily Effluent Limits

a.	BOD ₅	accest accest	10 mg/L
----	------------------	------------------	---------

- b. TSS = 15 mg/L
- a. $NH_3-N = 3 \text{ mg/L}$
- b. Total Phosphorus = 1 mg/L
- c. DO = 4 mg/L
- f. *E Coli* = 126 number colonies/100 mL

2. Process Criteria

The criteria used for the constructed aeration basins was based on TCEQ Chapter 217 criteria and more conservative measures requested by the client.

- a. Minimum Hydraulic Detention Time for Aerated Grit Chamber = 3.0 (minutes)
- b. Maximum Aeration Basin Organic Loading = 35 (lbs BOD₅/day/1,000 ft³)
- c. Maximum Clarifier Surface Loading at Peak Flow (gal/day/ft²) = 1,200

d.	Minimum Clarifier Detention Time (hours)	=	1.8
e.	Maximum Clarifier Weir Loading at Peak Flow (gal/day/ft)	н	30,000
f.	Maximum Dual Media Filter Flux Rate at Peak Flow (gal/min/ft²)	=	4
g.	Maximum Filtration Rate at Peak Flow w/ One Filter Out of Service (gal/min/ft²)	=	5
h.	Minimum Solids Retention Time in Aerobic Digester* (days)	=	28*
i.	Minimum Air Required for Digester (scfm/1,000 ft³)	=	30
j.	Minimum Oxygen Required for Aeration Basins (lbs O ₂ /1 lb BOD ₅)	=	2.2

*28-day SRT utilized instead of a 40-day SRT for use of a multi-stage digester per EPA publication "Control of Pathogens and Vector Attraction in Sewage Sludge."

B. TREATMENT FACILITIES

1. <u>Flow</u>

a.	Average (Design)	=	1.0Q	=	9,300,000 gpd	=	6,458 gpm
b.	Peak (2-hour)	=	3.0Q	=	27,900,000 gpd	=	19,375 gpm

2. Influent Composition

The following influent wastewater compositions are based on composite samples collected at the existing headworks over a 1 year period. The design values for BOD₅, TSS, and NH₃-N are calculated by adding one (1) standard deviation to the average.

BOD ₅	=	310 mg/L
TSS	=	350 mg/L
NH₃-N	Ξ	50 mg/L
	TSS	BOD ₅ = TSS = NH ₃ -N =

3. Organic Loadings

a.	BOD ₅	=	(9.30 MGD)(8.34)(310 mg/L)	=	24,044 lbs BOD ₅ /day
b.	TSS	=	(9.30 MGD)(8.34)(350 mg/L)	=	27,147 lbs TSS/day
C.	NH ₃ -N	=	(9.30 MGD)(8.34)(50 mg/L)	=	3,878 lbs NH ₃ -N/day
d.	Total P	=	(9.30 MGD)(8.34)(8 mg/L)	=	620 lbs P/day

4. Process Basins and Equipment

- a. <u>Screening</u>. Two mechanical screens will be installed in this phase, each with a minimum hydraulic capacity of 27.9 MGD, the design peak flow of the facility. A manual screen will also be provided for redundancy and will have a minimum hydraulic capacity of 27.9 MGD. The screening channels will be covered, equipment enclosed, and connected to an odor control system.
- b. <u>Grit Chamber</u>. Two parallel aerated grit chambers will be installed in this phase. The grit chambers will be covered and connected to an odor control system.

i.	Required Volume at Peak Flow (19,375 gpm)(3 min)/(7.48gal/ft ³)	=	7,771 ft ³
ii.	Proposed Volume 2[(27 ft)²(8.03 ft)+((27 ft)² (12.5 ft)/3)]	=	17,783 ft ³
iii.	Actual Detention Time at Peak Flow (17,783 ft³)(7.48)/(19,375 gpm)	=	6.9 minutes

- c. <u>Lift Station</u>. A submersible lift station with four pumps, three duty and one standby, will be installed with a minimum firm hydraulic pumping capacity of 27.9 MGD, the design peak flow of the facility. The lift station will be covered and connected to an odor control system.
- d. <u>Elevated Flow Splitter</u>. All flow is pumped from the lift station to an elevated flow splitter, which uses weirs to proportionately send flow to three secondary treatment plants based on the following splits.
 - i. Plant No. 1 (Existing North Kuehler) 3.10 MGD
 - ii. Plant No. 2 (Existing South Kuehler) 4.10 MGD
 - iii. Plant No. 3 2.10 MGD

e. <u>Secondary Treatment.</u>

<u>Plant No. 1 (Existing North Kuehler) – 3.10 MGD</u> This secondary treatment train consists of aeration basins and secondary clarifiers operating as a conventional activated sludge process with single stage nitrification. Phosphorous is removed using alum added upstream of the clarifiers. Alum addition for chemical phosphorous removal exists today and was previously approved by TCEQ. This process will be retained.

Aeration Basins

i	Required Volume Using Traditional Design Method (3.10 MGD)(8.34)(310 mg/L)/(35 lbs BOD _s /1000 ft ³)	=	228,993 ft ³
ii.	Existing Volume (6,345 ft³) + (116,333 ft³) + (103,846 ft³) + (5,171 ft³)	=	231,695 ft ³
iii.	Actual Organic Loading 8,015 lb/day/(231,695 ft³)(1,000 ft³)	=	34.6 lb BOD ₅ / 1000 ft ³
Second	ary Clarifiers		1000 10
i.	Required Surface Area At Peak Flow (9.3 MGD)(1,000,000 gal/MG)/1200 gal/day/ft²	=	7,750 ft ²
ii.	Existing Surface Area (2)(5,302 ft ²)	=	10,604 ft²
iii.	Existing Surface Loading at Peak Flow (9,300,000 gpd)/(10,604 ft²)	-	877 gpd/ft ²
iv.	Existing Clarifier Side Water Depth	=	11.50 ft
٧.	Existing Hydraulic Detention Time at Peak Flow (10,604 ft²)(11.50 ft)(7.48 gal/ft³)(24 hr/day)/ (1,000,000 gallons/MG)(9.30 MGD)	=	2.35 hours
vi.	Existing Clarifier Weir Length (2)(180 ft + 192 ft)	=	744 ft
vii.	Existing Weir Loading at Peak Flow (9,300,000 gpd)/(744 ft)	=	12,500 gpd/ft

<u>Plant No. 2 (Existing South Kuehler) – 4.10 MGD</u>. This secondary treatment train consists of aeration basins and secondary clarifiers operating as a conventional activated sludge process with single stage nitrification. Phosphorous is removed using alum added upstream of the clarifiers. Alum addition for chemical phosphorous removal exists today and was previously approved by TCEQ. This process will be retained.

Aeration Basins

i.	Required Volume Using Traditional Design Method (4.10 MGD)(8.34)(310 mg/L)/(35 lbs BOD _s /1000 ft ³)	=	302,861 ft ³
ii.	Existing Volume (9,248 ft ³) + (166,388 ft ³) + (131,203 ft ³) + (5,514 ft ³)	=	312,353 ft ³

iii.	Actual Organic Loading 10,600 lb/day/(312,353 ft³)(1,000 ft³)	=	33.9 lb BOD₅/ 1000 ft³
Second	ary Clarifiers		
i.	Required Surface Area At Peak Flow (12.3 MGD)(1,000,000 gal/MG)/1200 gal/day/ft²	=	10,250 ft ²
ii.	Existing Surface Area (2)(5,302 ft ²)	=	10,604 ft ²
iii.	Existing Surface Loading at Peak Flow (12,300,000 gpd)/(10,604 ft ²)	=	1,160 gpd/ft²
iv.	Existing Clarifier Side Water Depth	=	11.67 ft
v.	Existing Hydraulic Detention Time at Peak Flow (10,604 ft²)(11.67 ft)(7.48 gal/ft³)(24 hr/day)/ (1,000,000 gallons/MG)(12.30 MGD)	=	1.81 hours

vi. The proposed clarifier will not utilize traditional weirs and baffles. It will utilize a submerged effluent launder system, which consists of a full perimeter submerged launder with submerged ports sized to control the inlet rate into the submerged launder. This will maintain equal distribution of flow from the center of the clarifier outwards to the launder. The Submerged Effluent Launder system design is a proprietary designed and manufactured by Ovivo USA, LLC.

<u>Plant No. 3 – 2.10 MGD.</u> This secondary treatment train consists of an anaerobic basin, anoxic basin, aeration basin, and secondary clarifier operating as a biological nutrient removal, conventional activated sludge process with single stage nitrification. Phosphorous is removed with the biological nutrient removal process with alum addition as a secondary treatment method. Nitrogen removal is limited to treatment of the return activated sludge side stream. The intent of the partial nitrogen removal is only to help promote the biological phosphorous removal process by reducing the amount of nitrates in the process. The anoxic basin and nitrogen removal is not required for TPDES discharge permit compliance.

Anaerobic Basin

i.	Required Volume at Average Daily Flow (2,100,000 gal/day)(1.5 hr)/(24 hr/day)/(7.48gal/ft³)	=	17,546 ft ³
ii.	Proposed Volume (20 ft)(48 ft)(19 ft)	=	18,240 ft ³
iii.	Actual Hydraulic Retention Time at Average Daily Flow (18,240 ft³)(7.48gal/ft³)(24 hr/day)/(2,100,000 gal/day)	=	1.6 hrs

Aeration Basin

i.	Required Volume Using Traditional Design Method (2.10 MGD)(8.34)(310 mg/L)/(35 lb BOD _s /1000 ft ³)	=	155,124 ft ³
ii.	Proposed Volume (20 ft)(82 ft)(120 ft)	=	196,800 ft ³
iii.	Actual Organic Loading 5,429 lb/day/(196,800 ft³)(1,000 ft³)	=	27.6 lb BOD ₅ /
<u>Anoxic</u>	Selector Basin for RAS Side Stream		
i.	Required Volume at Average Daily Flow (2,520,000 gal/day)(0.5 hr)/(24 hr/day)/(7.48gal/ft ³)	=	7,019 ft ³
ii.	Proposed Volume (20 ft)(19 ft)(19 ft)	=	7,220 ft ³
iii.	Actual Hydraulic Retention Time (7,220 ft³)(7.48gal/ft³)(24 hr/day)/(2,520,000 gal/day)	=	0.51 hrs
Second	ary Clarifiers		
i.	Required Surface Area At Peak Flow (6.3 MGD)(1,000,000 gal/MG)/1200 gal/day/ft²	=	5,250 ft ²
ii.	Proposed Surface Area (80 ft)²(π)/(4)	=	5,026 ft ²
iii.	Proposed Surface Loading at Peak Flow (6,300,000 gpd)/(5,026 ft ²)	=	1,253 gpd/ft ²
	The proposed surface loading at peak flow exceed th requested from TCEQ for the proposed clarifier. The slig		

The proposed surface loading at peak flow exceed the TCEQ value. A variance will be requested from TCEQ for the proposed clarifier. The slightly increased loading rate at peak flow is acceptable for performance since there are tertiary filters following the clarifiers. By installing an 80 ft diameter clarifier, it allows NBU to match the diameter of all its existing 4 clarifiers, which is beneficial for maintenance and operation of the clarifiers.

iv.	Proposed Clarifier Side Water Depth	=	13.0 ft
v.	Proposed Hydraulic Detention Time at Peak Flow (5,026 ft²)(13.0 ft)(7.48 gal/ft³)(24 hr/day)/ (1,000,000 gallons/MG)(6.30 MGD)	=	1.86 hours

- vi. The proposed clarifier will not utilize traditional weirs and baffles. It will utilize a submerged effluent launder system, which consists of a full perimeter submerged launder with submerged ports sized to control the inlet rate into the submerged launder. This will maintain equal distribution of flow from the center of the clarifier outwards to the launder. The Submerged Effluent Launder system design is a proprietary designed and manufactured by Ovivo USA, LLC.
- f. <u>Tertiary Intermittently Backwashed, Granular Dual Media Filters.</u> Flow from all three parallel secondary treatment trains will flow to the tertiary intermittently backwashed, granular dual media filters. Four parallel filter beds will be installed. Each filter will consist of dual media.

i.	Required Surface Area at Peak Flow (19,375 gpm)/(4 gpm/ ft ²)	=	4,844 ft ²
ii.	Proposed Surface Area (4)(16 ft)(84 ft)	=	5,376 ft ²
iii.	Actual Filtration Rate at Peak Flow (19,375 gpm)/(5,376 ft²)	=	3.6 gpm/ft ²
iv.	Actual Filtration Rate at Peak Flow with One Filter Out of S (19,375 gpm)/(4,032 ft²)	ervice =	4.8 gpm/ft ²

- g. <u>Ultraviolet Disinfection</u>. Flow will pass through three parallel channels containing ultraviolet (UV) treatment modules. The UV modules will be a low-pressure high-output type and utilizing 254 nm wavelength light with an assumed 65% minimum transmittance and 20 mJ/cm² UV dose rate. Two channels will be required to treat the full peak flow of 27.9 MGD, with each channel capable of treatment 13.95 MGD. The third channel will be a redundant 13.95 MGD treatment channel. A minimum UV contact time of 20 seconds will be provided at peak flow, with one channel out of service.
- h. <u>Post Aeration</u>. Flow will pass through a post aeration basin that will include coarse bubble aeration to provide oxygen to the wastewater. The air demand is included in the Air Requirements section of this report.
- i. <u>Aerobic Digesters</u>. The existing North Kuehler WWTP and South Kuehler WWTP contain aerobic digesters that individually feed the existing belt press dewatering facility. These basins will be retained with new aerobic digester basins added to provide digestion for the additional capacity, as well as provide a longer solids residence time for the existing aerobic digesters. All sludge will flow to a common digester that will feed the existing belt press dewatering facility. The digester sizing assumes one pound of solids produced per pound of BOD_5 applied plus alum sludge from the chemical phosphorous removal, solids are 70% volatile organics, 38% of the volatiles are destroyed during digestion, and the average MLSS concentration in the digesters is 30,000 mg/l.
 - Solids Production
 (24,044 lbs BOD₅ /day)(1 lb solids/1 lb BOD₅)

= 24,044 lbs solids/day

ii.	Digested Solids Production (24,044 lbs solids/day)(1-(0.38)(0.7))	=	17,648 lbs solids/day
iii.	Average Digested Solids Production (24,044 lbs solids/day + 17,648 lbs solids/day)/2	Ш	20,846 lbs solids/day
iv.	Alum Sludge Production 619 lbs solids/day + 819 lbs solids/day + 114 lbs solids/day	П	1,552 lbs solids/day
v.	Total Average Solids Production 20,846 lbs solids/day + 1,552 lbs solids/day	=	22,398 lbs solids/day
vi.	Total Solids in Digester for 28-day SRT* (22,398 lbs solids/day)(28 days)	=	627,144 lbs solids
vii.	Required Volume (627,144 lbs solids)(10 ⁶)/(8.34)/(30,000 mg/l MLSS)/(7.48)	=	335,103 ft ³
viii.	Existing Volume 43,156 ft ³ + 61,473 ft ³	=	104,629 ft ³
ix.	Proposed Volume (20 ft)(145 ft)(70 ft) + (20 ft)(60 ft)(70 ft)		287,000 ft ³
x.	Total Volume 104,629 ft ³ + 287,000 ft ³	=	391,629 ft ³
vi	Actual Solids Residence Time		

 Xi. Actual Solids Residence Time (391,629 ft³)(7.48)(8.34)(30,000 mg/l)/(10⁶)/(22,398 lbs/day)=32.7 days

*28-day SRT utilized instead of 40-day SRT for use of a two stage digester per EPA publication "Control of Pathogens and Vector Attraction in Sewage Sludge".

- j. <u>Sludge Thickening</u>. The existing aerobic digesters at the North Kuehler WWTP and South Kuehler WWTP contain a combination of gravity thickeners and submerged membranes that are used to thicken sludge. These sludge thickening components will be retained with the expansion. Also, additional submerged membranes will be added with the proposed digester volume to maintain an average MLSS concentration in the digesters of 30,000 mg/l.
- k. <u>Sludge Dewatering</u>. All sludge from both the existing North Kuehler WWTP and South Kuehler WWTP is pumped to the exiting belt press sludge dewatering facility. The existing facility will be expanded to accommodate the increased sludge production from the expansion. The belt press sizing assumes operation 8 hours per day and 5 days per week, and a maximum feed rate of 75 gpm/meter and 750 lbs of solids per hour per meter, a sludge feed rate of 30,000 mg/l. In the event a belt press is out of service, the remaining belt presses can be operated for longer durations to maintain sludge processing capabilities.

i.	Total Belt Width Required Based on Hydraulic Capacity (87,766 gal/d)(7/5)/(480 op min/d)/(75 gal/min/m)	=	3.4 m belt width
ii.	Total Belt Width Required Based on Solids Capacity (22,398 lbs solids/d)(7/5)/(8 op hr/d)/(750 lbs solids/hr/m)	=	5.2 m belt width
iii.	Existing Belt Width (2)(2 meter belt presses)	=	4 meters belt width
iv.	Proposed Belt Width (1)(2 meter belt press)	=	2 meters belt width
v.	Total Belt Width 4 meters + 2 meters	=	6 meters belt width

I. <u>Air Requirements</u>. The existing North Kuehler WWTP will be served by two blower banks, one each for process air and solids handling air, with a common spare blower connected with valves and piping. The existing South Kuehler WWTP will be served by two separate blower banks, one each for process air and solids handling air. Each bank will have its own spare blower. The proposed treatment units will be served by two separate blower banks, one each for process air and solids handling air. Each bank will have its own spare blower. The proposed treatment units will be served by two separate blower banks, one each for process air and solids handling air. Each bank will have its own spare blower.

Plant No. 1 (Existing North Kuehler) Process Air

- i. Aeration Basin
 - 1. Air Required for Treatment

 $\frac{(1.2)(310 \text{ mg/L BOD}_5) + (4.3)(50 \text{ mg/L NH}_3-\text{N})}{(310 \text{ mg/L BOD}_5)} =$

1.9 lb O₂/ lb BOD₅*

*TCEQ Chapter 217.155(a)(3) requires using a minimum of 2.2 lb O_2 /lb BOD₅ if the system is intended to nitrify, which is used below for calculations.

2. Coarse Bubble Requirements

 $\frac{(310 \text{ mg/L BOD}_5)(8.34)(3.10 \text{ MGD})(2.2 \text{ lb } O_2/\text{lb BOD}_5)}{(7.7\%)(0.075)(0.23)(1,440)} = 9,218 \text{ scfm}$

* Wastewater Oxygen Transfer Efficiency is based on the actual efficiency for the installed aeration systems based on the manufacturer provided data

ii.	Return Sludge Air Lifts (4)(110 scfm)	=	440 scfm
iii.	Clarifier Loading Zones (5,171 ft³)(30 scfm/1000 ft³)	=	155 scfm
iv.	Total Process Air Requirement	=	9,813 scfm

Plant No. 1 (Existing North Kuehler) Solids Air

i.	Aerobic Digester (43,156 ft³)(30 scfm/1000 ft³)	=	1,295 scfm
ii.	Waste Sludge & Sludge Transfer Air Lifts (2)(40 scfm) + (5)(40 scfm)	=	280 scfm
iii.	Total Solids Air Requirement	=	1,575 scfm
<u>Plant</u>	No. 2 (Existing South Kuehler) Process Air		
i.	Aeration Basin		
	1. Air Required for Treatment		
	<u>(1.2)(310 mg/L BOD₅) + (4.3)(50 mg/L NH₃-N)</u> (310 mg/L BOD₅)	= :	1.9 lb O2/ lb BOD5*
	*TCEQ Chapter 217.155(a)(3) requires using a minimum o intended to nitrify, which is used below for calculations.	of 2.2 lb ($D_2/Ib\ BOD_5$ if the system is
	2. Coarse Bubble Requirements		
	<u>(310 mg/L BOD₅)(8.34)(4.10 MGD)(2.2 lb O₂/lb BOD₅)</u> (7.4%)*(0.075)(0.23)(1,440)	=	12,687 scfm
	* Wastewater Oxygen Transfer Efficiency is based on the aeration systems based on the manufacturer provided data		efficiency for the installed
ii.	Return Sludge Air Lifts (4)(160 scfm)	=	640 scfm
iii.	Clarifier Loading Zones		
	(5,514 ft ³)(30 scfm/1000 ft ³)	=	165 scfm
iv.	Total Process Air Requirement	=	13,492 scfm
<u>Plant I</u>	No. 2 (Existing South Kuehler) Solids Air		
i.	Aerobic Digester (61,473 ft³)(30 scfm/1000 ft³)	=	1,844 scfm
ii.	Waste Sludge & Sludge Transfer Air Lifts (3)(40 scfm) + (4)(40 scfm)	=	280 scfm
iii.	Total Solids Air Requirement	=	2,124 scfm

Plant No. 3 Process Air

i. Aeration Basin

m.

1. Air Required for Treatment

<u>(1.2)(310 mg/L BOD₅) + (4.3)(50 mg/L NH₃-N)</u> (310 mg/L BOD₅)

1.9 lb O₂/ lb BOD₅*

=

*TCEQ Chapter 217.155(a)(3) requires using a minimum of 2.2 lb O_2 /lb BOD₅ if the system is intended to nitrify, which is used below for calculations.

2. Fine Bubble Requirements

 $\frac{(310 \text{ mg/L BOD}_5)(8.34)(2.10 \text{ MGD})(2.2 \text{ lb } O_2/\text{lb BOD}_5)(0.685)}{(10.8\%)^*(0.075)(0.23)(1,440)} = 3,050 \text{ scfm}$

* TCEQ Wastewater Oxygen Transfer Efficiency for Coarse Bubble (2.0%/ft. x 12 ft of submergence x 0.45) ** TCEQ Chapter 217 Table F.5 Submergence Correction Factor for 19' Subermgence

ii.	Return Sludge Air Lifts (2)(160 scfm)	=	320 scfm	
iii.	Post Aeration Basin (3,200 ft³)(30 scfm/1000 ft³)	=	96 scfm	
iv.	Clarifier Loading Zones (3,800 ft ³)(30 scfm/1000 ft ³)	=	114 scfm	
٧.	Total Process Air Requirement	=	3,580 scfm	
Plant No. 3 Solids Air				
i.	Aerobic Digester (287,000 ft³)(30 scfm/1000 ft³)	=	8,610 scfm	
i. ii.	-	=	8,610 scfm 80 scfm	
	(287,000 ft ³)(30 scfm/1000 ft ³) Sludge Transfer Air Lifts			
ii.	(287,000 ft ³)(30 scfm/1000 ft ³) Sludge Transfer Air Lifts (2)(40 scfm) Aerated Grit Chamber	=	80 scfm	

Plant No. 1 (Existing North Kuehler) Process Air

i.	Existing Blower Capacity (5)(2,140 scfm)	=	10,700 scfm
ii.	Proposed Blower Capacity* (1)(2,140 scfm)	=	2,140 scfm
iii.	Total Blower Capacity (6)(2,140 scfm)	=	12,840 scfm
iv.	Firm Blower Capacity with Largest Unit out of Service* (5)(2,140 scfm)	=	10,700 scfm

*The proposed blower will be the common spare blower for the process and air solids air blower banks. This proposed blower is the same proposed blower noted below. There are 7 total blowers at Plant No. 1 (Existing North Kuehler).

Plant No. 1 (Existing North Kuehler) Solids Air

i.	Existing Blower Capacity (1)(2,140 scfm)	=	2,140 scfm
ii.	Proposed Blower Capacity* (1)(2,140 scfm)	=	2,140 scfm
iii.	Total Blower Capacity (2)(2,140 scfm)	=	4,280 scfm
iv.	Firm Blower Capacity with Largest Unit out of Service* (1)(2,140 scfm)	=	2,140 scfm

*The proposed blower will be the common spare blower for the process air and solids air blower banks. This proposed blower is the same proposed blower noted above There are 7 total blowers at Plant No. 1 (Existing North Kuehler).

<u>Plant</u>	No. 2 (Existing South Kuehler) Process Air			
i.	Proposed Blower Capacity (5)(4,000 scfm)	=	20,000 scfm	
ii.	Firm Blower Capacity with Largest Unit out of Service (4)(4,000 scfm)	=	16,000 scfm	
Plant No. 2 (Existing South Kuehler) Solids Air				
i.	Existing Blower Capacity (2)(2,190 scfm)	=	4,380 scfm	

ii.	Firm Blower Capacity with Largest Unit out of Service (1)(2,190 scfm)	=	2,190 scfm
<u>Plant</u>	No. 3 Process Air		
i.	Proposed Blower Capacity (2)(4,000 scfm)	=	8,000 scfm
ii.	Firm Blower Capacity with Largest Unit out of Service (1)(4,000 scfm)	=	4,000 scfm
<u>Plant</u>	<u>No. 3 Solids Air</u>		
i.	Proposed Blower Capacity (4)(3,150 scfm)	=	12,600 scfm
ii.	Firm Blower Capacity with Largest Unit out of Service (3)(3,150 scfm)	=	9,450 scfm

I. SCOPE

The proposed Phase III facility will be a permanent concrete plant with suspended growth activated sludge process with biological nutrient removal and single stage nitrification. The facility will include all of the existing treatment units form the 9.3 MGD Phase II facility. The existing screening structure will house a new additional screen, the existing lift station will house new pumps, the existing UV disinfection basin will house new additional UV modules, and the existing house a new additional belt press. New process units include anaerobic basins, anoxic basins, aeration basins, secondary clarifiers, tertiary dual media filters, aerobic digesters, and positive displacement blowers.

II. WASTEWATER TREATMENT PLANT DESIGN

A. DESIGN CRITERIA

1. Daily Effluent Limits

a.	BOD₅	=	10 mg/L
b.	TSS	=	15 mg/L
с.	NH ₃ -N	=	3 mg/L
d.	Total Phosphorus	=	1 mg/L
e.	DO	=	4 mg/L
f.	E Coli	=	126 number colonies/100 mL

2. Process Criteria

The criteria used for the constructed aeration basins was based on TCEQ Chapter 217 criteria and more conservative measures requested by the client.

a.	Minimum Hydraulic Detention Time for Aerated Grit Chamber (minutes)	=	3.0
b.	Maximum Aeration Basin Organic Loading (Ibs BOD ₅ /day/1,000 ft ³)	=	35
c.	Maximum Clarifier Surface Loading at Peak Flow (gal/day/ft²)	=	1,200
d.	Minimum Clarifier Detention Time (hours)	=	1.8

e.	Maximum Clarifier Weir Loading at Peak Flow (gal/day/ft)	=	30,000
f.	Maximum Dual Media Filter Flux Rate at Peak Flow (gal/min/ft²)	=	4
g.	Maximum Filtration Rate at Peak Flow w/ One Filter Out of Service (gal/min/ft²)	=	5
h.	Minimum Solids Retention Time in Aerobic Digester* (days)	=	28*
i.	Minimum Air Required for Digester (scfm/1,000 ft ³)	=	30
j.	Minimum Oxygen Required for Aeration Basins (Ibs O ₂ /1 lb BOD ₅)	=	2.2

*28-day SRT utilized instead of a 40-day SRT for use of a multi-stage digester per EPA publication "Control of Pathogens and Vector Attraction in Sewage Sludge."

B. TREATMENT FACILITIES

1. <u>Flow</u>

a.	Average (Design)	=	1.0Q	=	15,400,000 gpd	=	10,694 gpm
b.	Peak (2-hour)	=	3.0Q	=	46,200,000 gpd	=	32,083 gpm

2. Influent Composition

The following influent wastewater compositions are based on composite samples collected at the existing headworks over a 1 year period. The design values for BOD₅, TSS, and NH₃-N are calculated by adding one (1) standard deviation to the average.

a. $BOD_5 = 310 r$	mg/L
--------------------	------

- b. TSS = 350 mg/L
- c. $NH_3-N = 50 \text{ mg/L}$
- d. TP = 8 mg/L

3. Organic Loadings

a.	BOD₅	=	(15.40 MGD)(8.34)(310 mg/L)* =	39,815 lbs BOD ₅ /day
b.	TSS	=	(15.40 MGD)(8.34)(350 mg/L) =	44,953 lbs TSS/day

- c. NH_3-N = (15.40 MGD)(8.34)(50 mg/L) = 6,422 lbs NH_3-N/day
- d. Total P = (15.40 MGD)(8.34)(8 mg/L) = 1,284 lbs P/day

4. Process Basins and Equipment

- a. <u>Screening</u>. A third mechanical screen will be installed in this phase. All three screens, two existing and one proposed will have a minimum hydraulic capacity of 23.1 MGD. Two screens will be able to handle the design peak flow of the facility, and the third screen will be a spare. The screening channels will be covered, equipment enclosed, and connected to an odor control system.
- b. <u>Grit Chamber</u>. The existing aerated grit chambers will be remain in this phase. The grit chambers will be covered and connected to an odor control system.

i.	Required Volume at Peak Flow (32,083 gpm)(3 min)/(7.48gal/ft³)	=	12,868 ft ³
ii.	Existing Volume 2[(27 ft)²(8.03 ft)+((27 ft)²(12.5 ft)/3)]	=	17,783 ft ³
iii.	Actual Detention Time at Peak Flow (17,783 ft³)(7.48)/(32,083 gpm)	=	4.1 minutes

- c. <u>Lift Station</u>. The existing wet well will remain in this phase. A total of six new pumps, five duty and one standby, will be installed with a minimum firm hydraulic pumping capacity of 46.2 MGD, the design peak flow of the facility. The lift station will be covered and connected to an odor control system.
- d. <u>Elevated Flow Splitter</u>. The existing elevated flow splitter will remain in this phase. The weir gates will be modified to proportionately send flow to four secondary treatment plants based on the following splits.
 - i. Plant No. 1 (Existing North Kuehler) 3.10 MGD
 - ii. Plant No. 2 (Existing South Kuehler) 4.10 MGD
 - iii. Plant No. 3 4.10 MGD
 - iv. Plant No. 4 4.10 MGD
- e. <u>Secondary Treatment.</u>

<u>Plant No. 1 (Existing North Kuehler) – 3.10 MGD</u> This secondary treatment train consists of aeration basins and secondary clarifiers operating as a conventional activated sludge process with single stage nitrification. Phosphorous is removed using alum added upstream of the clarifiers. Alum addition for chemical phosphorous removal exists today and was previously approved by TCEQ. This process will be retained. No modifications or changes will be made to the secondary treatment facilities from those described in the 9.3 MGD Phase II report. Refer to that report for all sizing calculations.

<u>Plant No. 2 (Existing South Kuehler) – 4.10 MGD</u>. This secondary treatment train consists of aeration basins and secondary clarifiers operating as a conventional activated sludge process with single stage nitrification. Phosphorous is removed using alum added upstream of the clarifiers. Alum addition for chemical phosphorous removal exists today and was previously approved by TCEQ. This process will be retained. No modifications or changes will be made to the secondary treatment facilities from those described in the 9.3 MGD Phase II report. Refer to that report for all sizing calculations.

<u>Plant No. 3 – 4.10 MGD.</u> This secondary treatment train consists of an anaerobic basin, anoxic basin, aeration basin, and secondary clarifier operating as a biological nutrient removal, conventional activated sludge process with single stage nitrification. Phosphorous is removed with the biological nutrient removal process with alum addition as a secondary treatment method. Nitrogen removal is limited to treatment of the return activated sludge side stream. The intent of the partial nitrogen removal is only to help promote the biological phosphorous removal process by reducing the amount of nitrates in the process. The anoxic basin and nitrogen removal is not required for TPDES discharge permit compliance. The existing Plant No. 3 will be expanded to add a second train.

Anaerobic Basin

i.	Required Volume at Average Daily Flow (4,100,000 gal/day)(1.5 hr)/(24 hr/day)/(7.48gal/ft³)	=	34,258 ft ³			
ii.	Existing Volume (20 ft)(48 ft)(19 ft)	=	18,240 ft ³			
iii.	Proposed Volume (20 ft)(48 ft)(19 ft)	=	18,240 ft ³			
iv.	Total Volume 18,240 ft ³ + 18,240 ft ³	=	36,480 ft ³			
v.	Actual Hydraulic Retention Time at Average Daily Flow (36,480 ft³)(7.48gal/ft³)(24 hr/day)/(4,100,000 gal/day)		1.6 hrs			
<u>Aeratic</u>	Aeration Basin					
i.	Required Volume Using Traditional Design Method (4.10 MGD)(8.34)(310 mg/L)/(35 lb BOD₅/1000 ft³)	=	302,861 ft ³			
ii.	Existing Volume (20 ft)(82 ft)(120 ft)	=	196,800 ft ³			
iii.	Proposed Volume (20 ft)(82 ft)(120 ft)	=	196,800 ft ³			
iv.	Total Volume 196,800 ft ³ + 196,800 ft ³	=	393,600 ft ³			
v.	Actual Organic Loading 10,600 lb/day/(393,600 ft³)(1,000 ft³)	=	26.9lb BOD ₅ / 1000 ft ³			

Anoxic Selector Basin for RAS Side Stream

i.	Required Volume at Average Daily Flow (4,920,000 gal/day)(0.5 hr)/(24 hr/day)/(7.48gal/ft ³)	=	13,703 ft ³
ii.	Existing Volume (20 ft)(19 ft)(19 ft)	=	7,220 ft ³
iii.	Proposed Volume (20 ft)(19 ft)(19 ft)	=	7,220 ft ³
iv.	Total Volume 7,220 ft ³ + 7,220 ft ³	=	14,440 ft ³
٧.	Actual Hydraulic Retention Time (14,440 ft³)(7.48gal/ft³)(24 hr/day)/(4,920,000 gal/day)	=	0.53 hrs
Second	ary Clarifiers		
i.	Required Surface Area At Peak Flow (12.3 MGD)(1,000,000 gal/MG)/1200 gal/day/ft²	=.	10,250 ft ²
ii.	Existing Surface Area (80 ft) ² (π)/(4)	=	5,026 ft ²
iii.	Proposed Surface Area (80 ft)²(π)/(4)	=	5,026 ft ²
iv.	Total Surface Area 5,026 ft ² + 5,026 ft ²	=	10,052 ft ²
v.	Proposed Surface Loading at Peak Flow (12,300,000 gpd)/(10,052 ft ²)	=	1,224 gpd/ft ²
	The proposed surface loading at peak flow exceed the	TCEQ \	value. A varianc

The proposed surface loading at peak flow exceed the TCEQ value. A variance will be requested from TCEQ for the proposed clarifier. The slightly increased loading rate at peak flow is acceptable for performance since there are tertiary filters following the clarifiers. By installing an 80 ft diameter clarifier, it allows NBU to match the diameter of all its existing 5 clarifiers, which is beneficial for maintenance and operation of the clarifiers.

vi.	Proposed Clarifier Side Water Depth	=	13.0 ft
vii.	Proposed Hydraulic Detention Time at Peak Flow (10,052 ft²)(13.0 ft)(7.48 gal/ft³)(24 hr/day)/ (1,000,000 gallons/MG)(12.30 MGD)	=	1.91 hours

viii. The proposed clarifier will not utilize traditional weirs and baffles. It will utilize a submerged effluent launder system, which consists of a full perimeter submerged launder with submerged ports sized to control the inlet rate into the submerged launder. This will maintain equal distribution of flow from the center of the clarifier outwards to the launder. The Submerged Effluent Launder system design is a proprietary designed and manufactured by Ovivo USA, LLC.

<u>Plant No. 4 – 4.10 MGD.</u> This secondary treatment train consists of an anaerobic basin, anoxic basin, aeration basin, and secondary clarifier operating as a biological nutrient removal, conventional activated sludge process with single stage nitrification. Phosphorous is removed with the biological nutrient removal process with alum addition as a secondary treatment method. Nitrogen removal is limited to treatment of the return activated sludge side stream. The intent of the partial nitrogen removal is only to help promote the biological phosphorous removal process by reducing the amount of nitrates in the process. The anoxic basin and nitrogen removal is not required for TPDES discharge permit compliance.

Anaerobic Basin

i.	Required Volume at Average Daily Flow (4,100,000 gal/day)(1.5 hr)/(24 hr/day)/(7.48gal/ft³)	=	34,258 ft ³
ii.	Proposed Volume (2)(20 ft)(48 ft)(19 ft)	=	36,480 ft ³
iii.	Actual Hydraulic Retention Time at Average Daily Flow (36,480 ft³)(7.48gal/ft³)(24 hr/day)/(4,100,000 gal/day)	=	1.6 hrs
<u>Aeratio</u>	n Basin		
i.	Required Volume Using Traditional Design Method (4.10 MGD)(8.34)(310 mg/L)/(35 lb BOD _s /1000 ft ³)	=	302,861 ft ³
ii.	Proposed Volume (2)(20 ft)(82 ft)(120 ft)	=	393,600 ft ³
iii.	Actual Organic Loading 10,600 lb/day/(393,600 ft³)(1,000 ft³)	=	26.9lb BOD ₅ / 1000 ft ³
Anoxic S	Selector Basin for RAS Side Stream		1000 11
i.	Required Volume at Average Daily Flow (4,920,000 gal/day)(0.5 hr)/(24 hr/day)/(7.48gal/ft³)	=	13,703 ft ³
ii.	Proposed Volume (2)(20 ft)(19 ft)(19 ft)	=	14,440 ft ³
iii.	Actual Hydraulic Retention Time (14,440 ft³)(7.48gal/ft³)(24 hr/day)/(4,920,000 gal/day)	=	0.53 hrs

Secondary Clarifiers

i.	Required Surface Area At Peak Flow (12.3 MGD)(1,000,000 gal/MG)/1200 gal/day/ft²	=	10,250 ft ²
ii.	Proposed Surface Area (2)(80 ft)²(π)/(4)	=	10,052 ft ²
iii.	Proposed Surface Loading at Peak Flow (12,300,000 gpd)/(10,052 ft ²)	=	1,224 gpd/ft ²

The proposed surface loading at peak flow exceed the TCEQ value. A variance will be requested from TCEQ for the proposed clarifier. The slightly increased loading rate at peak flow is acceptable for performance since there are tertiary filters following the clarifiers. By installing an 80 ft diameter clarifier, it allows NBU to match the diameter of all its existing 5 clarifiers, which is beneficial for maintenance and operation of the clarifiers.

iv.	Proposed Clarifier Side Water Depth	=	13.0 ft
v.	Proposed Hydraulic Detention Time at Peak Flow (10,052 ft²)(13.0 ft)(7.48 gal/ft³)(24 hr/day)/		
	(1,000,000 gallons/MG)(12.30 MGD)	=	1.91 hours

- vi. The proposed clarifiers will not utilize traditional weirs and baffles. It will utilize a submerged effluent launder system, which consists of a full perimeter submerged launder with submerged ports sized to control the inlet rate into the submerged launder. This will maintain equal distribution of flow from the center of the clarifier outwards to the launder. The Submerged Effluent Launder system design is a proprietary designed and manufactured by Ovivo USA, LLC.
- f. <u>Tertiary Intermittently Backwashed, Granular Dual Media Filters.</u> Flow from all four parallel secondary treatment trains will flow to the tertiary intermittently backwashed, granular dual media filters. The existing filter beds will remain and additional filter beds will be added. Each filter will consist of dual media.

i.	Required Surface Area at Peak Flow (32,083 gpm)/(4 gpm/ ft ²)	=	8,021 ft ²
ii.	Existing Surface Area (4)(16 ft)(84 ft)	=	5,376 ft ²
iii.	Proposed Surface Area (2)(16 ft)(84 ft)	=	2,688 ft ²
iv.	Total Surface Area 5,376 ft² + 2,688 ft²	=	8,064 ft ²
v.	Actual Filtration Rate at Peak Flow (32,083 gpm)/(8,064 ft²)	=	3.98 gpm/ft ²

- vi. Actual Filtration Rate at Peak Flow with One Filter Out of Service $(32,083 \text{ gpm})/(6,720 \text{ ft}^2) = 4.77 \text{ gpm/ft}^2$
- g. <u>Ultraviolet Disinfection</u>. The existing structure will remain and all existing UV modules will remain. The fourth channel, constructed but not used in the 9.3 MGD Phase II, will be used with new UV modules added in it. Flow will pass through four parallel channels containing ultraviolet (UV) treatment modules. The UV modules will be a low-pressure high-output type and utilizing 254 nm wavelength light with an assumed 65% minimum transmittance and 20 mJ/cm² UV dose rate. Three channels will be required to treat the full peak flow of 46.2 MGD, with each channel capable of treatment 15.4 MGD. The third channel will be a redundant 15.4 MGD treatment channel. A minimum UV contact time of 20 seconds will be provided at peak flow, with one channel out of service.
- h. <u>Post Aeration</u>. Flow will pass through a post aeration basin that will include coarse bubble aeration to provide oxygen to the wastewater. The air demand is included in the Air Requirements section of this report.
- <u>Aerobic Digesters</u>. All basins from the 9.3 MGD Phase II will remain. Additional digester basins will be added for the additional flow. All sludge will flow to a common digester that will feed the existing belt press dewatering facility. The digester sizing assumes one pound of solids produced per pound of BOD₅ applied plus alum sludge from the chemical phosphorous removal, solids are 70% volatile organics, 38% of the volatiles are destroyed during digestion, and the average MLSS concentration in the digesters is 30,000 mg/l.

i.	Solids Production		
	(39,815 lbs BOD ₅ /day)(1 lb solids/1 lb BOD ₅)	=	39,815 lbs solids/day
ii.	Digested Solids Production		
	(39,815 lbs solids/day)(1-(0.38)(0.7))	Ξ	29,224 lbs solids/day
iii.	Average Digested Solids Production		
	(39,815 lbs solids/day + 29,224 lbs solids/day)/2	Ξ	34,520 lbs solids/day
iv.	Alum Sludge Production		
	619 lbs solids/day+819 lbs solids/day+(2)223 lbs solids/day	=	1,884 lbs solids/day
٧.	Total Average Solids Production		
	34,520 lbs solids/day + 1,884 lbs solids/day	Ξ	36,404 lbs solids/day
vi.	Total Solids in Digester for 28-day SRT*		
	(36,404 lbs solids/day)(28 days)	=	1,019,312 lbs solids
vii.	Required Volume		
	(1,019,312 lbs solids)(10 ⁶)/(8.34)/(30,000 mg/l MLSS)/(7.48)=	544,651 tt°
viii.	Existing Volume		
	43,156 ft ³ + 61,473 ft ³ + 287,000 ft ³	=	391,629 ft ³

ix.	Proposed Volume (3)(20 ft)(60 ft)(70 ft)	=	252,000 ft ³
x.	Total Volume 391,629 ft ³ + 252,000 ft ³	=	643,629 ft ³

 Actual Solids Residence Time (643,629 ft³)(7.48)(8.34)(30,000 mg/l)/(10⁶)/(36,404 lbs/day)=33.1 days

*28-day SRT utilized instead of 40-day SRT for use of a two stage digester per EPA publication "Control of Pathogens and Vector Attraction in Sewage Sludge".

- j. <u>Sludge Thickening</u>. The existing aerobic digesters at the North Kuehler WWTP and South Kuehler WWTP contain a combination of gravity thickeners and submerged membranes that are used to thicken sludge. These sludge thickening components will be retained with the expansion. Also, additional submerged membranes will be added with the proposed digester volume to maintain an average MLSS concentration in the digesters of 30,000 mg/l.
- k. <u>Sludge Dewatering</u>. All sludge from both the existing North Kuehler WWTP and South Kuehler WWTP is pumped to the exiting belt press sludge dewatering facility. The existing facility will be expanded to accommodate the increased sludge production from the expansion. The belt press sizing assumes operation 8 hours per day and 6 days per week, and a maximum feed rate of 75 gpm/meter and 750 lbs of solids per hour per meter, a sludge feed rate of 30,000 mg/l. In the event a belt press is out of service, the remaining belt presses can be operated for longer durations to maintain sludge processing capabilities.

i.	Total Belt Width Required Based on Hydraulic Capacity (142,642 gal/d)(7/6)/(480 op min/d)/(75 gal/min/m)	=	4.6 m belt width
ii.	Total Belt Width Required Based on Solids Capacity (36,403 lbs solids/d)(7/6)/(8 op hr/d)/(750 lbs solids/hr/m)	=	7.1 m belt width
iii.	Existing Belt Width (3)(2 meter belt presses)	=	6 meters belt width
iv.	Proposed Belt Width (1)(2 meter belt press)	П	2 meters belt width
v.	Total Belt Width 6 meters + 2 meters	=	8 meters belt width

I. <u>Air Requirements</u>. The existing North Kuehler WWTP will be served by two blower banks, one each for process air and solids handling air, with a common spare blower connected with valves and piping. The existing South Kuehler WWTP will be served by two separate blower banks, one each for process air and solids handling air. Each bank will have its own spare blower. The blower banks at the existing North Kuehler WWTP and South Kuehler WWTP will not be modified in this expansion. The proposed treatment units for both Plant No. 3 & Plant No. 4 will be served by two separate blower.

<u>Plant No. 1 (Existing North Kuehler) Process Air</u>. No changes are being made to this treatment system air demand or blower system. Refer to the 9.3 MGD Phase II report for details on the air demand for this system.

<u>Plant No. 1 (Existing North Kuehler) Solids Air</u>. No changes are being made to this treatment system air demand or blower system. Refer to the 9.3 MGD Phase II report for details on the air demand for this system.

<u>Plant No. 2 (Existing South Kuehler) Process Air</u>. No changes are being made to this treatment system air demand or blower system. Refer to the 9.3 MGD Phase II report for details on the air demand for this system.

<u>Plant No. 2 (Existing South Kuehler) Solids Air</u>. No changes are being made to this treatment system air demand or blower system. Refer to the 9.3 MGD Phase II report for details on the air demand for this system.

Plant No. 3 & Plant No. 4 Process Air

- i. Plant No. 3 Aeration Basin
 - 1. Air Required for Treatment

$$\frac{(1.2)(310 \text{ mg/L BOD}_5) + (4.3)(50 \text{ mg/L NH}_3-\text{N})}{(310 \text{ mg/L BOD}_5)} = 1.9 \text{ lb } \text{O}_2/\text{ lb BOD}_5^*$$

*TCEQ Chapter 217.155(a)(3) requires using a minimum of 2.2 lb O_2 /lb BOD₅ if the system is intended to nitrify, which is used below for calculations.

2. Fine Bubble Requirements

 $\frac{(310 \text{ mg/L BOD}_5)(8.34)(4.10 \text{ MGD})(2.2 \text{ lb } O_2/\text{lb BOD}_5)(0.685)}{(10.8\%)(0.075)(0.23)(1,440)} = 5,955 \text{ scfm}$

* TCEQ Wastewater Oxygen Transfer Efficiency for Coarse Bubble (2.0%/ft. x 12 ft of submergence x 0.45)

** TCEQ Chapter 217 Table F.5 Submergence Correction Factor for 19' Submergence Plant No. 4 Aeration Basin

3. Air Required for Treatment

ii.

 $\frac{(1.2)(310 \text{ mg/L BOD}_5) + (4.3)(50 \text{ mg/L NH}_3-N)}{(310 \text{ mg/L BOD}_5)} = 1.9 \text{ lb O}_2/\text{ lb BOD}_5^*$

*TCEQ Chapter 217.155(a)(3) requires using a minimum of 2.2 lb O_2 /lb BOD₅ if the system is intended to nitrify, which is used below for calculations.

4. Fine Bubble Requirements

	<u>(310 mg/L BOD₅)(8.34)(4.10 MGD)(2.2 lb O₂/lb BOD₅)(0.6</u> (10.8%)(0.075)(0.23)(1,440)	<u>85)</u> =	5,955 scfm
	* TCEQ Wastewater Oxygen Transfer Efficiency for Coarse submergence x 0.45)	·	
	** TCEQ Chapter 217 Table F.5 Submergence Correction	Factor for	19' Submergence
iii.	Plant No. 3 & Plant No. 4 Return Sludge Air Lifts (4)(160 scfm) + (4)(160 scfm)	=	1,280 scfm
iv.	Post Aeration Basin (3,200 ft³)(30 scfm/1000 ft³)	=	96 scfm
v.	Plant No. 3 & Plant No. 4 Clarifier Loading Zones [(2)(3,800 ft³) + (2) 2)(3,800 ft³)](30 scfm/1000 ft³)	=	456 scfm
vi.	Total Process Air Requirement	=	13,742 scfm
<u>Plant</u>	No. 3 & Plant No. 4 Solids Air		
i.	Aerobic Digester (539,000 ft³)(30 scfm/1000 ft³)	-	16,170 scfm
ii.	Sludge Transfer Air Lifts (8)(40 scfm)	=	320 scfm
iii.	Aerated Grit Chamber (17,783 ft³)(30 scfm/1000 ft³)	=	533 scfm
iv.	Total Solids Air Requirement	=	17,023 scfm

m. <u>Blower Capacities</u>

<u>Plant No. 1 (Existing North Kuehler) Process Air</u>. No changes are being made to this treatment system air demand or blower system. Refer to the 9.3 MGD Phase II report for details on the existing blower system.

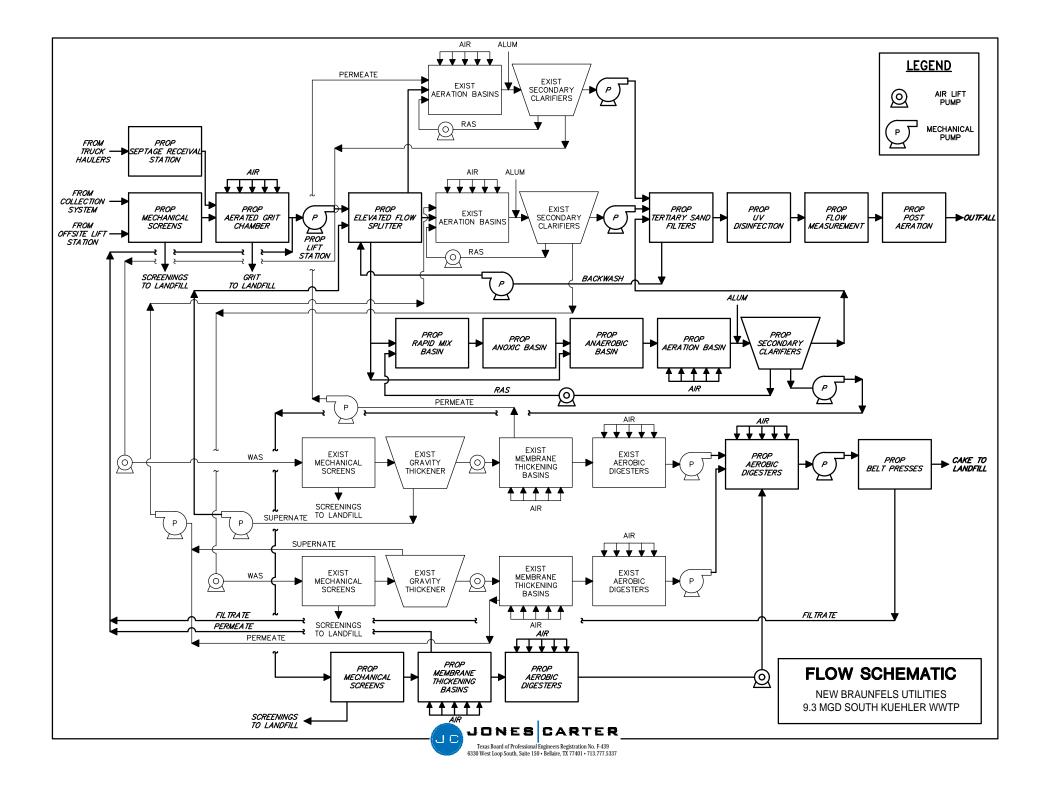
<u>Plant No. 1 (Existing North Kuehler) Solids Air</u>. No changes are being made to this treatment system air demand or blower system. Refer to the 9.3 MGD Phase II report for details on the existing blower system.

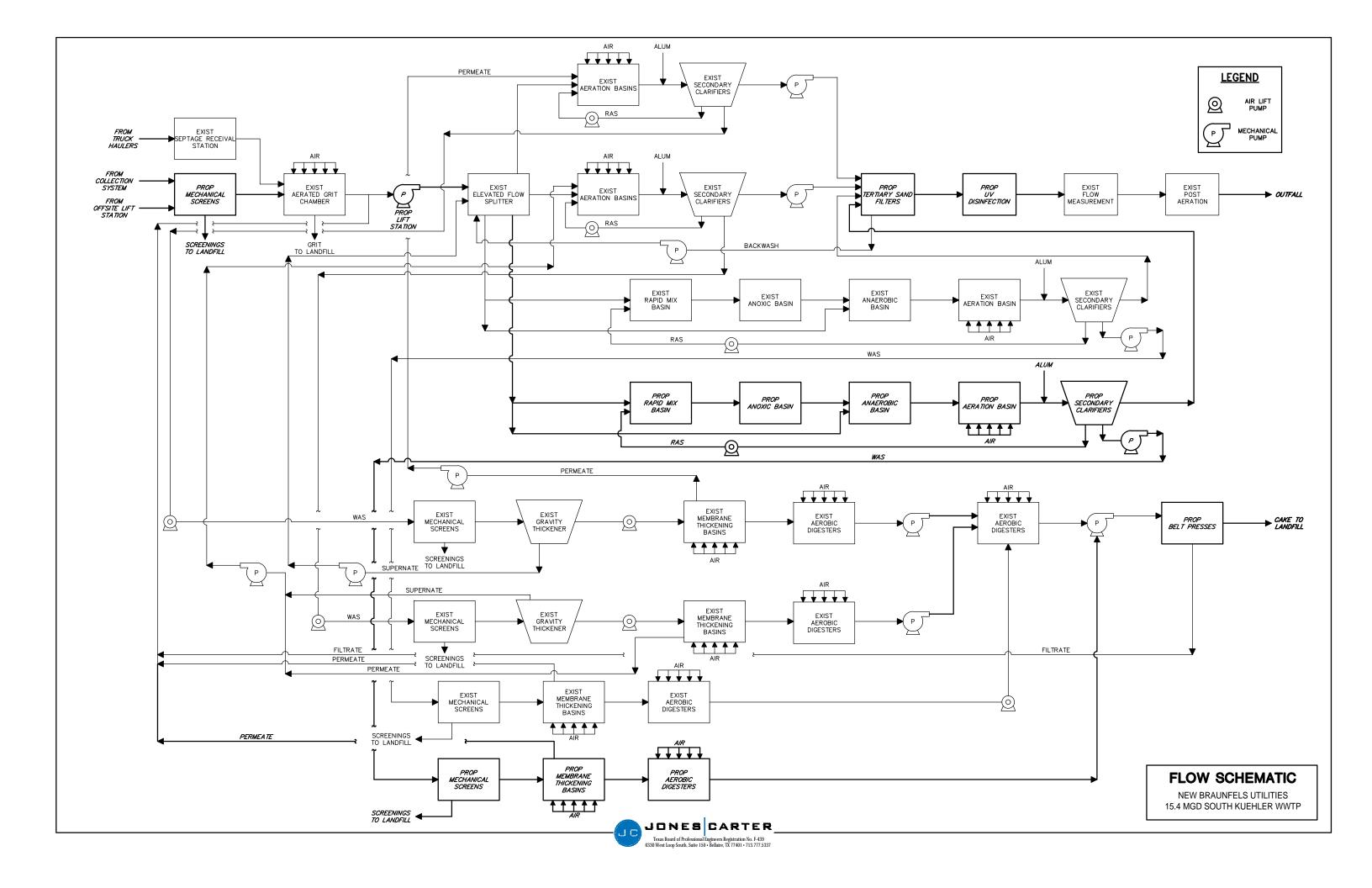
<u>Plant No. 2 (Existing South Kuehler) Process Air</u>. No changes are being made to this treatment system air demand or blower system. Refer to the 9.3 MGD Phase II report for details on the existing blower system.

<u>Plant No. 2 (Existing South Kuehler) Solids Air</u>. No changes are being made to this treatment system air demand or blower system. Refer to the 9.3 MGD Phase II report for details on the existing blower system.

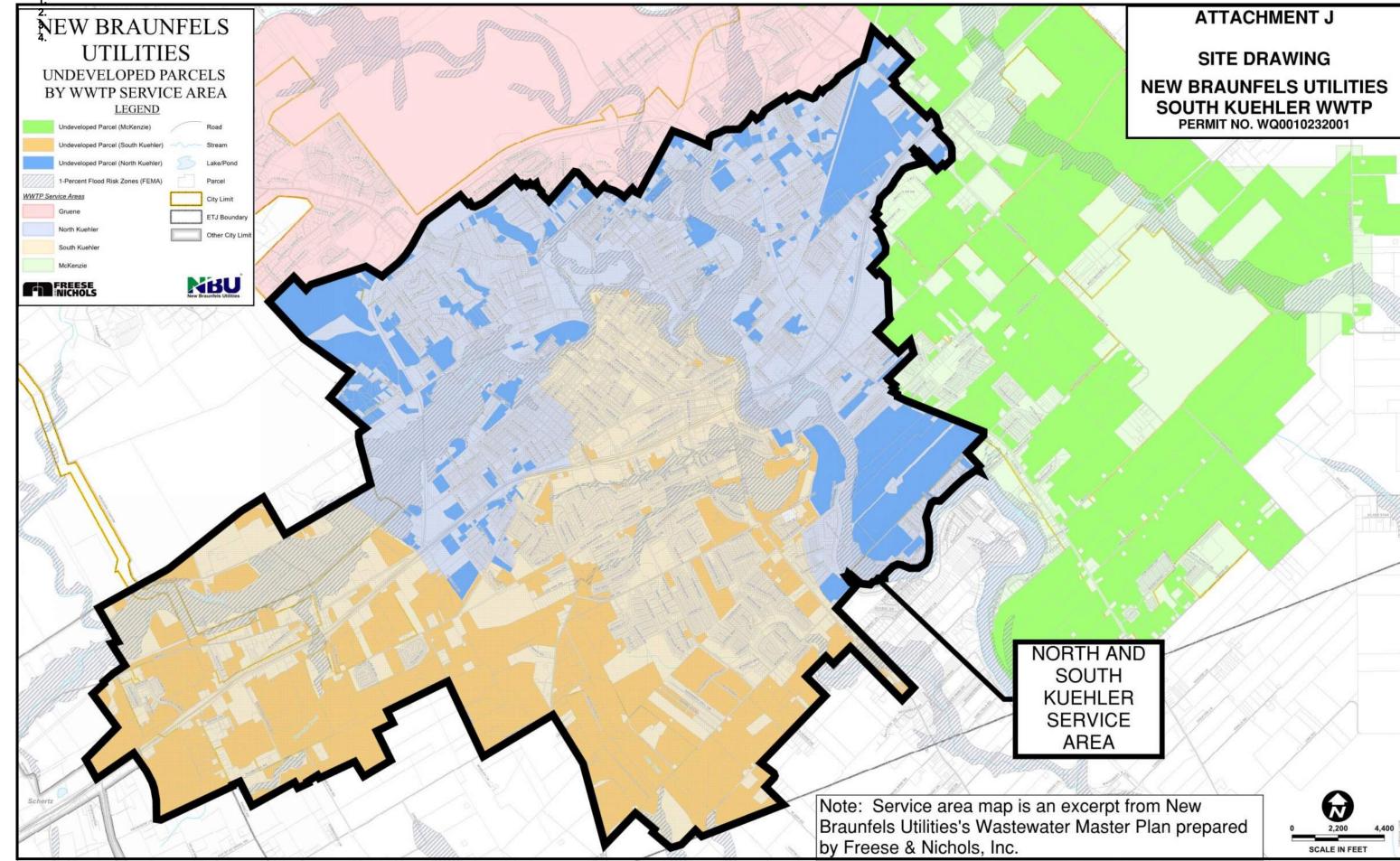
Plant No. 3 & Plant No. 4 Process Air

i.	Existing Blower Capacity (2)(4,000 scfm)	=	8,000 scfm
ii.	Proposed Blower Capacity (3)(4,000 scfm)	=	8,000 scfm
iii.	Total Blower Capacity (5)(4,000 scfm)	=	20,000 scfm
iv.	Firm Blower Capacity with Largest Unit out of Service (4)(4,000 scfm)	=	16,000 scfm
<u>Plant</u>	No. 3 & Plant No. 4 Solids Air		
i.	Existing Blower Capacity (4)(3,150 scfm)	=	12,600 scfm
ii.	Proposed Blower Capacity (3)(3,150 scfm)	=	9,450 scfm
iii.	Total Blower Capacity (7)(3,150 scfm)	=	22,050 scfm
iv.	Firm Blower Capacity with Largest Unit out of Service (6)(3,150 scfm)	=	18,900 scfm


ATTACHMENT I


FLOW SCHEMATICS

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT



ATTACHMENT J

SITE DRAWING

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

ATTACHMENT K

JUSTIFICATION FOR PLANT EXPANSION

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

JUSTIFICATION FOR PLANT EXPANSION NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

The New Braunfels Utilities ("NBU") South Kuehler Wastewater Treatment Plant serves the central and southwest portions of the City of New Braunfels. While not all inclusive, this generally includes areas south of IH-35 and west of State Highway 46.

Expansion of the wastewater treatment plant will be necessary to provide service to undeveloped areas within the North and South Kuehler service areas within the City of New Braunfels. As part of this expansion, all flow that currently flows to the existing North Kuehler WWTP will now go to the South Kuehler WWTP. This diversion of flow will occur with the next proposed expansion phase. This is reflected in the flow projections. The existing North Kuehler TPDES discharge permit will expire upon completion of the next proposed expansion phase South Kuehler WWTP. At this point, the existing North Kuehler WWTP will no longer discharge from its existing, permitted outfall, which will be abandoned. Additionally, upon completion of the next expansion phase, the existing South Kuehler WWTP will no longer discharge from its existing, permitted outfall, which will be abandoned. As part of the expansion, the existing South Kuehler outfall will be relocated a slightly upstream and used for all future phases. Also, the proposed expansion will incorporate the existing North Kuehler WWTP treatment units as part of the expanded South Kuehler WWTP.

At build out, there will be approximately 47,212 residential connections, 5,215 apartment units, 1,640 commercial connections and 327 other connections. For design purposes, the wastewater flow for residential, apartment, commercial and other connections is 240 gallons per day per connection (gpd/conn.), 150 gpd/conn, 1,000 gpd/conn, and 5,000 gpd/conn., respectively. The next page shows the connection and flow projection for the NBU South Kuehler WWTP to complete build out.

Proposed flow	Phase I	Phase II	Phase III
Design Flow (MGD)	4.20	9.30	15.40
2-Hr Peak Flow (MGD)	12.60	27.9	46.20
Date construction to commence		8/2020	1/2026
Date construction completed and discharge begins		7/2023	12/2029

Following is the construction schedule for the current and final plant phases:

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT CONNECTION AND FLOW PROJECTION

Month										
/ yr	Single famil	y residential	Apa	artment	Comm	nercial	Oth	er	Tot	al
	connections	flow (gpd)	units	flow (gpd)	connections	flow (gpd)	connections	flow (gpd)	connections	flow (gpd)
Jan-20	9,685	2,324,400	1,259	188,850	374	374,000	19	95,000	11,337	2,982,250
Jan-21	10,086	2,420,640	1,319	197,850	398	398,000	31	155,000	11,834	3,171,490
Jan-22	10,502	2,520,480	1,379	206,850	422	422,000	43	215,000	12,346	3,364,330
Jan-23	10,937	2,624,880	1,439	215,850	446	446,000	55	275,000	12,877	3,561,730
Jan-24	20,882	5,011,680	2,235	335,250	644	644,000	70	350,000	23,831	6,340,930
Jan-25	21,739	5,217,360	2,331	349,650	680	680,000	82	410,000	24,832	6,657,010
Jan-30	26,574	6,377,760	2,879	431,850	860	860,000	142	710,000	30,455	8,379,610
Jan-35	32,477	7,794,480	3,546	531,900	1,086	1,086,000	202	1,010,000	37,311	10,422,380
Jan-40	39,554	9,492,960	4,348	652,200	1,352	1,352,000	261	1,305,000	45,515	12,802,160
Jan-44	46,276	11,106,240	5,107	766,050	1,604	1,604,000	315	1,575,000	53,302	15,051,290
Jul-44	47,212	11,330,880	5,215	782,250	1,640	1,640,000	327	1,635,000	54,394	15,400,000

ATTACHMENT L

SEWAGE SLUDGE MANAGEMENT PLANS

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

SLUDGE MANAGEMENT AND DISPOSAL PLAN NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT JULY 2019

INTRODUCTION

This sludge management and disposal plan is being submitted as an attachment to the TPDES permit amendment application for New Braunfels Utilities South Kuehler Wastewater Treatment Plant.

The current phase for New Braunfels Utilities South Kuehler Wastewater Treatment Plant is a 4.20 MGD single stage nitrification activated sludge plant with effluent limits of 10 mg/l BOD and 15 mg/l TSS. The plant will also remove Total Phosphorus by alum precipitation.

DIMENSIONS AND CAPACITIES

Excess solids generated from the activated plant will be wasted to an aerobic digester for further treatment. The liquid stabilized sludge will then be hauled away to a TCEQ permitted land application site for disposal by a licensed sludge hauler. The digester has a volume of 61,473 cu. ft.

SOLIDS GENERATION

Solids to be wasted from the activated sludge process is based on an influent BOD concentration of 310 mg/l and 1.0 pounds of TSS produced per pound of BOD applied. Following is the amount of solids generated by the wastewater treatment plant at design flow and at 75 percent, 50 percent and 25 percent of design flow:

		147
Percent of		Waste
Design	Flow	Sludge
Flow	(MGD)	Generated
		(lb/day)
25	1.05	2,715
50	2.10	5,430
75	3.15	8,145
100	4.20	10,860

OPERATING PARAMETERS

The single stage nitrification activated sludge process works best between mixed liquor suspended solids (MLSS) concentrations of 2,000 – 6,000 mg/l. The operator will determine the mixed liquor concentration that produces the highest quality effluent taking into consideration factors such as hydraulic and organic loading, available air capacity, and solids handling. Field testing and laboratory analysis will be done to monitor the MLSS and maintain the appropriate solids concentration.

SOLIDS REMOVAL PROCEDURE

Laboratory analysis and field testing will be conducted to determine the solids concentration in the aeration basin. To maintain an appropriate solids inventory, the amount of solids to be wasted per day is equal to the amount of solids generated per day. This amount is stated in the SOLIDS GENERATION section of this plan. Excess solids will then be wasted from the bottom of the clarifier directly to the aerobic digester to maintain the appropriate solids concentration in the aeration basin.

SOLIDS REMOVAL SCHEDULE

It is assumed that 70% of the solids wasted to the digester are volatile solids and the volatile solids reduction is 38%. For every pound of solids wasted to the digester, 0.73 pounds of solids will need to be disposed of by land application. The average of the waste sludge produced and the remaining digested sludge plus alum sludge generated from phosphorus removal results in Total Solids Disposed per day. In addition, it is assumed that the solids can be thickened to 30,000 mg/l in the digester. At this concentration, a 61,473 cu. ft. digester will hold 115,046 pounds of solids. The capacity of the digester divided by the pounds per day of solids to be disposed of will give the sludge hauling schedule.

Percent	Digested	Avg.Digested	Alum	Total	Hauling
of	Sludge	Sludge	Sludge	Solids	schedule
Design	Production	Production	lbs/day	Disposed	(days)
Flow	(lb/day)	(lb/day)		(lb/day)	
25	1,993	2,354	210	2,563	45
50	3,985	4,707	420	5,127	22
75	5 <i>,</i> 978	7,061	629	7,690	15
100	7,970	9,414	839	10,253	11

ULTIMATE SLUDGE DISPOSAL

Sludge will be liquid hauled from the plant by a TCEQ registered sludge transporter to a TCEQ permitted landfill.

A manifest will be issued with each load of sludge that is hauled from the plant. The following information will be on the manifest to document ultimate disposal of the sludge:

- 1. Date of sludge hauling
- 2. Generator Name
- 3. Generator's address
- 4. Volume of sludge hauled
- 5. Name of transporter
- 6. TCEQ transporter registration number
- 7. Driver's name
- 8. Name of disposal site
- 9. TCEQ Site permit number
- 10. Date of disposal
- 11. Volume of sludge disposed

This information, along with laboratory and field data will be used to determine the amount of solids disposed of in dry weight form.

SLUDGE MANAGEMENT AND DISPOSAL PLAN NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT JULY 2019

INTRODUCTION

This sludge management and disposal plan is being submitted as an attachment to the TPDES permit amendment application for New Braunfels Utilities South Kuehler Wastewater Treatment Plant.

The next phase for New Braunfels Utilities South Kuehler Wastewater Treatment Plant is a 9.30 MGD single stage nitrification activated sludge plant with effluent limits of 10 mg/I CBOD, 15 mg/I TSS, 3 mg/I NH3-N, and 1.0 mg/I Total Phosphorus. The plant will remove Total Phosphorus by alum precipitation.

DIMENSIONS AND CAPACITIES

Excess solids generated from the activated plant will be wasted to an aerobic digester for further treatment. The liquid stabilized sludge will then be hauled away to a TCEQ permitted land application site for disposal by a licensed sludge hauler. The digester will have a volume of at least 391,629 cu. ft.

SOLIDS GENERATION

Solids to be wasted from the activated sludge process is based on an influent BOD concentration of 310 mg/l and 1.0 pounds of TSS produced per pound of BOD applied. Following is the amount of solids generated by the wastewater treatment plant at design flow and at 75 percent, 50 percent and 25 percent of design flow:

		1
Percent of		Waste
Design	Flow	Sludge
Flow	(MGD)	Generated
		(lb/day)
25	2.33	6,011
50	4.66	12,022
75	6.98	18,033
100	9.30	24,044

OPERATING PARAMETERS

The single stage nitrification activated sludge process works best between mixed liquor suspended solids (MLSS) concentrations of 2,000 – 6,000 mg/l. The operator will determine the mixed liquor concentration that produces the highest quality effluent taking into consideration factors such as hydraulic and organic loading, available air capacity, and solids handling. Field testing and laboratory analysis will be done to monitor the MLSS and maintain the appropriate solids concentration.

SOLIDS REMOVAL PROCEDURE

Laboratory analysis and field testing will be conducted to determine the solids concentration in the aeration basin. To maintain an appropriate solids inventory, the amount of solids to be wasted per day is equal to the amount of solids generated per day. This amount is stated in the SOLIDS GENERATION section of this plan. Excess solids will then be wasted from the bottom of the clarifier directly to the aerobic digester to maintain the appropriate solids concentration in the aeration basin.

SOLIDS REMOVAL SCHEDULE

It is assumed that 70% of the solids wasted to the digester are volatile solids and the volatile solids reduction is 38%. For every pound of solids wasted to the digester, 0.73 pounds of solids will need to be disposed of by land application. The average of the waste sludge produced and the remaining digested sludge plus alum sludge generated from phosphorus removal results in Total Solids Disposed per day. In addition, it is assumed that the solids can be thickened to 30,000 mg/l in the digester. At this concentration, a 391,629 cu. ft. digester will hold 732,932 pounds of solids. The capacity of the digester divided by the pounds per day of solids to be disposed of will give the sludge hauling schedule.

Percent	Digested	Avg.Digested	Alum	Total	Hauling
of	Sludge	Sludge	Sludge	Solids	schedule
Design	Production	Production	lbs/day	Disposed	(days)
Flow	(lb/day)	(lb/day)		(lb/day)	
25	4,412	5,212	388	5,600	131
50	8,824	10,423	776	11,199	65
75	13,236	15,635	1,164	16,799	44
100	17,648	20,846	1,552	22,398	33

ULTIMATE SLUDGE DISPOSAL

Sludge will be liquid hauled from the plant by a TCEQ registered sludge transporter to a TCEQ permitted landfill.

A manifest will be issued with each load of sludge that is hauled from the plant. The following information will be on the manifest to document ultimate disposal of the sludge:

- 1. Date of sludge hauling
- 2. Generator Name
- 3. Generator's address
- 4. Volume of sludge hauled
- 5. Name of transporter
- 6. TCEQ transporter registration number
- 7. Driver's name
- 8. Name of disposal site
- 9. TCEQ Site permit number
- 10. Date of disposal
- 11. Volume of sludge disposed

This information, along with laboratory and field data will be used to determine the amount of solids disposed of in dry weight form.

SLUDGE MANAGEMENT AND DISPOSAL PLAN NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT JULY 2019

INTRODUCTION

This sludge management and disposal plan is being submitted as an attachment to the TPDES permit amendment application for New Braunfels Utilities South Kuehler Wastewater Treatment Plant.

The final phase for New Braunfels Utilities South Kuehler Wastewater Treatment Plant is a 9.30 MGD single stage nitrification activated sludge plant with effluent limits of 10 mg/I CBOD, 15 mg/I TSS, 3 mg/I NH3-N, and 1.0 mg/I Total Phosphorus. The plant will remove Total Phosphorus by alum precipitation.

DIMENSIONS AND CAPACITIES

Excess solids generated from the activated plant will be wasted to an aerobic digester for further treatment. The liquid stabilized sludge will then be hauled away to a TCEQ permitted land application site for disposal by a licensed sludge hauler. The digester will have a volume of at least 643,629 cu. ft.

SOLIDS GENERATION

Solids to be wasted from the activated sludge process is based on an influent BOD concentration of 310 mg/l and 1.0 pounds of TSS produced per pound of BOD applied. Following is the amount of solids generated by the wastewater treatment plant at design flow and at 75 percent, 50 percent and 25 percent of design flow:

Percent of		Waste
Design	Flow	Sludge
Flow	(MGD)	Generated
		(lb/day)
25	3.85	9,954
50	7.70	19,908
75	11.55	29,861
100	15.40	39,815

OPERATING PARAMETERS

The single stage nitrification activated sludge process works best between mixed liquor suspended solids (MLSS) concentrations of 2,000 – 6,000 mg/l. The operator will determine the mixed liquor concentration that produces the highest quality effluent taking into consideration factors such as hydraulic and organic loading, available air capacity, and solids handling. Field testing and laboratory analysis will be done to monitor the MLSS and maintain the appropriate solids concentration.

SOLIDS REMOVAL PROCEDURE

Laboratory analysis and field testing will be conducted to determine the solids concentration in the aeration basin. To maintain an appropriate solids inventory, the amount of solids to be wasted per day is equal to the amount of solids generated per day. This amount is stated in the SOLIDS GENERATION section of this plan. Excess solids will then be wasted from the bottom of the clarifier directly to the aerobic digester to maintain the appropriate solids concentration in the aeration basin.

SOLIDS REMOVAL SCHEDULE

It is assumed that 70% of the solids wasted to the digester are volatile solids and the volatile solids reduction is 38%. For every pound of solids wasted to the digester, 0.73 pounds of solids will need to be disposed of by land application. The average of the waste sludge produced and the remaining digested sludge plus alum sludge generated from phosphorus removal results in Total Solids Disposed per day. In addition, it is assumed that the solids can be thickened to 30,000 mg/l in the digester. At this concentration, a 643,629 cu. ft. digester will hold 1,204,549 pounds of solids. The capacity of the digester divided by the pounds per day of solids to be disposed of will give the sludge hauling schedule.

Percent	Digested	Avg.Digested	Alum	Total	Hauling
of	Sludge	Sludge	Sludge	Solids	schedule
Design	Production	Production	lbs/day	Disposed	(days)
Flow	(lb/day)	(lb/day)		(lb/day)	
25	7,306	8,630	471	9,101	81
50	14,612	17,260	942	18,201	40
75	21,918	25,890	1,412	27,302	27
100	29,224	34,520	1,883	36,403	20

ULTIMATE SLUDGE DISPOSAL

Sludge will be liquid hauled from the plant by a TCEQ registered sludge transporter to a TCEQ permitted landfill.

A manifest will be issued with each load of sludge that is hauled from the plant. The following information will be on the manifest to document ultimate disposal of the sludge:

- 1. Date of sludge hauling
- 2. Generator Name
- 3. Generator's address
- 4. Volume of sludge hauled
- 5. Name of transporter
- 6. TCEQ transporter registration number
- 7. Driver's name
- 8. Name of disposal site
- 9. TCEQ Site permit number
- 10. Date of disposal
- 11. Volume of sludge disposed

This information, along with laboratory and field data will be used to determine the amount of solids disposed of in dry weight form.

ATTACHMENT M

FINAL EFFLUENT ANALYSIS

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

July 2019

Client Information	Sample Information	Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: SK WWTP IPP Annual Sample ID: Eff Grab #1 Matrix: Non-Potable Water Date/Time Taken: 04/01/2019 1015	PCS Sample #: 548260 Page 1 of 1 Date/Time Received: 04/02/2019 11:51 Report Date: 04/17/2019 Approved by:
an war a few War of the meneral of the state of the		Chuck Wallgren, President
Test Description Flag	Result Units RL Analysis Date/Ti	me Method Analyst
Cyanide, Amenable + See	Attached	Pace Analytical Services - Dallas
<u>Quality Statement:</u> All supporting quality control data ad exceptions or in a case narrative attachment. Reports with	hered to data quality objectives and test results meet the req full quality data deliverables are available on request.	uirements of NELAC unless otherwise noted as flagged
+ Subcontract Work - NELAP Certified Lab	These analytical res All data is reported o RL = Reporting Lim	ults relate only to the sample tested. on an "As Is" basis unless designated as "Dry Wt." its
Web Site: www.pcslab.net Toll Free 800-880-4616 e-mail: chuck@pcslab.net	1532 Universal City Bivd, Sulte 100 210-34 Universal City, TX 78148-3318	0-0343 FAX # 210-658-7903

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information				
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: SK WWTP IPP Annual Sample ID: Eff Grab #1 Matrix: Non-Potable Water Date/Time Taken: 04/01/2019 1015	PCS Sample #: 548261 Page 1 of 1 Date/Time Received: 04/02/2019 11:51 Report Date: 04/17/2019 Approved by: here Wallgreen				
		Chuck Wallgren, President				
		W Chuck Wungton, Prosident				
Test Description Flag Re	esult Units RL Analysis Date/Ti	me Method Analyst				
Phenolics + See At	tached	Pace Analytical Services - Dallas				
Quality Statement: All supporting quality control data adher exceptions or in a case narrative attachment. Reports with fu	ed to data quality objectives and test results meet the re Il quality data deliverables are available on request.	quirements of NELAC unless otherwise noted as flagged				
+ Subcontract Work - NELAP Certified Lab	These analytical res All data is reported RL = Reporting Lir	ults relate only to the sample tested. on an "As Is" basis unless designated as "Dry Wt." nits				
Web Site: www.pcslab.netToll Free 800-880-4616e-mail: chuck@pcslab.net	1532 Universal City Blvd, Suite 100 210-34 Universal City, TX 78148-3318	I0-0343 FAX # 210-658-7903				

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: SK WWTP IPP Annual Sample ID: Eff Grab #2 Matrix: Non-Potable Water Date/Time Taken: 04/01/2019 1551	PCS Sample #: 548262 Page 1 of 1 Date/Time Received: 04/02/2019 11:51 Report Date: 04/17/2019 Approved by: Chuck Wallgren, President
Test Description Flag Re	esult Units RL Analysis Date	Time Method Analyst
Cyanide, Amenable + See At	tached	Pace Analytical Services - Dallas
<u>Quality Statement:</u> All supporting quality control data adher exceptions or in a case narrative attachment. Reports with fu	red to data quality objectives and test results meet the Ill quality data deliverables are available on request.	requirements of NELAC unless otherwise noted as flagged
+ Subcontract Work - NELAP Certified Lab	These analytica All data is repor RL = Reporting	l results relate only to the sample tested. rted on an "As Is" basis unless designated as "Dry Wt." Limits
Web Site: www.pcslab.net Toll Free 800-880-4616 e-mail: chuck@pcslab.net	1532 Universal City Blvd, Suite 100 21 Universal City, TX 78148-3318	0-340-0343 FAX # 210-658-7903

Report of Sample Analysis

Ciliant Information			
Client Information	Sample Information	Laborat	ory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: SK WWTP IPP An Sample ID: Eff Grab #2 Matrix: Non-Potable Water Date/Time Taken: 04/01/2019 15	551 Date/Time Receiv Report Date: 04/ Approved by:	ved: 04/02/2019 11:51 17/2019
		ili	Chuck Wallgren, President
Test Description Flag Re	esult Units RL Analy	sis Date/Time Method	Analyst
Phenolics + See At	tached	Pa	ce Analytical Services - Dallas
<u>Quality Statement:</u> All supporting quality control data adher exceptions or in a case narrative attachment. Reports with fu	red to data quality objectives and test result Ill quality data deliverables are available o	s meet the requirements of NELAC unless n request.	s otherwise noted as flagged
+ Subcontract Work - NELAP Certified Lab	All	ese analytical results relate only to the sample tested. data is reported on an "As Is" basis unless designated = Reporting Limits	d as "Dry Wt."
Web Site: www.pcslab.net Toll Free 800-880-4616 e-mail: chuck@pcslab.net	1532 Universal City Blvd, Suite 100 Universal City, TX 78148-3318	210-340-0343	FAX # 210-658-7903

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: SK WWTP IPP Annual Sample ID: Eff Grab #3 Matrix: Non-Potable Water Date/Time Taken: 04/01/2019 2157	Laboratory Information PCS Sample #: 548264 Page 1 of 1 Date/Time Received: 04/02/2019 11:51 Date/Time Received: 04/02/2019 11:51 Report Date: 04/17/2019 Approved by:
Test Description Flag Re	esult Units RL Analysis Date/I	ime Method Analyst
Cyanide, Amenable + See Att	tached	Pace Analytical Services - Dallas
<u>Quality Statement:</u> All supporting quality control data adhere exceptions or in a case narrative attachment. Reports with fu	ed to data quality objectives and test results meet the re Il quality data deliverables are available on request.	equirements of NELAC unless otherwise noted as flagged
+ Subcontract Work - NELAP Certified Lab	These analytical re All data is reporte RL = Reporting L	esults relate only to the sample tested. d on an "As Is" basis unless designated as "Dry Wt." mits
Web Site: www.pcslab.net Toll Free 800-880-4616 e-mail: chuck@pcslab.net	1532 Universal City Blvd, Suite 100 210-3 Universal City, TX 78148-3318	940-0343 FAX # 210-658-7903

Climit Inf. 1			
Client Information	Sample Information	ukatu misilami sahatsi	Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: SK WWTP IPI Sample ID: Eff Grab #3 Matrix: Non-Potable Water Date/Time Taken: 04/01/2019	Dat Rep	S Sample #: 548265 Page 1 of 1 e/Time Received: 04/02/2019 11:51 port Date: 04/17/2019 proved by: Chuck Wallgren, President
	Carlo Market Market		Chuck wangren, President
Test Description Flag Re	sult Units RL An	alysis Date/Time Meth	od Analyst
Phenolics + See Att	tached		Pace Analytical Services - Dallas
<u>Quality Statement:</u> All supporting quality control data adhere exceptions or in a case narrative attachment. Reports with fu	ed to data quality objectives and test re Il quality data deliverables are availab	esults meet the requirements of the second sec	f NELAC unless otherwise noted as flagged
+ Subcontract Work - NELAP Certified Lab		These analytical results relate only All data is reported on an "As Is" ba RL = Reporting Limits	to the sample tested. Isis unless designated as "Dry Wt."
Web Site: www.pcslab.net Toll Free 800-880-4616 e-mail: chuck@pcslab.net	1532 Universal City Blvd, Suite 100 Universal City, TX 78148-3318	210-340-0343	FAX # 210-658-7903

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: SK WWTP IPP Annual Sample ID: Eff Grab #4 Matrix: Non-Potable Water Date/Time Taken: 04/02/2019 0535	PCS Sample #: 548266 Page 1 of 1 Date/Time Received: 04/02/2019 11:51 Report Date: 04/17/2019 Approved by: Lunch Malleren
	J	Chuck Wallgren, President
Test Description Flag Re	esult Units RL Analysis Date/Ti	ime Method Analyst
Cyanide, Amenable + See At	ttached	Pace Analytical Services - Dallas
<u>Quality Statement:</u> All supporting quality control data adher exceptions or in a case narrative attachment. Reports with fu	red to data quality objectives and test results meet the re Ill quality data deliverables are available on request.	quirements of NELAC unless otherwise noted as flagged
+ Subcontract Work - NELAP Certified Lab	These analytical res Ail data is reported RL = Reporting Lin	sults relate only to the sample tested. on an "As Is" basis unless designated as "Dry Wt." nits
Web Site: www.pcslab.net Toll Free 800-880-4616 e-mail: chuck@pcslab.net	1532 Universal City Blvd, Suite 100 210-34 Universal City, TX 78148-3318	40-0343 FAX # 210-658-7903

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information			
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: SK WWTP IPP Annual Sample ID: Eff Grab #4 Matrix: Non-Potable Water Date/Time Taken: 04/02/2019 0535	PCS Sample #: 548267 Page 1 of 1 Date/Time Received: 04/02/2019 11:51 Report Date: 04/17/2019 Approved by:			
Test Description Flag Re	esult Units RL Analysis Date	e/Time Method Analyst			
Phenolics + See At	tached	Pace Analytical Services - Dallas			
Quality Statement: All supporting quality control data adher exceptions or in a case narrative attachment. Reports with fu					
+ Subcontract Work - NELAP Certified Lab		cal results relate only to the sample tested. Forted on an "As Is" basis unless designated as "Dry Wt." ng Limits			
Web Site: www.pcslab.netToll Free 800-880-4616e-mail: chuck@pcslab.net	1532 Universal City Blvd, Suite 100 2 Universal City, TX 78148-3318	R10-340-0343 FAX # 210-658-7903			
This report cannot be reproduced or duplicated, except in full, without prior written consent from Pollution Control Services.					

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: SK WWTP IPP Annual Sample ID: Eff Grab Matrix: Non-Potable Water Date/Time Taken: 04/01/2019 1015	PCS Sample #: 548268 Page 1 of 1 Date/Time Received: 04/02/2019 11:51 Report Date: 04/17/2019 Approved by:
		Chuck Wallgren, President
Test Description R	esult Units RL Analysis Date/Ti	me Method Analyst
	ttached	Pace Analytical Services - Dallas
<u>Quality Statement:</u> All supporting quality control data adhe exceptions or in a case narrative attachment. Reports with f		quirements of NELAC unless otherwise noted as flagged
	These analytical res All data is reported RL = Reporting Lin	oults relate only to the sample tested. on an "As Is" basis unless designated as "Dry Wt." nits
Web Site: www.pcslab.netToll Free 800-880-4616e-mail: chuck@pcslab.net	1532 Universal City Bivd, Sulte 100 210-34 Universal City, TX 78148-3318	40-0343 FAX # 210-658-7903

Report of Sample Analysis

Client Information	in Haller	Si	ample Inform	ation	Sec. 1			Laboratory I	nformation	
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Sam Matr	Project Name: SK WWTP IPP Annual Sample ID: Eff Comp Matrix: Non-Potable Water Date/Time Taken: 04/02/2019 0800					PCS Sample #: 548269 Page 1 of 4 Date/Time Received: 04/02/2019 11:51 Report Date: 04/19/2019 Approved by:			
									ick Wallgren, Presiden	
Test Description	Result	Units	RL	Analysis	Date	/Time	Method	W.	Analyst	
Chloride Nitrate-N Sulfate Fluoride Kjeldahl-N, Total <u>Alkalinity, Total</u> Arsenic/ICP MS	172 28.8 100 0.70 3 132 0.0006	mg/L mg/L mg/L mg/L mg/L mg/L	1 0.1 1 0.10 1 10 0.0005	04/04/20 04/03/20 04/04/20 04/03/20 04/18/20 04/03/20 04/10/20	19 0 19 1 19 0 19 0 19 1)4:55 <u>4:51</u>)4:55)9:00 5:00	EPA 300.0 EPA 300.0 EPA 300.0 EPA 300.0 SM 4500-N SM 2320 B EPA 200.8	B/E	PLP PLP PLP CRM CRM DJL	
Test Description	Precision	Qua Limit	ility Assuranc LCL		ASD	UCI	L LCS	LCS Limit		
Chloride Nitrate-N Sulfate Fluoride Kjeldahl-N, Total Alkalinity, Total Arsenic/ICP MS	<1 <1 2 <1 <1 <1 <1 <1 2	10 20 10 10 10 10 20	92 70 93 83 92 95 70	100	99 99 96 99 97 100 99	102 130 102 108 109 107 130	107 103 108 102 106 102 97	85 - 115 85 - 115		
Quality Statement: All supporting quality control data exceptions or in a case narrative attachment. Reports	adhered to da with full quali	ta quality o ty data deliv	bjectives and t verables are av	test results n vailable on i	neet th eques	he requir 1.	ements of NE	LAC unless othe	erwise noted as flagged	d
	1/1/			All c RL = QC	lata is re Report Data 1	eported on ting Limits Reported	in %, Except BO	nless designated as " D in mg/L		
Web Site: www.pcslab.net Toll Free 800-880- e-mail: chuck@pcslab.net	4616 1		ll City Blvd, Suite ity, TX 78148-33		2	210-340-03	43	F	XX # 210-658-7903	

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: SK WWTP IPP Annual Sample ID: Eff Comp Matrix: Non-Potable Water Date/Time Taken: 04/02/2019 0800	PCS Sample #: 548269 Page 2 of 4 Date/Time Received: 04/02/2019 11:51 Report Date: 04/19/2019

Test Description	Result	Units	RL	Analys	sis Date	/Time	Method		Analyst	
Barium/ICP (Total)	0.018	mg/L	0.003	04/04	/2019	12:44	EPA 200.7 /	6010 B	DJL	
Cadmium/ICP (Total)	< 0.001	mg/L	0.001	04/04/	/2019	12:44	EPA 200.7 /	6010 B	DJL	
Chromium/ICP (Total)	< 0.003	mg/L	0.003	04/04	/2019 1	12:44	EPA 200.7 /	6010 B	DJL	
Copper/ICP (Total)	0.008	mg/L	0.002	04/04/	/2019 1	12:44	EPA 200.7 /	6010 B	DJL	
Lead/ICP MS	< 0.0005	mg/L	0.0005	04/10/	/2019 1	11:15	EPA 200.8		DJL	
Aluminum/ICP (Total)	0.130	mg/L	0.0025	04/04/	/2019 1	12:44	EPA 200.7 /	6010 B	DJL	
Beryllium/ICP (Total)	< 0.0005	mg/L	0.0005	04/04/	/2019 1	12:44	EPA 200.7 /	6010 B	DJL	
		Qua	lity Assurance	e Summ	ary					
Test Description	Precision	Limit	LCL	MS	MSD	UCL	L LCS	LCS Limit		
Barium/ICP (Total)	1	20	75	96	95	125	110	85 - 115		
Cadmium/ICP (Total)	1	20	75	100	99	125	105	85 - 115		
Chromium/ICP (Total)	<1	20	75	96	96	125	110	85 - 115		
Copper/ICP (Total)	<1	20	75	97	97	125	105	85 - 115		
Lead/ICP MS	<1	20	70	108	108	130	106	85 - 115		
Aluminum/ICP (Total)	<1	20	75	101	101	125	105	85 - 115		
Beryllium/ICP (Total)	<1	20	75	100	100	125	110	85 - 115		

<u>Quality Statement:</u> All supporting quality control data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.

			These analytical results relate only to the All data is reported on an "As Is" basis u RL = Reporting Limits QC Data Reported in %, Except BC	nless designated as "Dry Wt."	
Wcb Site: www.pcslab.net c-mail: chuck@pcslab.net	Toll Free 800-880-4616	1532 Universal City Blvd, Suite 100 Universal City, TX 78148-3318	210-340-0343	FAX # 210-658-7903	/

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: SK WWTP IPP Annual Sample ID: Eff Comp Matrix: Non-Potable Water Date/Time Taken: 04/02/2019 0800	PCS Sample #: 548269 Page 3 of 4 Date/Time Received: 04/02/2019 11:51 Report Date: 04/19/2019

Test Description	Flag	Result	Units	RL	Analy	sis Date	e/Time	Method		Analyst	
Molybdenum/ICP (Total)		< 0.010	mg/L	0.010	04/04	/2019	12:44	EPA 200.7 / 0	5010 B	DJL	
Hexavalent Chrome	R	< 0.003	mg/L	0.003	04/02	/2019	16:43	SM 3500-Cr	D	DJL	
Antimony/ICP (Total)		< 0.005	mg/L	0.005	04/04	/2019	12:44	EPA 200.7 / (5010 B	DJL	
Nickel/ICP (Total)		0.002	mg/L	0.002	04/04	/2019	12:44	EPA 200.7 / 0	5010 B	DJL	
Silver/ICP (Total)		< 0.0005	mg/L	0.0005	04/04	/2019	12:44	EPA 200.7 / 0	5010 B	DJL	
Zinc/ICP (Total)		0.071	mg/L	0.005	04/04	/2019	12:44	EPA 200.7 / 0	5010 B	DJL	
Selenium/ICP (Total)		< 0.005	mg/L	0.005	04/04	/2019	12:44	EPA 200.7 / 6	5010 B	DJL	
	- 71- 6	and the second second	Qua	lity Assurance	e Summ	ary					
Test Description		Precision	Limit	LCL	MS	MSD	UCI	L LCS	LCS Limit		
Molybdenum/ICP (Total)		1	20	75	100	99	125	105	85 - 115		
Hexavalent Chrome		<1	20	75	*55	*55	125	101	85 - 115		
Antimony/ICP (Total)		<1	20	75	100	100	125	105	85 - 115		
Nickel/ICP (Total)		<1	20	75	92	92	125	105	85 - 115		
Silver/ICP (Total)		1	20	75	89	90	125	110	85 - 115		
Zinc/ICP (Total)		<1	20	75	95	95	125	105	85 - 115		
Selenium/ICP (Total)		<1	20	75	100	100	125	105	85 - 115		

<u>Quality Statement:</u> All supporting quality control data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.

R Spike recovery outside control limit * Approved for release per QA Plan,			These analytical results relate only to the All data is reported on an "As Is" basis un $RL = Reporting Limits$		
			QC Data Reported in %, Except BO	D in mg/L	
Web Site: www.pcslab.net c-mail: chuck@pcslab.net	Toll Free 800-880-4616	1532 Universal City Blvd, Suite 100 Universal City, TX 78148-3318	210-340-0343	FAX # 210-658-7903	

Report of Sample Analysis

Client Information		ation	Labo	oratory Information				
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Samp Matri	P IPP Annual er 2019 0800	PCS Sample #: 548269 Page 4 of Date/Time Received: 04/02/2019 11:51 Report Date: 04/19/2019					
Test Description	Result	Units RL	Analysis Date/Time	Method	Analyst			
Thallium/ICP MS	<0.0005	mg/L 0.0005	04/10/2019 11:15	EPA 200.8	DJL			
Test Description	Precision	Quality Assuranc Limit LCL	e Summary MS MSD UC	L LCS LCS	Timit			
Thallium/ICP MS	<1	20 70	106 107 130		- 115			
uality Statement: All supporting quality cont exceptions or in a case narrative attachment.	rol data adhered to data	a quality objectives and a	est results meet the requ	irements of NELAC u	nless otherwise noted as flagged			
ceptions or in a case narrative attacnment.	xeports with juit quality	v aata aetiverables are av	These analytical resu	Its relate only to the sample t n an "As Is" basis unless des	tested. ignated as "Dry Wt."			
				ł in %, Except BOD in mg	g/L			
Web Site: www.pcslab.net Toll Free c-mail: chuck@pcslab.net	800-880-4616 15	532 Universal City Blvd, Suit Universal City, TX 78148-33	210-340-0 18	1343	FAX # 210-658-7903			

Report of Sample Analysis

Client Information		Sample Infor	mation	La	aboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289		Project Name: SK WW Sample ID: Eff Comp Matrix: Non-Potable W Date/Time Taken: 04/0	ater	Date/Time F	e #: 548270 Page 1 of 1 Received: 04/02/2019 11:51 : 04/17/2019
Test Description	Re	esult Units RL	Analysis Date/Ti	me Method	Analyst
Pesticides 617 604.1 Hexachlorophene Semi Volatiles 625 Pesticides 608 Pesticides 632 Pesticide 1657 Herbicides 615	See Att See Att See Att See Att See Att	tached tached tached tached tached			Pace Analytical Services - Dallas Pace Analytical Services - Dallas
<u>Duality Statement:</u> All supporting quality contro xceptions or in a case narrative attachment. Re	ol data adher ports with fu	ed to data quality objectives an Il quality data deliverables are	d test results meet the req available on request.	uirements of NELAC	unless otherwise noted as flagged
				ults relate only to the sample on an "As Is" basis unless de	

			RL = Reporting Limits		
Web Site: www.pcslab.net e-mail: chuck@pcslab.net	Toll Free 800-880-4616	1532 Universal City Blvd, Sulte 100 Universal City, TX 78148-3318	210-340-0343	1	FAX # 210-658-7903

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: SK WWTP IPP Annual Sample ID: Eff Grab Matrix: Non-Potable Water Date/Time Taken: 04/02/2019 0800	PCS Sample #: 548271 Page 1 of 1 Date/Time Received: 04/02/2019 11:51 Report Date: 04/12/2019 Approved by: Chuck Wallgren, President
Test Description Re	sult Units RL Analysis Date/T	ime Method Analyst
Mercury/CVAFS <0.000	005 mg/L 0.000005 04/05/2019 12::	54 EPA 245.7 DJL
Test Description Pro	Quality Assurance Summary ecision Limit LCL MS MSD	UCL LCS LCS Limit
Mercury/CVAFS	4 20 70	130
<u>Quality Statement:</u> All supporting quality control data adhe exceptions or in a case narrative attachment. Reports with f	red to data quality objectives and test results meet the r full quality data deliverables are available on request.	requirements of NELAC unless otherwise noted as flagged
	All data is repor RL = Reporting	Il results relate only to the sample tested. rted on an "As Is" basis unless designated as "Dry Wt," g Limits ported in %, Except BOD in mg/L
Web Site: www.pcslab.netToll Free 800-880-4616e-mail: chuck@pcslab.net	1532 Universal City Blvd, Suite 100 210- Universal City, TX 78148-3318	-340-0343 FAX # 210-658-7903

Chain of Custody Number 5 4 8 2 6 0

MULTIPLE SAMPL	LE ANALY	SIS REQ	UES	T A	ND CHAIN	OF	CU	STODY FORM		Pag	e 1/2	Stamp 1 st s	ample and COC as same number			
CUSTOMER INFORMA		St. 8 . 50	v. 1	151	REPOR	T IN	FOR	MATION	1 Holy			30 B.,				
Name: New Braunfels Uti	lites				Attentio	n: Tri	sh So	bechting		Pho	ne: (830) 608-8900		Fax: (830) 626-1361			
SAMPLE INFORMATIC	N			100					Requested Analysis							
Project Information:			Collee	cted By	" the	-	_			1			Instructions/Comments:			
IPP SK WWTP Annual					Matrix		<u>i</u> ų į	Container								
Report "Soils" 🛛 As Is 🗆 Dry V	√t.		orine mg/L	e or	DW- Drinking Water; NPW- Nor	-			5.1							
Sector A . Will Desident	Colle	cted	Chlo Iual	osit	potable water; WW-Wastewater;	Type	Number	Preservative	33	ols						
Client / Field Sample ID	Date	Time	Field Chlorine Residual mg/L	Composite or Grab	LW-Liquid Waste		Nn		CN-A335.1	Phenols			PCS Sample Number			
Eff Grab #1	Start: 4119 End:	Start: [0]5 End:		□C ⊠G	DW NPW WW Soil Sludge LW Other	■P ■G ■O	1	□ H ₂ SO4 □ HNO3 □ H ₃ PO4 ☑ NaOH ☑ ICE □	x				5 4 8 2 6 0 DS DB DN DHEM Other:			
Eff Grab #1 0401930	Start: 4.1.61 End:	Start: 1015 End:		□C ⊠G	DW NPW WW Soil Sludge LW Other	□P ⊠G □O	1	$\label{eq:heads} \begin{array}{ c c c c c } \hline \blacksquare & H_2 SO_4 \ \hline \blacksquare & HNO_3 \\ \hline \blacksquare & H_3 PO_4 \ \hline \blacksquare & NaOH \\ \hline \blacksquare & ICE \ \hline & \hline \end{array}$		×			5 4 8 2 6 1			
Eff Grab #2 0401435	Start: End:	Start: SSS (End:			DW NPW WW Soil Sludge LW Other	⊠P □G □O	1	□ H ₂ SO ₄ □ HNO ₃ □ H ₃ PO ₄ ☑ NaOH ☑ ICE □	×				5 4 8 2 6 2 (DS DB DN DHEM Other:			
Eff Grab #2	9.1.19	Start: 1551 End:		-0	DW NPW WW Soil Sludge LW Other	□P ⊠G □O	1	☑ H ₂ SO ₄ □ HNO ₃ □ H ₃ PO ₄ □ NaOH ☑ ICE □		×			5 4 8 2 6 3 □S □B □N □HEM Other:			
Eff Grab #3		Start: <u>M</u> 57 End:		□C □G	DW NPW WW Soil Sludge LW Other	■P ■G ■O	1	□ H ₂ SO ₄ □ HNO ₃ □ H ₃ PO ₄ ☑ NaOH ☑ ICE □	×				5 4 8 2 6 4			
Eff Grab #3		Start: 115] End:		ПC	DW NPW WW Soil Sludge LW	□P ⊠G □O	1	 ☑ H₂SO₄ □ HNO₃ □ H₃PO₄ □ NaOH ☑ ICE □ 		×			5 4 8 2 6 5			
Lift Grob #4	4-2-19	Start: SS35 End:		⊠G	DW NPW WW Soil Sludge LW	EP □G □O	1	□ H ₂ SO ₄ □ HNO ₃ □ H ₃ PO ₄ ⊠ NaOH ☑ ICE □	×				5 4 8 2 5 0 DS DB DN DHEM Other:			
Eff (irah #/		Start: 555		E G	□ DW □ NPW ☑ WW □ Soil □ Sludge □ 1 W □ Other	□P ⊠G □O	1	$H_2SO_4 \square HNO_1$ $\square H_1PO_4 \square NaOH$ $\square ICE \square$		×			548267.			
Required Turnaround: 🔳 R	outine (6-10 days	s) EXPEDIT	TE: (Se	e Surel	arge Schedule)	- <	8 Hrs	\Box < 16 Hrs. \Box < 24 Hrs	. D/5	days [Other: Rush	Charges Au	thorized by:			
Sample Archive/Disposal:	Laboratory Stan	idard 🗆 Hold	for clier	nt pick	up Co	ontain	er Ty	pe: P = Plastic, G = Glass,	p=c	Dther /	1		Carrier ID:			
Relinquished By:	~		Date:	4.	ン by Time:		51	Received By:	IN	M	/	Date:	UNG Time: 151			
Relinquished By:			Date:		Time			Received By:	1	V		Date:	Time:			
Rev-Multiple Sample COC 20120201				-						all and a second						

1532 Universal City Blvd., Ste. 100, Universal City, Texas 78148 P (210) 340-0343 or (800) 880-4616 - F (210) 658-7903

© 2008 Pollution Control Services - All rights reserved Login at www.pcslab.net TCEQ NELAP T104704361-TX

Chain of Custody Number

MULTIPLE SAMPL	MULTIPLE SAMPLE ANALYSIS REQUEST AND CHAIN OF CUSTODY FORM									Pag < 2/2 Stamp 1 st sample and COC as same number									
CUSTOMER INFORMA	ATION	211 18			RE	PORT	INF	OR	MATION	90. m	8.000	1110			100	Particip			
Name: New Braunfels Uti	lities				Atte	ention:	Tris	h So	echting		Pho	one: (8	830) 6	08-89	000		Fax: (830)	526-1361	
SAMPLE INFORMATIC	DN		1				-	¥-9	- S S - Arest - Ar	Req	ueste	d Ana	alysis		(*=)			- 15 M	di Calud
Project Information:			Colle	cted By	v: AMO	m	-					7	632	15	557		Instructio	ons/Comment	s:
IPP SK WWTP Annual					Matr	rix	W.		Container		m	031	st 6	srb 6	Pest 1				
Report "Soils" 🛛 As Is 🗆 Dry V	Vt.		Field Chlorine Residual mg/L	te or	DW-Drinki Water; NPV	W-Non-		ц		4	Metals Table 3	F, NO3N	3, Pe	SVOC 625, Herb 615	st 617, i	Leve			
All Anna and Anna	Colle	ected	thal Chl	posit	potable wate		Type	Number	Preservative	62	ls]	ર્સ	60	C 62	.1, Pe	MO			
Client / Field Sample ID	Daté	Time	Field Resid	Composite or Grab	LW-Liquid			ⁿ Z		VOC 624	Meta	Hex	Pest 608, Pest	SVO	Hex 604.1, Pest 617, Pest 1657	Hg Low Level	PCS	Sample Nu	ımber
	Start	Start:		ПС		NPW	□P ⊠G		$\square H_2SO_4 \square HNO_3 \square H_3PO_4 \square NaOH$										
Eff Grab	End:	End:		⊠ G	 Sludge C Other 	JLW	0 0	1	■ ICE □	×	*							8 2 6	8
Eff Curl	Start:	Start:		ПС		NPW	□P ⊠G		$\square H_2SO_4 \square HNO_3 \square H_3PO_4 \square NaOH$										
Eff Grab	End:	End:			□ Sludge □ □ Other	JLW	00	I	⊠ ICE □	X								I□HEM Other:	
	Start: -19	Start:		ПC		NPW Soil	□P ⊠G												
Eff Grab	End:	End:		I G	Sludge C Other			1	□ H₃PO₄ □ NaOH ☑ ICE □	X								I□HEM Other:	
	Star: -2-19	Start:		DС			□P IIG		\square H ₂ SO ₄ \square HNO ₃										
Eff Grab	End:	End:		⊠G	🗖 Sludge 🗖			1	$\square H_3PO_4 \square NaOH$ $\blacksquare ICE \square$	X								I HEM Other:	
	Start:	Start:			Other	JDW	ØP	_	H ₂ SO ₄ HNO ₃		_								
EffComp	Start 1.19	1000		⊠ C		Soil	GG	2	H ₃ PO ₄ NaOH		X	X						8269	
Eff Comp 04021942	End: 4.2.19	End:		G	□ Sludge □ □ Other	JLW	0				~	~						HEM Other:	
	Start: 4.1.19	Start:		€C		1PW	OP		\square H ₂ SO ₄ \square HNO ₃				3.20	4 30				100.	
Eff Comp 04021943		(000) End:		GG	🛛 Sludge 🗖			7	□ H₃PO₄ □ NaOH □ ICE □				X	X	X			4 8 9 7 HEM Other:	<u> </u>
		Start:			C Other		OP		\square H ₂ SO ₄ \square HNO ₃										
The standard	Start: 19	1000		u v	🗷 WW 🗆 S	oil	ØG	3	H ₃ PO ₄ NaOH							X	5	4827	1
	End: 4.2.19	End:			 Sludge Other 											~		HEM Other:	<u> </u>
	Start:	Start:		DС					$\square H_2 SO_4 \square HNO_3$ $\square H_3 PO_4 \square NaOH$										
	End:	End:			□ Sludge □ □ Other													HEM Other,	
Required Turnaround: 🔳 R	outine (6-10 days	s) EXPEDIT	E: (Se		arge Schedu	ıle)	< 8	Hrs	□ < 16 Hrs. □ < 24 Hrs		days (Other		R	ush Cl	arges A	uthorized by:		
Sample Archive/Disposal:	Laboratory Star							-	pe: $P = Plastic, G = Glass,$		11					3.0071	Carrier ID:		
Relinquished By:	20182)	Date:	1		Time:			Received By:	M.	11	2		-		Date:			
Relinquished By: Date:					Time:	11	/1	Received By:	11	11					Date:	(1=1) (Time:		
Rev. Multiple Sample COC 20120201					1			1				_		_ a.e.					

1532 Universal City Blvd., Ste. 100, Universal City, Texas 78148 P (210) 340-0343 or (800) 880-4616 - F (210) 658-7903

file path: Z:\COC\N\NBU\Inf_IPP_Annual_NK_Page2_Jan28_2016.pdf

2008 Pollulion Control Services All rights reserved Login at <u>www.pcslab.net</u> TCEQ NELAP T104704361-TX Ma

Pace Analytical "

Pace Analytical Services, LLC 400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

April 17, 2019

Chuck Wallgren Pollution Control Services 1532 Universal City Blvd. #100 Universal City, TX 78148 RE: Project: 548260 Pace Project No.: 75105824

Dear Chuck Wallgren:

results relate only to the samples included in this report. Results reported herein conform to the most Enclosed are the analytical results for sample(s) received by the laboratory on April 03, 2019. The current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses have been subcontracted outside of the Pace Network. The subcontracted laboratory report has been attached

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Melion Mi Cullang

Melissa McCullough melissa.mccullough@pacelabs.com (972)727-1123 Project Manager

Enclosures

cc: Michael Klang

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, LLC.

CERTIFICATIONS

 Project:
 548260

 Pace Project No.:
 75105824

Dallas Certification IDs: 400 West Bethany Dr Suite 190, Allen, TX 75013 Florida Certification #: E871118 EPA# TX00074 Texas T104704232-18.26 Texas Certification #: T104704232-18-26

Kansas Certification #: E-10388 Arkansas Certification #: 88-0647 Oklahoma Certification #: 8727 Louisiana Certification #: 30686 Iowa Certification #: 408

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE SUMMARY

Project: 548260 Pace Project No.: 75105824

	470001 C /			
Lab ID	Sample ID	Matrix	Date Collected	Date Received
75105824001	548260	Water	04/01/19 10:15	04/03/19 10:50
75105824002	548261	Water	04/01/19 10:15	04/03/19 10:50
75105824003	548262	Water	04/01/19 15:51	04/03/19 10:50
75105824004	548263	Water	04/01/19 15:51	04/03/19 10:50
75105824005	548264	Water	04/01/19 21:57	04/03/19 10:50
75105824006	548265	Water	04/01/19 21:57	04/03/19 10:50
75105824007	548266	Water	04/02/19 05:35	04/03/19 10:50
75105824008	548267	Water	04/02/19 05:35	04/03/19 10:50
75105824009	548268	Water	04/01/19 10:15	04/03/19 10:50
75105824010	548270	Water	04/02/19 08:00	04/03/19 10:50

.....

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 3 of 44

SAMPLE ANALYTE COUNT

 Project:
 548260

 Pace Project No.:
 75105824

				Analytes	
	Sample IU	Method	Analysts	Reported	Reported Laboratory
75105824001	548260	SM 4500-CN-E	SRT	-	PASI-D
		SM 4500-CN-G	SRT	4	PASI-D
75105824003	548262	SM 4500-CN-E	SRT	-	PASI-D
		SM 4500-CN-G	SRT	4	PASI-D
75105824005	548264	SM 4500-CN-E	SRT	1	PASI-D
		SM 4500-CN-G	SRT	1	PASI-D
75105824007	548266	SM 4500-CN-E	SRT	1	PASI-D
		SM 4500-CN-G	SRT	1	PASI-D
75105824009	548268	EPA 624 Low	NSR	37	PASI-D
75105824010	548270	EPA 608	JL	- 28	PASI-D
		EPA 615	DAT	3 C	PASI-D
		EPA 604.1	XLY	2	PASI-D
		EPA 632	XLY	n	PASI-D

PASI-D

69

XLY

EPA 625

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

	•			2
	ŝ	FIC3		-
	3	NIE		
	ŝ	An		
C	5	CP	5	
1	ો	J.	1	
6	Ľ			
		1	1	

Project:	548260								
Pace Project No.:	75105824								
Sample: 548260		Lab ID:	75105824001	Collected:	04/01/19 1	0:15	Received:	Lab ID: 75105824001 Collected: 04/01/19 10:15 Received: 04/03/19 10:50 Matrix: Water	Matrix: Water
				Report					
Parameters	sters	Results Units	Units	Limit	MDL	ЪГ	Prepared	Limit MDL DF Prepared Analyzed CAS No.	CAS No.
4500CNE Cyanide, Total	Total	Analytical	Analytical Method: SM 4500-CN-E Preparation Method: SM 4500-CN-C	00-CN-E Pre	sparation M	ethod: S	SM 4500-CI	4-C	

		5	DF Prepared	Analyzed	CAS No. Qual	Qual
Analytical Method: SM 4500-CN-E Preparation Method: SM 4500-CN-C	E Preparation	Method	: SM 4500-CN-C			
ND ug/L 10.0		-	04/12/19 12:27	4.0 1 04/12/19 12:27 04/12/19 15:46 57-12-5	57-12-5	
Analytical Method: SM 4500-CN-G Preparation Method: SM 4500-CN-C	G Preparation	Method	: SM 4500-CN-C			
ND ug/L 10.0		-	04/15/19 08:38	04/15/19 08:39	57-12-5	
ng/L				1 04/15/19 08:38	1 04/15/19 08:38 04/15/19 08:39	4.0 1 04/15/19 08:38 04/15/19 08:39 57-12-5

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Date: 04/17/2019 04:12 PM

	0	
	CG.	Laoutine State
	ζŢ,	Celeby
	Da Da	ed.ww
	84	*
\cap	ag a	
2	1	
	1	1

	Lab ID: 75105824003 Collected: 04/01/19 15:51 Received: 04/03/19 10:50 Matrix: Water	Analyzed CAS No. Qual		4.0 1 04/12/19 12:27 04/12/19 15:48 57-12-5	4-0	4.0 1 04/15/19 08:38 04/15/19 08:39 57-12-5
	Received:	Prepared	1: SM 4500-CN	04/12/19 12:	d: SM 4500-CN	04/15/19 08:
	3 15:51	DF	Metho	~	Metho	~
	1: 04/01/18	MDL	reparation	4.0	reparation	4.0
	Collected	Report Limit	00-CN-E P	10.0	00-CN-G P	10.0
	75105824003	Units	Analytical Method: SM 4500-CN-E Preparation Method: SM 4500-CN-C	ng/L	Analytical Method: SM 4500-CN-G Preparation Method: SM 4500-CN-C	ug/L
	Lab ID:	Results	Analytical	QN	Analytical	QN
Project: 548260 Pace Project No.: 75105824	Sample: 548262	Parameters	4500CNE Cyanide, Total	Cyanide	4500CNG Cyanide, Amenable	Amenable Cyanide

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC. **REPORT OF LABORATORY ANALYSIS**

Date: 04/17/2019 04:12 PM

Page 6 of 44

6	
	Cal
	N.
	PU13
~	8
()	a
8	7
	1

Lab ID: 75105824005 Collected: 04/01/19 21:57 Received: 04/03/19 10:50 Matrix: Water Report	Results Units Limit MDL DF Prepared Analyzed CAS No.	
Lab ID:		
mple: 548264	Parameters	
	Sample: 548264 Lab ID: 75105824005 Collected: 04/01/19 21:57 Received: 04/03/19 10:50 Matrix: Water Report	Lab ID: 75105824005 Collected: 04/01/19 Report neters Results Units Limit MDL

4500CNE Cyanide, Total Ar	A locitoriou				ī		Midiyzeu CAS NO. Quai	0.0	Qual
	u iaiyucai n	fethod: SM 4	4500-CN-E	Preparation	Method	Analytical Method: SM 4500-CN-E Preparation Method: SM 4500-CN-C			
	QN	ND ug/L	10.0		-	4.0 1 04/12/19 12:27 04/12/19 15:48 57-12-5	04/12/19 15:48	57-12-5	
4500CNG Cyanide, Amenable Ar	Vnalytical N	fethod: SM 4	1500-CN-G	Preparation	Methoc	Analytical Method: SM 4500-CN-G Preparation Method: SM 4500-CN-C			
	QN	ng/L	10.0	4.0	-	04/15/19 08:38 04/15/19 08:39 57-12-5	04/15/19 08:39	57-12-5	

	0	
	Cal	S. COM
	M	roelab
	BUN	инкре
~	9	
()	no la	
1	7	
	1	1

548260

Project:

Pace Project No.: 75105824									
Sample: 548266	Lab ID:	75105824007	Collected:	04/02/19	05:35	Lab ID: 75105824007 Collected: 04/02/19 05:35 Received: 04/03/19 10:50 Matrix: Water	03/19 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
4500CNE Cyanide, Total	Analytical	Method: SM 450	00-CN-E Pr	eparation M	Aethod:	Analytical Method: SM 4500-CN-E Preparation Method: SM 4500-CN-C			
Cyanide	QN	ng/L	10.0	4.0	-	4.0 1 04/12/19 12:27 04/12/19 15:48 57-12-5	04/12/19 15:4	8 57-12-5	
4500CNG Cyanide, Amenable	Analytical	Method: SM 450	DD-CN-G Pr	eparation N	Method :	Analytical Method: SM 4500-CN-G Preparation Method: SM 4500-CN-C			
Amenable Cyanide	QN	ng/L	10.0	4.0 1	-	04/15/19 08:38 04/15/19 08:39 57-12-5	04/15/19 08:3	39 57-12-5	

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Date: 04/17/2019 04:12 PM

Page 8 of 44

Pace Analytical Services, LLC 400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

ANALYTICAL RESULTS

75105824 548260 Pace Project No.: Project:

Pace Analytical

Samula: £48768	0.401	1 of 10. 76405034000	Collection 1	04104140	1.0				Ĩ
	רמט וני.	600470001 C /	Collected: 04/01/18 10:15	04/01/18	GL:NL	Kecelved: U4	Received: 04/03/19 10:50 Matrix: Water	ıtrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
624 Volatile Organics	Analytical	Analytical Method: EPA 624 Low	24 Low		ĺ				
Acrolein	QN	ng/L	50.0	6.7	-		04/03/19 23-24	107-02-8	
Acrylonitrile	ND	ug/L	50.0	6.0			04/03/19 23-24	107-13-1	
Benzene	ND	ng/L	10.0	0.49	.		04/03/19 23:24	71-43-2	
Bromoform	ND	ng/L	10.0	7.5	٢		04/03/19 23:24	75-25-2	
Carbon tetrachlonide	ND	ng/L	2.0	1.1	-		04/03/19 23:24	56-23-5	
Chlorobenzene	ND	ng/L	10.0	0.37	-		04/03/19 23:24	108-90-7	
Dibromochloromethane	QN	ng/L	10.0	0.40	-		04/03/19 23:24	124-48-1	
Chloroethane	ND	ng/L	50.0	0.95	-		04/03/19 23:24	75-00-3	
2-Chloroethylvinyl ether	QN	ng/L	10.0	3.2	-		04/03/19 23:24	110-75-8	
Chloroform	34.2	ng/L	10.0	1.2	-		04/03/19 23:24	67-66-3	
Bromodichloromethane	18.5	ng/L	10.0	0.50	-		04/03/19 23:24	75-27-4	
1,1-Dichloroethane	QN	ng/L	5.0	1.2	-		04/03/19 23:24	75-34-3	
1,4-Dichlorobenzene	QN	ng/L	10.0	0.40	٢		04/03/19 23:24	106-46-7	
1,3-Dichlorobenzene	QN	ng/L	10.0	0.43	-		04/03/19 23:24	541-73-1	
1,2-Dichlorobenzene	QN	ng/L	10.0	0.37	-		04/03/19 23:24	95-50-1	
1,2-Dibromoethane (EDB)	ND	ng/L	10.0	0.45	.		04/03/19 23:24	106-93-4	
1,2-Dichloroethane	QN	ng/L	10.0	1.1	.		04/03/19 23:24	107-06-2	
1,1-Dichloroethene	ND	ng/L	10.0	1.1	.		04/03/19 23:24	75-35-4	
1,2-Dichloropropane	QN	ng/L	10.0	0.49	-		04/03/19 23:24	78-87-5	
Total 1,3-Dichloropropene	ND	ng/L	10.0	3.7	-		04/03/19 23:24	542-75-6	N2
Ethylbenzene	QN	ng/L	10.0	0.46	-		04/03/19 23:24	100-41-4	
Bromomethane	ND	ng/L	50.0	1.2	. 		04/03/19 23:24	74-83-9	
Chloromethane	ND	ng/L	50.0	1.1	-		04/03/19 23:24	74-87-3	
2-Butanone (MEK)	ND	ng/L	50.0	4.9	-		04/03/19 23:24	78-93-3	2
Methylene Chloride	QN	ng/L	20.0	10.0	-		04/03/19 23:24	75-09-2	
1,1,2,2-Tetrachloroethane	QN	ng/L	10.0	1.5	-		04/03/19 23:24	79-34-5	
Tetrachloroethene	QN	ng/L	10.0	1.5	-		04/03/19 23:24	127-18-4	
Toluene	ND	ng/L	10.0	1.3	-		04/03/19 23:24	108-88-3	
trans-1,2-Dichloroethene	ND	ng/L	10.0	1.2	-		04/03/19 23:24	156-60-5	
1,1,1-Trichloroethane	ND	ng/L	10.0	0.69	-		04/03/19 23:24	71-55-6	
1,1,2-Trichloroethane	ND	ng/L	10.0	1.3	-		04/03/19 23:24	79-00-5	
Trichloroethene	ND	ng/L	10.0	0.60	-		04/03/19 23:24	79-01-6	
Vinyl chloride	QN	ng/L	10.0	0.93	-		04/03/19 23:24	75-01-4	
Total Trihalomethanes (Calc.)	59.9	ng/L	10.0	3.4	-		04/03/19 23:24		
Surrogates		;							
4-Bromotiuorobenzene (S)	101	%	70-130		-		04/03/19 23:24	460-00-4	
Ioluene-d8 (S)	66	~%	70-130		-		04/03/19 23:24	2037-26-5	
1,2-Dichloroethane-d4 (S)	108	%	70-130		-		04/03/19 23:24	17060-07-0	

Page 9 of 44

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC, **REPORT OF LABORATORY ANALYSIS**

Date: 04/17/2019 04:12 PM

0
- E
8 85
it is
28
Analytical www.pacetabs.com
4
(D)
C O
1 120
1 st

Project: 548260 Pace Project No.: 75105824

Face Project No.: / 5105824									
Sample: 548270	Lab ID:	Lab ID: 75105824010		Collected: 04/02/19 08:00	08:00		Received: 04/03/19 10:50 Matrix: Water	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Quai
608SF GCS Pesticides and PCBs	Analytical	Analytical Method: EPA 608 Preparation Method: EPA 608 SF	308 Prepara	tion Method	: EPA	608 SF			
Aldrin	QN	ng/L	0.010	0.0071	-	04/09/19 11:15	04/10/19 12:32	309-00-2	
alpha-BHC	QN	ng/L	0.051	0.0061	-	04/09/19 11:15	04/10/19 12:32	319-84-6	
beta-BHC	QN	ng/L	0.051	0.011	-	04/09/19 11:15	04/10/19 12:32	319-85-7	
gamma-BHC (Lindane)	QN	ng/L	0.051	0.0051	-	04/09/19 11:15	04/10/19 12:32	58-89-9	
delta-BHC	QN	ng/L	0.051	0.0041	-	04/09/19 11:15	04/10/19 12:32	319-86-8	
Chlordane (Technical)	QN	ng/L	0.20	0.042	-	04/09/19 11:15	04/10/19 12:32	57-74-9	
4,4'-DDT	ND	ng/L	0.020	0.0051	-	04/09/19 11:15	04/10/19 12:32	50-29-3	
4,4'-DDE	QN	ng/L	0.10	0.0041	-	04/09/19 11:15	04/10/19 12:32	72-55-9	
4,4'-DDD	QN	ng/L	0.10	0.0061	-	04/09/19 11:15	04/10/19 12:32	72-54-8	
Dieldrin	QN	ng/L	0.020	0.0041	-	04/09/19 11:15	04/10/19 12:32	60-57-1	
Endosulfan I	QN	ng/L	0.010	0.0041	-	04/09/19 11:15	04/10/19 12:32	959-98-8	
Endosultan II	QN	ng/L	0.020	0.0041	-	04/09/19 11:15	04/10/19 12:32	33213-65-9	
Endosultan sulfate	QN	ng/L	0.10	0.0041	-	04/09/19 11:15	04/10/19 12:32	1031-07-8	
Endrin	ND	ng/L	0.020	0.0041	-	04/09/19 11:15	04/10/19 12:32	72-20-8	
Endrin aldehyde	QN	ng/L	0.10	0.012	-	04/09/19 11:15	04/10/19 12:32	7421-93-4	
Heptachior	QN	ng/L	0.010	0.0061	-	04/09/19 11:15	04/10/19 12:32	76-44-8	
Heptachlor epoxide	ND	ng/L	0.010	0.0041	~	04/09/19 11:15	04/10/19 12:32	1024-57-3	
Toxaphene	ND	ng/L	0.31	0.21	-	04/09/19 11:15	04/10/19 12:32	8001-35-2	
PCB-1242 (Arocior 1242)	ND	ng/L	0.20	0.11	-	04/09/19 11:15	04/10/19 12:32	53469-21-9	
PCB-1254 (Aroclor 1254)	ND	ng/L	0.20	0.088	-	04/09/19 11:15	04/10/19 12:32	11097-69-1	
PCB-1221 (Aroclor 1221)	ND	ng/L	0.20	0.14	~	04/09/19 11:15	04/10/19 12:32	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ng/L	0.20	0.18	-	04/09/19 11:15	04/10/19 12:32	11141-16-5	
PCB-1248 (Arodor 1248)	ND	ng/L	0.20	0.073	-	04/09/19 11:15	04/10/19 12:32	12672-29-6	
PCB-1260 (Aroclor 1260)	ND	ng/L	0.20	0.15	-	04/09/19 11:15	04/10/19 12:32	11096-82-5	
PCB-1016 (Aroclor 1016)	ND	ng/L	0.20	0.12	-	04/09/19 11:15	04/10/19 12:32	12674-11-2	
PCB, Total	ND	ng/L	0.20	0.18	-	04/09/19 11:15	04/10/19 12:32	1336-36-3	
Surrogates									
Tetrachloro-m-xylene (S)	69	*%	47-135		**	04/09/19 11:15	04/10/19 12:32	877-09-8	
Decachlorobiphenyl (S)	87	%	16-161		y	04/09/19 11:15	04/10/19 12:32	2051-24-3	
615 Chlorinated Herbicides	Analytical	Analytical Method: EPA 615 Preparation Method: EPA 615	15 Preparat	ion Method	: EPA	315			
2,4-D	QN	na/L	0.70	0.18		04/09/19 22-30	04/15/19 15-48	94-75-7	
2,4,5-TP (Silvex)	ND	ng/L	0.30	0.16		04/09/19 22:30	04/15/19 15:48	93-72-1	
Surrogates)							
2,4-DCAA (S)	53	.%	44-137		-	04/09/19 22:30	04/15/19 15:48	19719-28-9	
604.1 HPLC Hexachlorophene	Analytical	Analytical Method: EPA 604.1 Preparation Method: EPA 604.1	04.1 Prepar	ation Metho	od: EP,	A 604.1			
Hexachlorophene	QN	ng/L	10.0	3.2	-	04/09/19 14:05	04/11/19 06:31	70-30-4	N3
Surrogates									
Nitrobenzene (S)	48	.%	25-108			04/09/19 14:05	04/11/19 06:31		
632 HPLC Carbamates	Analytical	Analytical Method: EPA 632 Preparation Method: EPA 632	32 Preparat	ion Method	: EPA	532			
Carbaryl	QN	ng/L	4.0	0.61	v	04/09/19 14:05	04/11/19 06:31	63-25-2	
Diuron	ND	ng/L	0.080	0.020	**	04/09/19 14:05	04/11/19 06:31	330-54-1	N2
Nitrobenzene (S)	48	.%	18-113		÷	04/09/19 14:05	04/11/19 06:31		
~	1				-		10:00 01 11 140		

Date: 04/17/2019 04:12 PM

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, LLC 400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

Pace Analytical

ANALYTICAL RESULTS

Project: 548260 Pace Project No.: 75105824

1 aug 1 10/00/1401. / 31/03024									
Sample: 3482/U	Lab ID:	Lab ID: 75105824010	Collected: 04/02/19 08:00	04/02/19	08:00		Received: 04/03/19 10:50 Matrix: Water	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	P	Prepared	Analyzed	CAS No.	Qual
625 MSSV	Analytical	Analytical Method: EPA 625 Preparation Method: EPA 625	25 Preparati	on Methoo	I: EPA	325			ĺ
Nonyiphenol	QN	ng/L	333	2.9	***	04/05/19 09:10	04/06/19 21:49	25154-52-3	N2
2-Chloropheno!	QN	ng/L	10.0	0.82	-	04/05/19 09:10	04/06/19 21:49	95-57-8	!
2,4-Dichlorophenol	QN	ng/L	10.0	0.82	-	04/05/19 09:10	04/06/19 21:49	120-83-2	
Cresols (Total)	QN	ug/L	10.0	1.5	۰-	04/05/19 09:10	04/06/19 21:49		N2
2,4-Dimethylphenol	QN	ng/L	10.0	1.4	-	04/05/19 09:10	04/06/19 21:49	105-67-9	
4,6-Dinitro-2-methylphenol	QN	ng/L	10.0	1.5	.	04/05/19 09:10	04/06/19 21:49	534-52-1	
2,4-Dinitrophenol	QN	ug/L	50.0	1.1	۳	04/05/19 09:10	04/06/19 21:49	51-28-5	
2-Nitrophenol	QN	ug/L	20.0	1.7		04/05/19 09:10	04/06/19 21:49	88-75-5	
4-Nitrophenol	QN	ng/L	50.0	1.6	-	04/05/19 09:10	04/06/19 21:49	100-02-7	
3&4-Methylphenol(m&p Cresol)	ON	ng/L	10.0	0.77	r	04/05/19 09:10	04/06/19 21:49		
4-Chloro-3-methylphenol	QN	ug/L	10.0	0.87		04/05/19 09:10	04/06/19 21:49	59-50-7	
Pentachlorophenol	QN	ng/L	5.0	2.1	7 -	04/05/19 09:10	04/06/19 21:49	87-86-5	
Phenol	QN	ug/L	10.0	0.97	*	04/05/19 09:10	04/06/19 21:49	108-95-2	
2,4,5-Inchlorophenol	ΩN	ng/L	50.0	1.9	1	04/05/19 09:10	04/06/19 21:49	95-95-4	
2,4,6-Inchlorophenol	QN	ug/L	10.0	1.8		04/05/19 09:10	04/06/19 21:49	88-06-2	
Acenaphthene	QN	ng/L	10.0	1.3	-	04/05/19 09:10	04/06/19 21:49	83-32-9	
Acenaphthylene	QN	ng/L	10.0	1.3	-	04/05/19 09:10	04/06/19 21:49	208-96-8	
Anthracene	QN	ng/L	10.0	1.1	**	04/05/19 09:10	04/06/19 21:49	120-12-7	
Benzidine	QN	ng/L	50.0	3.1	T	04/05/19 09:10	04/06/19 21:49	92-87-5	
Benzo(a)anthracene	QN	ng/L	5.0	0.93	-	04/05/19 09:10	04/06/19 21:49	56-55-3	
Benzo(a)pyrene	QN	ng/L	5.0	0.94	-	04/05/19 09:10	04/06/19 21:49	50-32-8	
Benzo(b)fluoranthene	QN	ng/L	10.0	1.0	-	04/05/19 09:10	04/06/19 21:49	205-99-2	
Benzo(g,h,i)perylene	QN	ng/L	20.0	1.0	*	04/05/19 09:10	04/06/19 21:49	191-24-2	
Benzo(k)fluoranthene	QN	ng/L	2.5	0.93	-	04/05/19 09:10	04/06/19 21:49	207-08-9	
bis(2-Chloroethoxy)methane	QN	ng/L	10.0	0.99	-	04/05/19 09:10	04/06/19 21:49	111-91-1	
bis(2-Chloroethyl) ether	QN	ng/L	10.0	1.0	T	04/05/19 09:10	04/06/19 21:49	111-44-4	
bis(2-Chloroisopropyl) ether	QN	ng/L	2.5	1.2	x	04/05/19 09:10	04/06/19 21:49	108-60-1	
bis(2-Ethylhexyl)phthalate	QN	ng/L	10.0	3.2	N	04/05/19 09:10	04/06/19 21:49	117-81-7	
4-Bromophenylphenyl ether	Q	ng/L	10.0	1.0	x -1	04/05/19 09:10	04/06/19 21:49	101-55-3	
SuryIbenzyIphthalate	QN :	ng/L	10.0	1.4	v	04/05/19 09:10	04/06/19 21:49	85-68-7	
Z-Unioronaphthalene	QN :	ng/L	10.0	1.4	**	04/05/19 09:10	04/06/19 21:49	91-58-7	
4-Uniorophenyiphenyi ether	CIN I	ug/L	10.0	1.4	1 -1	04/05/19 09:10	04/06/19 21:49	7005-72-3	
Unitysene		ug/L "	5.0	1.0		04/05/19 09:10	04/06/19 21:49	218-01-9	
Ulberiz(a,n)anthracene		ng/L	5.0	•	x	04/05/19 09:10	04/06/19 21:49	53-70-3	
3,3-UICNIOFODENZIAINE	(IN)	ng/L	5.0	2.7		04/05/19 09:10	04/06/19 21:49	91-94-1	
Diethylphthalate	ON I	ng/L	10.0	0.92	T	04/05/19 09:10	04/06/19 21:49	84-66-2	
Ulmethylphthalate	ΩN	ng/L	10.0	0.88	·	04/05/19 09:10	04/06/19 21:49	131-11-3	
Di-n-butyIphthalate	QN	ng/L	10.0	1.2	v -	04/05/19 09:10	04/06/19 21:49	84-74-2	
2,4-Dinitrotoluene	QN	ng/L	10.0	2.7	1 72	04/05/19 09:10	04/06/19 21:49	121-14-2	
2,6-Dinitrotoluene	QN	ng/L	10.0	1.8	***	04/05/19 09:10	04/06/19 21:49	606-20-2	
Di-n-octylphthalate	QN	ng/L	10.0	1.7	¥	04/05/19 09:10	04/06/19 21:49	117-84-0	
1,2-Diphenylhydrazine	QN	ng/L	20.0	1.2	1 7.	04/05/19 09:10	04/06/19 21:49	122-66-7	
Fluoranthene	QN	ng/L	10.0	1.1	77	04/05/19 09:10	04/06/19 21:49	206-44-0	
Fluorene	QN	ng/L	10.0	1.3	-	04/05/19 09:10	04/06/19 21:49	86-73-7	
	QN	ng/L	5.0	0.97	~ -	04/05/19 09:10	04/06/19 21:49	118-74-1	
Hexachloro-1,3-butadiene	QN	ng/L	10.0	1.8	T ¹⁰	04/05/19 09:10	04/06/19 21:49	87-68-3	

Date: 04/17/2019 04:12 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Pace Analytical [®]

ANALYTICAL RESULTS

 Project:
 548260

 Pace Project No.:
 75105824

Sample: 548270	Lab ID:	Lab ID: 75105824010	Collected: 04/02/19 08:00	04/02/19	08:00	Received: 04/03/19 10:50		Matrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
625 MSSV	Analytical	Analytical Method: EPA 625 Preparation Method: EPA 625	25 Preparatio	on Method	: EPA	525			
Hexachlorocyclopentadiene	ND	ng/L	10.0	1.2	۰.	04/05/19 09:10	04/06/19 21:49	77-47-4	
Hexachloroethane	ND	ng/L	20.0	1.9	<u>.</u>	04/05/19 09:10	04/06/19 21:49	67-72-1	
Indeno(1,2,3-cd)pyrene	ND	ng/L	5.0	0.98	÷	04/05/19 09:10	04/06/19 21:49	193-39-5	
lsophorone	ND	ng/L	10.0	1.8	-	04/05/19 09:10	04/06/19 21:49	78-59-1	
Naphthalene	ND	ng/L	10.0	2.0		04/05/19 09:10	04/06/19 21:49	91-20-3	
Nitrobenzene	ND	ng/L	10.0	1.2	***	04/05/19 09:10	04/06/19 21:49	98-95-3	
N-Nitrosodiethylamine	ND	ng/L	20.0	0.93	***	04/05/19 09:10	04/06/19 21:49	55-18-5	
N-Nitrosodimethylamine	ND	ng/L	50.0	0.65	۰.	04/05/19 09:10	04/06/19 21:49	62-75-9	
N-Nitroso-di-n-butylamine	QN	ng/L	20.0	0.74	-	04/05/19 09:10	04/06/19 21:49	924-16-3	
N-Nitroso-di-n-propylamine	ND	ug/L	20.0	1.1	-	04/05/19 09:10	04/06/19 21:49	621-64-7	
N-Nitrosodiphenylamine	QN	ug/L	20.0	0.83	-	04/05/19 09:10	04/06/19 21:49	86-30-6	
Phenanthrene	QN	ng/L	10.0	1.1	-	04/05/19 09:10	04/06/19 21:49	85-01-8	
Pentachlorobenzene	ND	ng/L	20.0	1.3	-	04/05/19 09:10	04/06/19 21:49	608-93-5	
Pyrene	ND	ng/L	10.0	1.2	r	04/05/19 09:10	04/06/19 21:49	129-00-0	
Pyridine	QN	ng/L	20.0	1.2	-	04/05/19 09:10	04/06/19 21:49	110-86-1	
1,2,4-Trichlorobenzene	QN	ng/L	10.0	1.6	***	04/05/19 09:10	04/06/19 21:49	120-82-1	
1,2,4,5-Tetrachlorobenzene	QN	ng/L	20.0	1.3	-	04/05/19 09:10	04/06/19 21:49	95-94-3	
Surrogates									
Nitrobenzene-d5 (S)	67	%.	15-106		*	04/05/19 09:10	04/06/19 21:49	4165-60-0	
2-Fluorobiphenyl (S)	69	.%	26-102		v-	04/05/19 09:10	04/06/19 21:49	321-60-8	
p-Terphenyl-d14 (S)	92	.%	10-120		***	04/05/19 09:10	04/06/19 21:49	1718-51-0	
Phenol-d6 (S)	28	%.	10-54		-	04/05/19 09:10	04/06/19 21:49	13127-88-3	
2-Fluorophenol (S)	38	.%	10-66		1	04/05/19 09:10	04/06/19 21:49	367-12-4	
2,4,6-Tribromophenol (S)	06	%.	29-132		r -	04/05/19 09:10	04/06/19 21:49	118-79-6	

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC,

Date: 04/17/2019 04:12 PM

Page 12 of 44

Pace Analytical Services, LLC 400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

Pace Analytical *

QUALITY CONTROL DATA

EPA 624 Low 624 MSV

Analysis Method: Anatysis Description:

	0	D.		
) 324	115157 EPA 624 Low les: 75105824009	5 75105824009		
548260 75105824	115157 EPA 62 nples: 7	518445 nples:	neter	le ethane
Project: Pace Project No.:	QC Batch: 115 QC Batch Method: EP/ Associated Lab Samples:	METHOD BLANK: 518445 Associated Lab Samples:	Parameter	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane

Associated Lab Samples: 75105824009							
METHOD BLANK: 518445		Matrix: Water	Water				
Associated Lab Samples: 75105824009							
Parameter	Units	Biank Result	Reporting Limit	MDL	Analyzed	Qualifiers	
1,1,1-Trichloroethane	ng/L	QN	10.0	0.69	04/03/19 11:54		
1,1,2,2-Tetrachloroethane	ng/L	QN	10.0	1.5	04/03/19 11:54		
1,1,2-Trichloroethane	ng/L	QN	10.0	1.3	04/03/19 11:54		
1,1-Dichloroethane	ng/L	QN	5.0	1.2	04/03/19 11:54		
1,1-Dichloroethene	ng/L	QN	10.0	1.1	04/03/19 11:54		
1,2-Dibromoethane (EDB)	ng/L	QN	10.0	0.45	04/03/19 11:54		
1,2-Dichlorobenzene	ng/L	QN	10.0	0.37	04/03/19 11:54		
1,2-Dichloroethane	ng/L	QN	10.0	1.1	04/03/19 11:54		
1,2-Dichloropropane	ng/L	QN	10.0	0.49	04/03/19 11:54		
1,3-Dichlorobenzene	ng/L	QN	10.0	0.43	04/03/19 11:54		
1,4-Dichlorobenzene	ng/L	QN	10.0	0.40	04/03/19 11:54		
2-Butanone (MEK)	ng/L	QN	50.0	4.9	04/03/19 11:54		
2-Chloroethylvinyl ether	ng/L	QN	10.0	3.2	04/03/19 11:54		
Acrolein	ng/L	QN	50.0	7.9	04/03/19 11:54		
Acrylonitrile	ng/L	QN	50.0	6.0	04/03/19 11:54		
Benzene	ng/L	QN	10.0	0.49	04/03/19 11:54		
Bromodichloromethane	ng/L	QN	10.0	0.50	04/03/19 11:54		
Bromoform	ng/L	QN	10.0	7.5	04/03/19 11:54		
Bromomethane	ng/L	QN	50.0	1.2	04/03/19 11:54		
Carbon tetrachlonde	ng/L	QN	2.0	1.1	04/03/19 11:54		
Chlorobenzene	ng/L	QN	10.0	0.37	04/03/19 11:54		
Chloroethane	ng/L	QN	50.0	0.95	04/03/19 11:54		
Chloroform	ng/L	QN	10.0	1.2	04/03/19 11:54		
Chloromethane	ng/L	QN	50.0	1.1	04/03/19 11:54		
Dibromochłoromethane	ng/L	QN	10.0	0.40	04/03/19 11:54		
Ethylbenzene	ng/L	Q	10.0	0.46	04/03/19 11:54		
Methylene Chloride	ng/L	QN	20.0	10.0	04/03/19 11:54		
Tetrachloroethene	ng/L	QN	10.0	1.5	04/03/19 11:54		
Toluene	ng/L	QN	10.0	1.3			
lotal 1,3-Dichloropropene	ng/L	QN	10.0	3.7	04/03/19 11:54	N2	
lotal Trihalomethanes (Calc.)	ng/L	QN	10.0	3.4	04/03/19 11:54		
trans-1,2-Dichloroethene	ng/L	QN	10.0	1.2	04/03/19 11:54		
Trichloroethene	ng/L	QN	10.0	09.0	04/03/19 11:54		
Vinyl chloride	ng/L	QN	10.0	0.93	04/03/19 11:54		
1,2-Dichloroethane-d4 (S)	%.	103	70-130		04/03/19 11:54		
4-Bromofluorobenzene (S)	%.	103	70-130		04/03/19 11:54		
Toluene-d8 (S)	.%	66	70-130		04/03/19 11:54		

Results presented on this page are in the units indicated by the "Units" column except where an altermate unit is presented to the right of the result.

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC. **REPORT OF LABORATORY ANALYSIS**

	vtical	and com	
0	aceAnal	CECHNAM	
2	A.		

Pace Analytical Services, LLC 400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

QUALITY CONTROL DATA

75105824 548260 Pace Project No .: Project:

LABORATORY CONTROL SAMPLE:	PLE: 518446										
Parameter	Units	(0	Spike Conc.	LCS Result		LCS % Rec	% Rec Limite	C	Oualifiars		
1 1 1-Trichloroethane	Voo	Î							מווובוא		
	ng/L		1 9.0		C.12	108	Z9L-ZG	20			
	ng/L		20.1		17.1	85	46-157	57			
1, 1, 2- I nonioroethane	ng/L		19.9		18.5	93	52-150	50			
1,1-Dichloroethane	ng/L		20		20.3	101	59-155	55			
1,1-Dichloroethene	ng/L		19.8		22.0	111	1-234	ह			
1,2-Dibromoethane (EDB)	ng/L		20		18.5	92	81-118	18			
1,2-Dichlorobenzene	ng/L		20		19.8	66	18-190	06			
1,2-Dichloroethane	ng/L		19.9		18.5	63	49-155	55			
1,2-Dichloropropane	ng/L		19.9		20.9	105	76-124	24			
1,3-Dichlorobenzene	na/L		19.9		21.0	105	59-156	20			
1,4-Dichlorobenzene	na/L		20		21.0	105	18-190	86			
2-Butanone (MEK)	na/L		101		57.0	25	60-1	60-130 I 2			
2-Chloroethylvinyl ether	na/L		20.1		15.8	78	1-305	3.50			
Acrolein	ua/L		200		120	909	49-138	2 8			
Acrylonitrile	- na/L		199		150	76 76	57-137	27			
Benzene	na/L		20		217	108	37-151				
Bromodichloromethane	1/011		19.9		10 0	1001	35 155	- 4			
Bromoform	1/01		10 A		18.0	000		3 6			
Bromomethane	100/L		0.61	*	7.01	20	40-109	ה מ י מ			
Carbon tetrachlorido	ng/L		10.0	_	19. IJ	C. A.	1-242	47			
	ng/L		19.8		21.8	110	70-140	6			
	ng/L		19.8		20.7	104	37-160	00			
Chloroethane	ng/L		20.1	2	20.7J	103	14-230	30			
Chloroform	ng/L		19.8		19.6	66	51-138	38			
Chloromethane	ng/L		19.9	~	19.5J	98	1-273	73			
Dibromochloromethane	ng/L		19.8		18.4	93	53-149	49			
Ethylbenzene	ng/L		20.1		21.8	109	37-162	52			
Methylene Chloride	ng/L		20.4	1	19.8J	97	1-221	21			
Tetrachloroethene	ng/L		19.9		21.2	106	64-148	48			
Toluene	ng/L		20		21.3	106	47-150	20			
Total 1,3-Dichloropropene	ng/L		40.1		38.1	95	70-1:	70-130 N2			
Total Trihalomethanes (Calc.)	ng/L				76.1						
trans-1,2-Dichloroethene	ng/L		20		20.8	104	54-156	56			
Trichloroethene	ng/L		20		21.2	106	71-157	57			
Vinyl chloride	ng/L		20		20.5	102	1-251	51			
1,2-Dichloroethane-d4 (S)	%.					93	70-130	00			
4-Bromofluorobenzene (S)	%.					104	70-130	208			
Toluene-d8 (S)	%.					101	70-130	2 08			
MATRIX SPIKE & MATRIX SPIKE DUPLICATE:		518447			518448						Ì
			MS	MSD							
Parameter	75105729002 Units Result		Spike S	Spike	MS	MSD Decuit	MS MS	MSD %	% Rec	Max	
	Ť	1 T	1	2016	Inconi	Nesul	4	ט אבר			
1.1.1.Trichloroethane	1/0/1	CN	1000	1000	0040	0100	111	106	E0 100	500	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

			Qual				
		Мах	RPD	20	20	20	
			RPD	2	-	co	
		% Rec	Limits	52-162	46-157	52-150	
		MSD	% Rec	106	96	100	
		MS	% Rec	111	96	103	
		MSD	Result	2100	1920	1990	
011010		MS	Result	2210	1940	2050	
	MSD	Spike	Conc.	1990	2010	1990	
	MS	Spike	Conc.	1990	2010	1990	
		5105729002	Result	QN	ND	QN	
		2	Units	ng/L	ng/L	ng/L	
			Parameter	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	

Page 14 of 44

Date: 04/17/2019 04:12 PM

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

REPORT OF LABORATORY ANALYSIS

Pace Analytical

QUALITY CONTROL DATA

75105824 548260 Pace Project No .: Project:

Qual ZZ Max RPD RPD 20 20 20 20 2 2 2 2 9 4 ŝ 4007 ဖ 0 85129 Ŧ \sim 9 4 4 5 0 8 N 0 0 4 59-155 1-234 77-122 18-190 49-155 1-210 59-156 18-190 40-140 10-140 70-140 10-273 62-131 10-140 37-151 35-155 45-169 1-242 37-160 14-230 51-138 53-149 1-221 64-148 47-150 70-130 54-156 71-157 1-251 37-162 % Rec Limits 97 96 86 110 98 102 96 96 105 85 46 108 103 95 95 72 105 98 103 97 66 93 102 89 100 102 104 103 103 102 91 % Rec MSD 118 00 66 84 52 73 5 00 107 66 66 107 110 66 96 102 111 109 94 109 113 103 100 100 107 8 106 105 8 % Rec MS 1960 1890 1890 1440 2090 1950 1950 1920 1970 2170 1970 1940 1900 2030 1910 1930 10600 1710 9300 21600 2070 1830 2050 1880 2030 2000 3660 7540 2030 2050 2080 Result MSD 2080 2330 2000 1980 1990 2130 1980 1990 10000 1700 10300 2200 1970 1890 1460 2210 2030 2230 2020 2130 1860 1980 21400 2180 2120 2100 3740 7740 2180 2170 2260 Result 518448 MS 2000 2000 2000 2000 1980 2000 2000 1990 1990 1990 1980 1990 1980 2010 2040 1990 2000 4010 Spike MSD Conc. 1990 2000 2010 2010 2010 19900 19900 1980 2000 1980 2000 2000 1990 1990 2000 1980 1980 2010 1980 1990 1980 2010 2000 2000 2000 2040 1990 2000 4010 Spike Conc. MS 518447 Q Q Q Q QN Q Q Q 9 Q QN Q Q Q Q 9 Q Q Q 9 Q 99 Q Q 75105729002 9 Q ð Result MATRIX SPIKE & MATRIX SPIKE DUPLICATE: Units ng/L ng/L ng/L ug/L ug/L ng/L ng/L ng/L J/br ng/L Ug/L J/Gr ug/L %, %, ng/L ng/L 7/br Total 1,3-Dichloropropene Total Trihalomethanes (Calc.) 1,2-Dibromoethane (EDB) 1,2-Dichloroethane-d4 (S) trans-1,2-Dichloroethene 2-Chloroethylvinyl ether Bromodichloromethane Dibromochloromethane Parameter 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane Carbon tetrachloride 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane Methylene Chloride 2-Butanone (MEK) Tetrachloroethene Chloromethane Trichloroethene Bromomethane Chlorobenzene Chloroethane Ethylbenzene Vinyl chloride Acrylonitrile Chloroform Bromoform Benzene Acrolein Toluene

Resufts presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

70-130 70-130 70-130

4-Bromofluorobenzene (S)

Toluene-d8 (S)

Date: 04/17/2019 04:12 PM

without the written consent of Pace Analytical Services, LLC

This report shall not be reproduced, except in full,

REPORT OF LABORATORY ANALYSIS

P F
tical
nafy
EA.
(Jac)
7 66

j 1

			QUALITY CONTROL DATA	ONTROL	DATA				
Project:	548260								
Pace Project No.:	75105824								
QC Batch:	115494		Analysis Method:	thod:	EPA 604.1				
QC Batch Method:	EPA 604.1		Analysis Description:	scription:	604.1 HPLC F	604.1 HPLC Hexachloronhene	ene Ene		
Associated Lab Samples: 75105824010	tples: 75105824	4010							
METHOD BLANK: 520111	520111		Matrix:	Matrix: Water					
Associated Lab Samples:	ples: 75105824010	1010							
Parameter	heter	Units	Blank Result	Reporting Limit	MDL	Anal	Analyzed	Qualifiers	
Hexachlorophene Nitrohenzene (S)		ng/L %	N F		0.0	3.2 04/11/1	04/11/19 00:15	N3	1
		/0.	5	801-62	δ	04/11/1	04/11/19 00:15		
LABORATORY CONTROL SAMPLE:	ITROL SAMPLE:	520112							
Parameter	leter	Inite	Spike	LCS	LCS	% Rec	0		
Haved Level				VCOUL	- 11		rualifiers	liels	
Hexacniorophene Nitrobenzene (S)		ug/L %.	50	30.3	61 76	28-123 N3 25-108	3 N3		
						2	5		
MATRIX SPIKE SAMPLE:	(PLE:	520118							
Parameter	leter	Units	75105824010 Result	Conc.	MS Result	MS % Rec		% Rec Limits	Qualifiers

22-130 N3 25-108

67

33.3

20

R

ug/L %.

Hexachlorophene Nitrobenzene (S)

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 16 of 44

Date: 04/17/2019 04:12 PM

REPORT OF LABORATORY ANALYSIS

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Face Analytical "

QUALITY CONTROL DATA

75105824 548260 Pace Project No .: Project:

QC Batch: 115478		Analysis Method	FDA 608	SOS			
				000			
UL BAICH MEINOU: EPA 608 SP		Analysis Description:		608 GCS Pest PCB	~		
Associated Lab Samples: 75105824010	10						
METHOD BLANK: 520023		Matrix: Water	ater				
Associated Lab Samples: 75105824010	10						
			Reporting				
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers	
4,4'-DDD	ng/L	QN	0.10	09000	04/10/19 11:34		
4,4'-DDE	ng/L	DN	0.10	0.0040	04/10/19 11:34		
4,4'-DDT	ng/L	QN	0.020	0.0050	04/10/19 11:34		
Aldrin	ng/L	QN	0.010	0.0070	04/10/19 11:34		
alpha-BHC	ng/L	QN	0.050	0.0060	04/10/19 11:34		
beta-BHC	ng/L	ND	0.050	0.011	04/10/19 11:34		
Chlordane (Technical)	ng/L	QN	0.20	0.041	04/10/19 11:34		
delta-BHC	ng/L	ND	0.050	0.0040	04/10/19 11:34		
Dieldrin	ng/L	QN	0.020	0.0040	04/10/19 11:34		
Endosulfan I	ng/L	QN	0.010	0.0040	04/10/19 11:34		
Endosulfan II	ng/L	ND	0.020	0.0040	04/10/19 11:34		
Endosulfan sulfate	ng/L	ND	0.10	0.0040	04/10/19 11:34		
Endrin	ng/L	ND	0.020	0.0040	04/10/19 11:34		
Endrin aldehyde	ng/L	ND	0.10	0.012	04/10/19 11:34		
gamma-BHC (Lindane)	ng/L	QN	0:050	0.0050	04/10/19 11:34		
Heptachlor	ng/L	QN	0.010	0.0060	04/10/19 11:34		
Heptachlor epoxide	ng/L	DN	0.010	0.0040	04/10/19 11:34		
PCB-1016 (Aroclor 1016)	ng/L	QN	0.20	0.12	04/10/19 11:34		
PCB-1221 (Aroclor 1221)	ng/L	ND	0.20	0.13	04/10/19 11:34		
PCB-1232 (Aroclor 1232)	ng/L	QN	0.20	0.18	04/10/19 11:34		
PCB-1242 (Aroclor 1242)	ng/L	ND	0.20	0.11	04/10/19 11:34		
PCB-1248 (Aroclor 1248)	ng/L	QN	0.20	0.072	04/10/19 11:34		
PCB-1254 (Aroclor 1254)	ng/L	ND	0.20	0.086	04/10/19 11:34		
PCB-1260 (Aroclor 1260)	ng/L	QN	0.20	0.14	04/10/19 11:34		
Toxaphene	ng/L	QN	0.30	0.21	04/10/19 11:34		
Decachlorobiphenyl (S)	%.	73	16-161		04/10/19 11:34		
Tetrachloro-m-xylene (S)	%.	84	47-135		04/10/19 11:34		
LABORATORY CONTROL SAMPLE	520024						
					ſ		
		Splike LCS	LCS.		% Rec		

lualifiers									
Quali									
% Rec Limits	31-141	30-145	10-160	42-142	37-134	17-147	19-140	36-146	45-153
LCS % Rec	106	101	101	89	101	96	81	98	96
LCS Result	0.53	0.50	0.51	0.45	0.51	0.48	0.40	0.49	0.48
Spike Conc.	0.5	0,5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Units	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L
Parameter	DDD	4,4'-DDE	-DDT	in	la-BHC	1-BHC	a-BHC	drin	ndosulfan

Resufts presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Date: 04/17/2019 04:12 PM

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC. **REPORT OF LABORATORY ANALYSIS**

548260 Project:

Pace Analytical

75105824 Pace Project No .:

	LCS % Rec % Rec Limits Qualifiers	100	96	101	67	£	06	95	71 16-161	
	LCS Result	0.50	0.48	0.50	0.48	0.51	0.45	0.48		
	Spike Conc.	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
520024	Units	ng/L	ug/L	ng/L	ng/L	ng/L	ng/L	ng/L	%.	20
LABORATORY CONTROL SAMPLE:	Parameter	Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde	gamma-BHC (Lindane)	Heptachlor	Heptachlor epoxide	Decachlorobiphenyl (S)	Tetrachloro m vidoao (C)

520025 MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:	E DUPLIC	CATE: 520025	Q		520026							
			MS	MSD								
		75106002001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
4,4'-DDD	ng/L	Q	0.5	0.5	0.56	0.54	111	109	24-177	1~	4	
4,4'-DDE	ng/L	QN	0.5	0.5	0.47	0.47	95	94	22-161	~	4	
4,4'-DDT	ng/L	QN	0.5	0.5	0.53	0.53	106	105	10-180	-	40	
Aldrin	ng/L	QN	0.5	0.5	0.45	0.44	89	89	10-156	F	40	
alpha-BHC	ng/L	QN	0.5	0.5	0.50	0.51	100	102	71-143	2	40	
beta-BHC	ng/L	QN	0.5	0.5	0.50	0.47	66	95	72-149	5	40	
delta-BHC	ng/L	QN	0.5	0.5	0.42	0.41	85	83	44-151	2	40	
Dieldrin	ng/L	QN	0.5	0.5	0.55	0.54	110	108	33-166	2	40	
Endosulfan I	ng/L	QN	0.5	0.5	0.48	0.48	67	97	27-167	0	40	
Endosulfan II	ng/L	QN	0.5	0.5	0.52	0.51	104	102	37-173	2	40	
Endosulfan sulfate	ng/L	QN	0.5	0.5	0.52	0.51	104	101	33-167	ო	4	
Endrin	ng/L	QN	0.5	0.5	0.53	0.52	107	105	39-173	N	4	
Endrin aldehyde	ng/L	QN	0.5	0.5	0.55	0.53	109	105	14-180	4	40	
gamma-BHC (Lindane)	ng/L	QN	0.5	0.5	0.53	0.52	107	105	69-139	2	4	
Heptachlor	ng/L	QN	0.5	0.5	0.46	0.46	93	91	48-141	2	40	
Heptachlor epoxide	ng/L	QN	0.5	0.5	0.49	0.48	96	96	28-164	2	40	
Decachlorobiphenyl (S)	%.						85	85	16-161			
Tetrachloro-m-xylene (S)	%.						2	87	47-135			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Page 18 of 44

Date: 04/17/2019 04:12 PM

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

REPORT OF LABORATORY ANALYSIS

CT III
近
(international)
A
C 22
1 20
Q \
~

			QUALIT	Y CONT	QUALITY CONTROL DATA	TA					
Project: Pace Project No.:	548260 75105824										
QC Batch: 115 QC Batch Method: EP Associated Lab Samples:	115532 EPA 615 pples: 75105824010	0	Analysi Analysi	Analysis Method: Analysis Description:		EPA 615 615 GCS Herbicides	vicides				
METHOD BLANK: 520324 Associated Lab Samples:	520324 101es: 75105824010	10	Σ	Matrix: Water	Ŀ						
Parameter	leter	Units	Blank Result		Reporting Limit	MDL	Ā	Analyzed	Qu	Qualifiers	
2,4,5-TP (Silvex) 2,4-D 2,4-DCAA (S)		ug/L vg/L %.		ND ND 45	0.30 0.70 44-137		0.15 04/1	04/15/19 11:32 04/15/19 11:32 04/15/19 11:32			
LABORATORY CONTROL SAMPLE: Parameter	() ()	520325 Units	Spike Conc.	LCS Result		LCS % Rec	% Rec Limits		Qualifiers		
2,4,5-TP (Silvex) 2,4-D 2,4-DCAA (S)		ug/L ug/L %.	м м		2.5	32 83 85	57- 49- 44-	57-125 49-133 44-137			
MATRIX SPIKE & M/ Parameter	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 75106 Parameter Units F	ICATE: 520326 75106015001 Result	Spike	MSD Spike	520327 MS Result	MSD	MS MS	MSD MSD	% Rec	Max	
		ł			ווחפסעו	- 1	-	20100			Guai

6 6 210

44-134 49-145 44-137

89 80 56

90 85 00

2.7

2.8 2.6

3.1 3.1

3.1 3.1

Q Q

ug/L %.

2,4,5-TP (Silvex) 2,4-D 2,4-DCAA (S)

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC,

Date: 04/17/2019 04:12 PM

REPORT OF LABORATORY ANALYSIS

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Page 19 of 44

	8	F	
	E.	100 S	
	17	celat	
	na	ww.pacelabs.com	
	A	MM	
2	Sc		
	12		
Q)	h	
	1		

QUALITY CONTROL DATA

Project: 548260 Pace Project No.: 75105824 QC Batch: 115297 QC Batch Method: EPA 625 Associated Lab Samples: 75105824010 METHOD BLANK: 519256 Associated Lab Samples: 75105824010 Parameter U

EPA 625 625 MSS

Analysis Method: Analysis Description:

20		Matrix: Water	/ater			
Associated Lab Samples: 75105824010						
Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
1,2,4,5-Tetrachlorobenzene	ng/L	QN	20.0	1.3	04/06/19 13:45	
1,2,4-Trichlorobenzene	ng/L	QN	10.0	1.6	04/06/19 13:45	
1,2-Diphenylhydrazine	ng/L	QN	20.0	1.2	04/06/19 13:45	
2,4,5-Trichlorophenol	ng/L	ND	50.0	1.9	04/06/19 13:45	
2,4,6-Trichlorophenol	ng/L	QN	10.0	1.8	04/06/19 13:45	
2,4-Dichlorophenol	ng/L	ND	10.0	0.82	04/06/19 13:45	
2,4-Dimethylphenot	ng/L	QN	10.0	1.4	04/06/19 13:45	
2,4-Dinitrophenol	ng/L	QN	50.0	1.1	04/06/19 13:45	
2,4-Dinitrotoluene	ng/L	QN	10.0	2.7	04/06/19 13:45	
2,6-Dinitrotoluene	ng/L	QN	10.0	1.8	04/06/19 13:45	
2-Chloronaphthalene	ng/L	QN	10.0	1.4	04/06/19 13:45	
2-Chlorophenol	ng/L	QN	10.0	0.82	04/06/19 13:45	
2-Nitrophenol	ng/L	QN	20.0	1.7	04/06/19 13:45	
3&4-Methylphenol(m&p Cresol)	ng/L	QN	10.0	0.77	04/06/19 13:45	
3,3'-Dichlorobenzidine	ng/L	QN	5.0	2.7	04/06/19 13:45	
4,6-Dinitro-2-methylphenol	ng/L	QN	10.0	1.5	04/06/19 13:45	
4-Bromophenylphenyl ether	ng/L	QN	10.0	1.0	04/06/19 13:45	
4-Chloro-3-methylphenol	ng/L	QN	10.0	0.87	04/06/19 13:45	
4-Chlorophenylphenyl ether	ng/L	QN	10.0	1.4	04/06/19 13:45	
4-Nitrophenot	ng/L	QN	50.0	1.6	04/06/19 13:45	
Acenaphthene	ng/L	QN	10.0	1.3	04/06/19 13:45	
Acenaphthylene	ng/L	QN	10.0	1.3	04/06/19 13:45	
Anthracene	ng/L	QN	10.0	1.1	04/06/19 13:45	
Benzidine	ng/L	QN	50.0	3.1	04/06/19 13:45	
Benzo(a)anthracene	ng/L	ND	5.0	0.93	04/06/19 13:45	
Benzo(a)pyrene	ng/L	QN	5.0	0.94	04/06/19 13:45	
Benzo(b)fluoranthene	ng/L	QN	10.0	1.0	04/06/19 13:45	
Benzo(g,h,i)perylene	ng/L	QN	20.0	1.0	04/06/19 13:45	
Benzo(k)fluoranthene	ng/L	QN	2.5	0.93	04/06/19 13:45	
bis(2-Chloroethoxy)methane	ng/L	QN	10.0	0.99	04/06/19 13:45	
bis(2-Chloroethyl) ether	ug/L	٩N	10.0	1.0	04/06/19 13:45	
bis(2-Chloroisopropyl) ether	ng/L	QN	2.5	1.2	04/06/19 13:45	
bis(2-Ethylhexyl)phthalate	ng/L	QN	10.0	3.2	04/06/19 13:45	
Butylbenzylphthalate	ng/L	ND	10.0	1.4	04/06/19 13:45	
Chrysene	ng/L	QN	5.0	1.0	04/06/19 13:45	
Cresols (Total)	ng/L	QN	10.0	1.5	04/06/19 13:45 1	N2
Di-n-butylphthalate	ng/L	QN	10.0	1.2	04/06/19 13:45	
Di-n-octytphthalate	ng/L	QN	10.0	1.7	04/06/19 13:45	
Dibenz(a,h)anthracene	ng/L	DN	5.0	1.1	04/06/19 13:45	
Diethylphthalate	ng/L	QN	10.0	0.92	04/06/19 13:45	
Dimethylphthalate	ng/L	QN	10.0	0.88	04/06/19 13:45	

Results presented on this page are in the units indicated by the "Units" column except where an attemate unit is presented to the right of the result.

Date: 04/17/2019 04:12 PM

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

REPORT OF LABORATORY ANALYSIS

Pace Analytical

QUALITY CONTROL DATA

Project: 548260 Pace Project No.: 75105824

Blank
Kesult

LABORATORY CONTROL SAMPLE: 519257

	Qualifiers													
	% Rec Limits C	35-108	44-142	62-114	60-118	37-144	39-135	32-119	1-191	39-139	50-158	60-118	23-134	
	LCS % Rec	91	88	95	102	66	94	69	06	106	104	26	86	
	LCS Result	45.5	43.9	47.7	50.9	49.7	47.1	34.5	44.9J	52.9	52.2	48.5	42.9	
	Spike Conc.	50	50	50	50	50	50	50	50	50	50	50	50	
/ GZR1 G	Units	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	
EABORALORT CONTROL SAMPLE.	Parameter	1,2,4,5-Tetrachlorobenzene	1,2,4-Trichlorobenzene	1,2-Diphenylhydrazine	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	

Results presented on this page are in the units indicated by the "Units" column except where an altermate unit is presented to the right of the result.

Date: 04/17/2019 04:12 PM

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

REPORT OF LABORATORY ANALYSIS

Pace Analytical

QUALITY CONTROL DATA

 Project:
 548260

 Pace Project No.:
 75105824

LABORATORY CONTROL SAMPLE: 5	519257						
		Spike	rcs	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
2-Nitrophenol	ng/L	50	50.7	101	29-182		
3&4-Methylphenol(m&p Cresol)	ng/L	50	38.8	78	33-110		
3,3'-Dichlorobenzidine	ng/L	100	112	112	1-262		
4,6-Dinitro-2-methylphenol	ng/L	50	48.2	96	1-181		
4-Bromophenylphenyl ether	ng/L	50	48.2	96	53-127		
4-Chloro-3-methylphenol	ng/L	50	49.5	66	22-147		
4-Chlorophenylphenyl ether	ng/L	50	48.7	97	25-158		
4-Nitrophenol	ng/L	50	36.3J	23	1-132		
Acenaphthene	ng/L	50	46.2	92	47-145		
Acenaphthylene	ng/L	50	47.5	95	33-145		
Anthracene	ng/L	50	48.1	96	27-133		
Benzidine	ng/L	100	81.6	82	10-140		
Benzo(a)anthracene	ng/L	50	44.5	89	33-143		
Benzo(a)pyrene	ng/L	50	49.5	66	17-163		
Benzo(b)fluoranthene	ng/L	50	51.2	102	24-159		
Benzo(g,h,i)perylene	ng/L	50	52.9	106	1-219		
Benzo(k)tluoranthene	ng/L	50	48.5	67	11-162		
bis(2-Chloroethoxy)methane	ng/L	50	45.4	91	33-184		
bis(2-Chioroethyl) ether	ng/L	50	43.8	88	12-158		
bis(2-Chloroisopropyl) ether	ng/L	50	42.9	86	36-166		
bis(2-Ethylhexyl)phthalate	ng/L	50	50.6	101	8-158		
Butylbenzylphthalate	ng/L	50	48.1	96	1-152		
Chrysene	ng/L	50	47.2	94	17-168		
Cresols (Total)	ng/L	100	78.7	62	36-110 N2	2	
Di-n-butylphthalate	ng/L	50	49.4	66	1-118		
Di-n-octylphthalate	ng/L	50	53,2	106	4-146		
Ulbenz(a,h)anthracene	ng/L	50	54.0	108	1-227		
Dietnylphthalate	ng/L	50	49.7	66	1-114		
	ng/L	50	49.7	66	1-112		
rluoranmene Elimmene	ng/L	50	50.4	101	26-137		
Lovochloro 1.0 hutodiono	ug/L	50	48.2	96	59-121		
Hexadilloro-1,3-bulaqiene Hexadharabaraaaa	ug/L	50	44.5	89	24-116		
Hexadiiuu uuei izelie Hexadaloroo oloonaa aloona	ng/L	00	48.4	97	1-152		
riexaciilorocycuperitacierie Hexachloroethane	ug/L	09	47.8	90	12-121		
Indeno(1.2.3-cd)pvrene	ug/L	00	40.1 63 7	80	40-113		
Isophorone	10/1	00	101	201	1/1-1		
N-Nitroso-di-n-butvlamine	ug/L	20	40.1	90	061-12 40.447		
N-Nitroso-di-n-propylamine	na/l	20	46.4	10	1-230		
N-Nitrosodiethylamine	na/L	50	43.9		40-140		
N-Nitrosodimethylamine	uq/L	50	29.3.	20	26-77		
N-Nitrosodiphenylamine	ng/L	50	52.0	104	67-115		
Naphthalene	ng/L	50	44.2	88	21-133		
Nitrobenzene	ng/L	50	45.7	91	35-180		
Nonyiphenol	ng/L	50	47.3J	95	57-136 N2	2	
Pentachlorobenzene	ng/L	50	48.0	96	40-140		
Pentachlorophenol	ng/L	50	31.8	64	14-176		
	:						

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC,

Pace Analytical

QUALITY CONTROL DATA

75105824 548260 Pace Project No .: Project:

LABORATORY CONTROL SAMPLE:

ABORATORY CONTROL SAMPLE: 519257	519257					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
	ng/L	50	47.5	95	54-120	
	ng/L	50	20.4	41	5-112	
	ng/L	50	50.5	101	52-115	
	ng/L	50	23.9	48	12-110	
,4,6-Tribromophenol (S)	%.			105	29-132	
orobiphenyl (S)	%.			97	26-102	
	%.			57	10-66	
(%.			93	15-106	
Terphenyl-d14 (S)	%.			100	10-120	
	%.			4	10-54	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:	KE DUPLIC	CATE: 519258	0		519259							Ĩ
			MS	MSD								
		75105745001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,2,4,5-Tetrachlorobenzene	ng/L	QN	49.5	20	40.1	37.5	81	75	37-105	9	64	
1,2,4-Trichlorobenzene	ng/L	ON	49.5	50	38.8	35.8	78	72	44-142	ø	40	
1,2-Diphenylhydrazine	ng/L	QN	49.5	50	45.0	43.9	91	88	43-124	0	40	
2,4,5-Trichlorophenol	ng/L	QN	49.5	50	48.1J	46.3J	97	93	50-121	4	40	
2,4,6-Trichlorophenol	ng/L	QN	49.5	50	47.4	45.0	96	06	37-144	S	40	
2,4-Dichlorophenol	ng/L	QN	49.5	50	45.1	41.7	91	83	39-135	œ	40	
2,4-Dimethylphenol	ng/L	QN	49.5	50	42.4	39.4	86	79	32-119	7	40	
2,4-Dinitrophenol	ng/L	QN	49.5	50	48.5J	44.9J	98	06	1-191	8	40	
2,4-Dinitrotoluene	ng/L	QN	49.5	50	51.4	50.5	104	101	39-139	2	40	
2,6-Dinitrotoluene	ng/L	QN	49.5	50	49.7	48.0	100	96	50-158	4	40	
2-Chloronaphthalene	ng/L	QN	49.5	50	43.8	38.0	88	76	60-118	14	40	
2-Chlorophenol	ng/L	QN	49.5	50	39.8	36.9	80	74	23-134	7	40	
2-Nitrophenol	ng/L	QN	49.5	50	48.0	44.8	97	06	29-182	7	40	
3&4-Methylphenol(m&p Cresol)	ng/L	QN	49.5	50	37.7	34.3	76	69	10-105	6	40	
3,3'-Dichlorobenzidine	ng/L	QN	66	100	40.3	36.4	41	36	1-262	10	40	
4,6-Dinitro-2-methylphenol	ng/L	QN	49.5	50	49.1	48.3	66	67	1-181	2	40	
4-Bromophenylphenyl ether	ng/L	QN	49.5	50	44.9	43.5	91	87	53-127	ი	40	
4-Chloro-3-methylphenol	ng/L	QN	49.5	50	49.3	47.2	100	94	22-147	4	40	
4-Chlorophenylphenyl ether	ng/L	QN	49.5	50	45.8	44.0	92	88	25-158	4	40	
4-Nitrophenol	ug/L	QN	49.5	50	37.4J	35.1J	76	20	1-132	9	40	
Acenaphthene	ng/L	QN	49.5	50	42.7	40.8	86	82	47-145	4	40	
Acenaphthylene	ng/L	QN	49.5	50	43.3	40.9	87	82	33-145	9	40	
Anthracene	ng/L	QN	49.5	50	44.6	44.0	06	88	27-133	-	40	
Benzidine	ng/L	QN	66	100	3.9J	3.4J	4	с С	10-74		40 M1	-
Benzo(a)anthracene	ng/L	QN	49.5	50	42.1	40.9	85	82	33-143	ო	40	
Benzo(a)pyrene	ng/L	QN	49.5	50	44.5	43.8	60	88	17-163	2	40	
Benzo(b)fluoranthene	ng/L	QN	49.5	50	46.1	45.1	93	06	24-159	2	40	
Benzo(g,h,i)perylene	ng/L	QN	49.5	50	52.4	52.4	106	105	1-219	0	40	
Benzo(k)fluoranthene	ng/L	QN	49.5	50	43.7	43.5	88	87	11-162	0	40	

Results presented on this page are in the units indicated by the "Units" column except where an altermate unit is presented to the right of the result.

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC. **REPORT OF LABORATORY ANALYSIS**

Date: 04/17/2019 04:12 PM

Pace Analytical®

QUALITY CONTROL DATA

Project: 548260

519259 519258 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 75105824 Pace Project No.

		Qual							0																					~												
	Max		4	40	40	40	40	40	40 N2	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40 N2	40	40	40	40	40	40						
	_	RPD F	~	7	2	2		2	6	ო	0	0	ო	S	2	4	Ø	4	14	9	0	ω	7	ω	œ	ŧ	-	5	ო	ო	2	2	2	12	2	ω						
	% Rec	Limits	33-184	12-158	36-166	8-158	1-152	17-168	10-118	1-118	4-146	1-227	1-114	1-112	26-137	59-121	24-116	1-152	10-123	40-113	1-171	21-196	41-119	1-230	25-126	14-77	35-131	21-133	35-180	37-142	48-111	14-176	54-120	5-112	52-115	10-69	29-132	26-102	10-66	15-106	10-120	10-54
	MSD	% Rec	62	78	75	96	92	87	70	94	102	105	95	91	93	87	72	87	2	99	105	85	88	81	29	50	98	83	66	06	8	82	86	36	91	38	102	62	47	78	94	37
	MS	% Rec	86	85	81	66	94	89	78	98	104	107	66	<u> 3</u> 6	96	91	29	92	75	71	107	93	95	89	86	57	100	88	103	94	06	95	89	41	94	42	103	83	51	82	93	40
	MSD	Result	39.4	39.2	37.3	48.1	45.9	43.6	70.1	47.0	51.0	52.7	47.5	45.3	46.5	43.6	35.9	43.5	32.1	33.1	52.5	42.5	43.8	40.7	39.5	25.2J	49.0	41.3	49.4	45.2J	42.2	41.2	43.2	18.1	45.6	19.2J						
519259	MS	Result	42.4	42.0	40.2	48.8	46.5	44.3	77.0	48.5	51.3	52.7	48.8	47.6	47.5	45.2	39.0	45.3	37.0	35.1	52.8	45.8	47.0	44.2	42.7	28.1J	49.6	43.6	50.9	46.7J	44.5	42.0	44.0	20.4	46.7	20.7						
MSD	Spike	Conc.	50	50	50	50	50	50	100	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	20	50	20	50	50	50	50	50	50	50						
MS	Spike	Conc.	49.5	49.5	49.5	49.5	49.5	49.5	66	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5						
VIE: 519258	75105745001	Result	QN	QN	QN	QN	QN	QN	QN	QN	QN	QN	QN	QN	QN	QN	QN	QN	ND	ND	ND	ND	QN	ND	ND	QN	QN	QN	QN	ND	ND	QN	QN	QN	QN	ND						
IA SPIRE DUPLICATE:		Units	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	%	%	%	°%	%.	-°%
IMALIKIA OPINE & MALIKIA OPIN		Parameter	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether	bis(2-Chloroisopropyl) ether	bis(2-Ethylhexyl)phthalate	Butylbenzylphthalate	Chrysene	Cresols (Total)	Di-n-butylphthalate	Di-n-octylphthalate	Dibenz(a,h)anthracene	Diethylphthalate	Dimethylphthalate	Fluoranthene	Fluorene	Hexachloro-1,3-butadiene	Hexachlorobenzene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	N-Nitroso-di-n-butylamine	N-Nitroso-di-n-propylamine	N-Nitrosodiethylamine	N-Nitrosodimethylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Nonylphenol	Pentachlorobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	Pyridine	2,4,6-Tribromophenoł (S)	2-Fluorobiphenyl (S)	2-Fluorophenol (S)	Nitrobenzene-d5 (S)	p-Terphenyl-d14 (S)	Phenol-d6 (S)

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the night of the result.

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC,

REPORT OF LABORATORY ANALYSIS

Pace Analytical					40	Pace Analytical Services, LLC 400 West Bethany Drive - Suite 190	υo
www.pacelabs.com						Allen, TX 75013 (972)727-1123	м. м.
		QUALITY CONTROL DATA	NTROL D	АТА			
Project: 548260 Pace Project No.: 75105824							
QC Batch: 115496 QC Batch Method: EPA 632 Associated Lab Samples: 75105824010	010	Analysis Method: Analysis Description:		EPA 632 632 HPLC Carbamates	nates		ĭ
METHOD BLANK: 520122 Associated Lab Samples: 75105824010	010	Matrix: Water	Vater				ĩ
	Units	Blank Result	Reporting Limit	MDL	Analyzed	Oualifiers	
Carbaryl	ng/L	QN	4.0		04/11/19 00:15	1	
Diuron Nitrobenzene (S)	ug/L %.	ND 73	0.080 18-113	0	04/11/19 00:15 04/11/19 00:15	N2	
LABORATORY CONTROL SAMPLE:	520123						ĭ
Parameter	Units	Spike LC Conc. Rev	LCS Result	LCS % Rec	% Rec Limits Oue	Oualifiers	
Carbaryl	ng/L	10		10	-119		
Diuron Nitrobenzene (S)	ug/L %.	ى ع	4.5	90 76	61-114 N2 18-113		
MATRIX SPIKE SAMPLE:	520124						
Parameter	l Inite	75105824010	Spike	MS Beent	SM SM		
		- 1-		וורפאו	% KeC	LIMITS QUAIMERS	
carbaryl Diuron Nitrobenzene (S)	ug/L %.		2 2	4.6	91 92 70	45-139 54-127 N2 18-113	
Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.	age are in the units i	ndicated by the "Units" col	lumn except wh	sere an alternate unit is	s presented to the righ	t of the result.	
	REI	REPORT OF LABORATORY ANALYSIS	RATORY /	ANALYSIS			

Page 25 of 44

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Date: 04/17/2019 04:12 PM

Pace Analytical www.pacalats.com							40	Pace Analytical Services, LLC 400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123	a lytica l (thany Dri A (Pace Analytical Services, LLC West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123	LLC 190 123
		QUALIT	QUALITY CONTROL DATA	SOL DAT	Z						8
Project: 548260 Pace Project No.: 75105824											
QC Batch: 115682 QC Batch Method: SM 4500-CN-C Associated Lab Samples: 7510582	2 Analysis Method: 00-CN-C Analysis Description: 75105824001, 75105824003, 75105824005, 75105824007	Analysik Analysis , 751058240	Analysis Method: Analysis Description: 105824005, 75105824		SM 4500-CN-E 4500CNE Cyan	SM 4500-CN-E 4500CNE Cyanide, Total					Ĩ
METHOD BLANK: 521009		W	Matrix: Water								1
Associated Lab Samples: 7510582	75105824001, 75105824003, 75105824005, 75105824007	3, 751058240	05, 751058;	24007							
Parameter	Units	Blank Result		Keporting Limit	MDL	A	Analyzed	Qua	Qualifiers		
Cyanide	ng/L		QN	10.0		4.0 04/12	04/12/19 15:43	1		5	
LABORATORY CONTROL SAMPLE:	521010										Ĩ
Parameter	Units	Spike Conc.	LCS Result	⊣ %	LCS % Rec	% Rec Limits	Qu	Qualifiers			
Cyanide	ng/L	100		104	104	85-115	115				
MATRIX SPIKE & MATRIX SPIKE DUPLICATE:	PLICATE: 521011		Ω.	521012							T
Parameter	75105934001 Units Result	MS Spike Conc.	MSD Spike Conc. F	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	A RPD R	Max RPD Qual	.
Cyanide	ng/L ND	100	100	R	Ð	0	0	85-115		20 M1	
MATRIX SPIKE & MATRIX SPIKE DUPLICATE:	PLICATE: 521013	3	in Com	521014							ľ.
Parameter	75105824007 Units Result	Spike Conc.		MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD R	Max RPD Qual	<u></u>
Cyanide	DN T/bn	100	100	88.3	103	88	103	85-115	15	20	ľ.

Pace Analytical Services, LLC

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Date: 04/17/2019 04:12 PM

REPORT OF LABORATORY ANALYSIS

Results presented on this page are in the units indicated by the "Units" column except where an attemate unit is presented to the right of the result.

ż

Page 26 of 44

•
tic se
S II
G
6
6
~

QUALITY CONTROL DATA

	ae, Amenable			Analyzed Qualifiers	4.0 04/15/19 08:39
SM 4500-CN-G	4000000 Cyanide, Amenaple			MDL	
	5105824007	Matrix: Water	5105824007	Limit	10.0
Analysis Method:	75105824001, 75105824003, 75105824005, 75105824007	Matrix:	75105824001, 75105824003, 75105824005, 75105824007	Biank Result	QN
	, 75105824003,		, 75105824003,	Units	ng/L
115814 SM 4500-CN-C	- 1	67		er	
Pace Project No.: 75105824 QC Batch: 115814 QC Batch Method: SM 4500	Associated Lab Samples:	METHOD BLANK: 521767	Associated Lab Samples:	Parameter	Amenable Cyanide

Page 27 of 44

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Date: 04/17/2019 04:12 PM

REPORT OF LABORATORY ANALYSIS

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

75105824 548260 Pace Project No. Project:

DEFINITIONS

DF - Dilution Factor, if reported. represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit. PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix. S - Surrogate

1.2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration. Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The Nelac Institute

LABORATORIES

Pace Analytical Services - Dallas PASI-D

ANALYTE QUALIFIERS

- Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low. 2
 - Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery. ž
- The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request. ZZ
 - Accreditation is not offered by the relevant laboratory accrediting body for this parameter. ß
 - S
- Surrogate recovery exceeded laboratory control limits. Analyte presence below reporting limits in associated sample.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

 Project:
 548260

 Pace Project No.:
 75105824

Lab ID	Sample ID	OC Batch Method	OC Batch	Anshrical Mothod	Analytical
					Datu
75105824010	548270	EPA 608 SF	115478	EPA 608	115547
75105824010	548270	EPA 615	115532	EPA 615	115834
75105824010	548270	EPA 604.1	115494	EPA 604.1	115692
75105824010	548270	EPA 632	115496	EPA 632	115560
75105824010	548270	EPA 625	115297	EPA 625	115354
75105824009	548268	EPA 624 Low	115157		
75105824001	548260	SM 4500-CN-C	115682	SM 4500-CN-E	115778
75105824003	548262	SM 4500-CN-C	115682	SM 4500-CN-E	115778
75105824005	548264	SM 4500-CN-C	115682	SM 4500-CN-E	115778
75105824007	548266	SM 4500-CN-C	115682	SM 4500-CN-E	115778
75105824001	548260	SM 4500-CN-C	115814	SM 4500-CN-G	115815
75105824003	548262	SM 4500-CN-C	115814	SM 4500-CN-G	115815
75105824005	548264	SM 4500-CN-C	115814	SM 4500-CN-G	115815
75105824007	548266	SM 4500-CN-C	115814	SM 4500-CN-G	115815

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Document Revised: 03-14-19 Page 1 of 1 Issuing Authority: Issuing Authority: Pace Dallas Quality Office MOD#: 75105824 MOD#: 75105824 Bagser Foam In None Other Into Other IntoOther Into Other Into Other I		
Document Name: Sample Condition Upon Receipt Document No.: F-DAL-C-001-rev.9 ample Condition Upon Re Dallas	All Yes No Yes Yes No Yes Yos No Hrs Yes No Hrs Yes No Yes Yos No	
dex DVS DVSPS Cli dex DVS DVSPS Cli dex Ves No DVN tice: Ves No DVN tice: Ves No DVN	Chain of Custody relinquished Sampler name & signature on COC Short HT analyses (<72 hrs) Sufficient Volume received Correct Container used Correct Container used Container Intact Sample pH Acceptable pH Strips: ADS ACC ACCENTION A PACE Sample pH Acceptable pH Strips: ADS ACCENTION A PACE Container Intact Sample pH Acceptable pH Strips: ADS ACCENTION A PACE Container Intact Container Intact Container Intact Sample pH Acceptable pH Strips: ADS ACCENTION A PACE Container Intact State Samples (volatiles, TPH) received in 5035A Kits Unpreserved 5035A soil frozen within 48 hrs Headspace in VOA (>6mm) Project sampled in USDA Regulated Area: State Sampled in USDA Regulated Area: State Sampled in USDA Regulated Area:	
Client Name: Courier: FedE) Tracking #: Custody Seal o Received on ice Thermometer	Chain Sample Sufficie Correc Contai Contai Residu Residu Sulfide Are soi Unpres Project	

Page 30 of 44

RACKING SHEET Greg Felux			ļ.	Wet Wr. IPare	1050	Pres T A T	H Std	H2SO4 Std	NAOH Std	H2SO4 Std	NAOH Std	H2SO4 Std	NAOH Std	H2SO4 Std	ICE Std	ICE STD	WO#:75105824 PM: MLM Due Date: 04/17/19 CLIENT: PCS	Date: 42/9 Date: 2000 Dage 31 of 44
	TODY & SUBCONTRACT TRACKING SHEET	, Inc. Relinquished by:	06	Received by:	Date/Time:	Analysis Requested	Cyanide, Amenable	Phenolics	Volatiles 624	604.1 Hexachlorophene	results and invoice to:	Blvd, Suite 100 78148-3318						
NT C TO	UF CUS	I Services	y Rd, Ste	13		Time	1015	1015	1551	1551	2157	2157	0535	0535	1015	0800	al Instructions; requested, sen	City Blvc TX 7814
CHAIN OF CUSTODY		Pace Analytical Services,	400 W Bethany Rd,	en, TX 7501		Date	04/01/2019	04/01/2019	04/01/2019	04/01/2019	04/01/2019	04/01/2019	04/02/2019	04/02/2019	04/01/2019	04/02/2019	tents/Special Instructions:	1532 Universal City Blvd, Universal City, TX 78148 rized by:
		TO: Pace	400	Allen,		PCS#	548260	548261	548262	548263	548264	548265	548266	548267	548268	548270	Comments/Speci Unless otherwise Chuck Wa	1532 Un Universa Authorized by:

				T.A. T.		1	1	1		1				74	Due Date: 04/17/19		11 9	
ES	IG SHEET	elux 19 @ 1700		Pres	ICE				4	ICE				HZRGNTGJ : HOM		-	4/2/1	
TION CONTROL SERVICES 1532 Universal City Blvd, Suite 100 Universal City, TX 78148-3318 Facsimilie 210.658.7903 210.340.0343	CHAIN OF CUSTODY & SUBCONTRACT TRACKING SHEET	s, Inc. Relinquished by: Greg Felux 190 Date/Time: 4/2/2019 @	Received by: Date/Time:	Analysis Reguested	Semi Volatiles 625	Herbicides 615	Pesticide 1657	Pesticides 608	Pesticides 617	Pesticides 632			Unless otherwise requested, send results and invoice to:	r edu	es CLIENT: PCS	Universal City, TX, 78148-3318	Date:	
POLLUTION 1532 L Univ	N OF CUS	cal Service ny Rd, Ste	013	Time	I	1			i and i a	-		pecial Instructions;	uested. ser	1.000	trol Servic	, TX/ 78148-	Mills	1
	CHAI	Pace Analytical Services, Inc. 400 W Bethany Rd, Ste 190	Allen, TX 75013	Date					8-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			s/Special I	herwise rec	11 7 17 -1	Pollution Control Services	Universal City,	d by:	
		TO: Pa	AI	PCS#	548270	548270	548270	548270	548270	548270		Comments/S	Unless of	5	Pol	inU	Authorized b	

Page 32 of 44 Document l

	Ana-Lab Corp. P.O. B	P.O. Box 9000	Kilgore,	TX 75663	33	Report	Report Page 1 of 12	2
ANA-LAB	Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com Employee Owned integrity Caring	114 e-Mail corp(p@ana-lab.co ty Caring	011 Continual Improvement	LED KUD NOLED	مرر		1
THE COMPLETE SERVICE LAB	Results Printed:	04/16/2019	14:43				Page 1 of 4	4
Report To	75105824	1	Aco	Account PAMM_N		Pro	Project	
Pace Analytical - Dallas Melissa McCullough 400 West Bethany Drive Suite 190 Allen, TX 75013							-	1
	æ	Results						
1773045 75105824002						Received: (04/05/2019	a.
Non-Potable Water	Collected by: Client Pac Taken: 04/01/2019 10:15:00	Pace Analytical - Da			PO:	DASUB2007		
EPA 420.4 1	Prepared: 832149	04/09/2019	10:00:00	Analyzed 833	833090	04/12/2019	11:20:00 MLC	LC L
Parameter N Phenolics, Total Recoverable	Results <0.005	Units RL mg/L 0.005		Flag		CAS	Bottle 02	Ĩ
1773046 75105824004						Received: 0	04/05/2019	3
Non-Potable Water	Collected by: Client Pac Taken: 04/01/2019 15:51:00	Pace Analytical - Da			PO:	DASUB2007		
EPA 420.4 1	Prepared: 832149	04/09/2019	10:00:00	Analyzed 833	833090	04/12/2019	11:22:00 MLC	S
Parameter N Phenolics, Total Recoverable	Results <0.005	Units RL mg/L 0.005		Flag		CAS	Bottle 02	Ĩ
1773047 75105824006						Received: C	04/05/2019	Ŷ
Non-Potable Water	Collected by: Client Pac Taken: 04/01/2019 21:57:00	Pace Analytical - Da			PO:	DASUB2007		
EPA 420.4 1	Prepared: 832149	04/09/2019	10:00:00	Analyzed 833	833090 (04/12/2019	11:25:00 MLC	C I
Parameter N Phenolics, Total Recoverable	Results <0.005	Units RL mg/L 0.005		Flag		CAS	Bottle 02	1
1773048 75105824008						Received: 0	04/05/2019	л.
Non-Potable Water	Collected by: Client Pac Taken: 04/02/2019 05:35:00	Pace Analytical - Da			PO:	DASUB2007		1
Corpurate Shipping: 2050 (Judiey Rd., Kilgare, TN	gare, 1N 75662		Narth I	Narth Texas Region: 11105 Shady Trl Ste. (23 Dallas TX -75229-7633	ybady 3	I'rI Ste. (23 Dall	las IX 75229-763	10
	NELAP-accr	NELAP-accredited #T104701-19-15)4201-19-15				Dorro 22 of 11	
LDSClient v1,14,14,1771	эгнии	www.ana-lab.com		Form	rptPROJI	Form rpiPROJRES Created 10/13/2004 v1.2	13/2004 v1.2	

	Ana-Lab Corp. P	P.O. Box 9000	000	Kilgore,	TX 75663	Repo	Report Page 2 c	of 12
ANA-LAB	Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com Employee Owned meghty Caring	/984-5914 e-	Mail corp(@ Integrity	@ana-lab.co Camg	itti Continual Improvement	hont		1
THE COMPLETE SERVICE LAB	Results Pr	Printed: 04/10	04/16/2019 1	14:43			Page 2 of 4	of 4
1773048 75105824008 Non-Potable Water	8 Collected by: Client Taken: 04/02/2019 05:35:00	Pace Analytical - Da	ytical - Da		ă,	Received: 0 PO: DASUB2007	04/05/2019	1
EPA 420.4 1	Prepared:	832149	04/09/2019	10:00:00	Analyzed \$33090	04/12/2019	11:27:00	MLC
Parameter N Phenolics, Total Recoverable	Results <0.005	Units mg/L	RL 0.005		Flag	CAS	Bottle 02	
1773049 75105824010						Received:	04/05/2019	Ĩ
Non-Potable Water	Collected by: Client Taken: 04/02/2019 08:00:00	Pace Analytical - Da	ytical - Da		PO:	DASUB2007	07	
EPA 1657	Prepared:	832001	04/08/2019	08:00:00	Analyzed 832472	04/09/2019	20:51:00	EMT
	Results	Units	RL		Flag	CAS	Bottle	
z Chlorovrifos z Chlorovrifos	<0.0513	1/gu	0.0513		×	86-50-0	4	
	<0.0513	Л/gu	0.0513		× ×	2921-88-2 8065-48-3	23	
	<0.050	1/8n	0.050		х	333-41-5	64	
z Malathion z Parathion.ethvl	<0.0513	.∐/gu	0.0513		×	121-75-5	6	
	C1000>	Л/an т/an	0.041		<	56-38-2 298-00-0	5 5	
EPA 617	Prepared:	831994	04/08/2019	08:00:00	Analyzed 832836	04/10/2019	20:50:00	EMT
Parameter	Route	I fuite	DI		1-1		,	
	<0.041	ug/L	0.041		rug X	LAD 115-32-2	Bottle 03	
	<0.0103	ng/L	0.0103		х	72-43-5	03	
z Mirex	<0.0103	l/gu	0.0103	A an and a state		2385-85-5	03	1
	S	Sample Preparation	aration					
1773045 75105824002						Received:	04/05/2019	Î
						DASUB2007	07	
EPA 420.4 1	Prepared:	832149	04/09/2019	10:00:00	Analyzed 832149	04/09/2019	10:00:00	CRS
N Phenol Distillation	50/50	E					5	I
							5	
Corporate Shipping: 2646 bud ev Bd. K	Kilgure 1N 75662			Narth D	Narth Texas Region: 11105 Shady Trl Ste. 123 Dallav TX 75229-7633	idy I'rd Ste. 123 D	allav TN 75229-	2633
	NFL	VELLAP-accredited #T104701-10-15	ABCON AT	201-10-15				
LDSClient v1 4.14.1771		www.ana-fal.com	Ron.		Form rptPh	Page 34 c Form rptPROJRES Created 10/13/2004 v1.2	Page 34 of 44 9/13/2004 v1.2	4

	Ana-Lab Corp. P.O. Box 9000 Kilgore, TX 75663	Report Page 3 of 12
ANA:LAB	Phone 903/984-0551 FAX 903/984-5914 e-Mail corrp@ana-lab.com Employee Owned Integrity Caring Continual Improvement	
THE COMPLETE SERVICE LAB	Results <i>Printed:</i> 04/16/2019 14:43	Page 3 of 4
1773046 75105824004	Re	Received: 04/05/2019
		DASUB2007
EPA 420.4 1	Prepared: 832149 04/09/2019 10:00:00 Analyzed 832149 04	04/09/2019 10:00:00 CRS
N Phenol Distillation	50/50 mJ	01
1773047 75105824006	Re	Received: 04/05/2019
		DASUB2007
EPA 420.4 1	Prepared: 832149 04/09/2019 10:00:00 Anabyzed 832149 04/	04/09/2019 10:00:00 CRS
N Phenol Distillation	50/50 ml	01
1773048 75105824008	Re	<i>Received:</i> 04/05/2019 DASUB2007
EPA 420.4 1	Prepared: 832149 04/09/2019 10:00:00 Analyzed 832149 04/	04/09/2019 10:00:00 CRS
N Phenol Distillation	50/50 ml	01
1773049 75105824010	Re	Received: 04/05/2019
		DASUB2007
EPA 1657	Prepared: \$32001 04/08/2019 08:00:00 Analyzed \$32472 04/	04/09/2019 20:51:00 EMT
Organophos. Pesticides	Entered	64
EPA 614/608/617/1657	Prepared: 831994 04/08/2019 08:00:00 Analyzed 831994 04/	04/08/2019 08:00:00 SJN
Liquid-Liquid Extr. W/Hex Ex	1/975 ml	02
Corporate Shipping: 2608 Dodley Rd. Kil	Kiigure, TX 75662 North Texas Region: 11105 Shady Trl Ste. 123 Dallas TX 75229-7633	Ste. 123 Dallas TX 75229-7633
	WHI AP-according #T1047047011015	
LDSClient vl. 14, 14, 1771		Form rpiPROJRES Created 10/13/2004 v1.2

ATT NOT	
SERVICE LAB	
SEL	
WIII III C	
¥ XXXX	

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

Employee Owned Integrity Caring Continual Improvement Results

Printed: 04/16/2019 14:43

.

Page 4 of 4

1773049 75105824010

Received: 04/05/2019 DASUB2007

EPA 614/608/617/1657	Prepared:	832001	Prepared: 832001 04/08/2019	08:00:00	Analyzed	832001	08:00:00 Anabzed 832001 04/08/2019	08:00:00 SJN	SJN
Solvent Extraction	1/975	B	I					02	
EPA 617	Prepared:	831994	Prepared: 831994 04/08/2019		Analyzed	832836	08:00:00 Analyzed 832836 04/10/2019	20:50:00	EMT
z Dicofol/Methoxychlor/Mirex	Entered							03	

Qualifiers:

X - Standard reads higher than desired.

corporate laboratory that holds the following Federal and State certificates: EPA Lab Number TX00063, US Department of Agriculture Soil Oklahoma Department of Environmental Quality TNI Laboratory Accreditation Program Certificate No. 2018-126, Arkansas Department of Import Permit P330-17-00117, Texas Commission on Environmental Quality Commercial Drinking Water Lab Approval (Lab ID: TX219), Environmental Quality Certification #18-068-0. The Accredited column designates accreditation by N -- NELAC, or z -- not covered under Certification (NELAP, LELAP) #02008, Louisiana Department of Health and Hospitals Drinking Water (NELAP) Certificate No LA026, We report results on an As Received or wet basis unless marked Dry Weight. Unless otherwise noted, testing was performed at Ana-labs Texas Commission on Environmental Quality NELAP T104704201-19-15, Louisiana Department of Environmental Quality Laboratory NELAC scope of accreditation.

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of Ana-Lab Corp. Unless otherwise specified, these test results meet the requirements of NELAC.

MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' column of our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical prevent it, we work to have our RL at or below the MAL

Bill Peery, MS, VP Technical Services

Corporate Shipping: 26 is itstor, but Kipping, TX 75662

North Texas Region: 11105 Shady Fr1 Ste. 123 Dallas TX 75229-7633

LDSClient v1, 14.14, 1771

www.ana-lab.com

Form rptPROJRES Created 10/13/2004 v1.2

Page 36 of 44

	Ana-Lab Corp.	in Corp		1.0. DUA 7000	2000	Mugore,		conci		>	Inchuit raye a ur 12
THE COMPLETE SERVICE LAB	Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com Employee Owned Integrity Caing Quality Control Printed	984-0551 FAX 903/984-5914 e- Employee Owned Quality Control	FAX 903/984-59 Employee Owned ity Contr	84-5914 wrred MtrO	e-Mail corp Integrity	o@ana-lab.con Caring Printe	Ó	LELAP-ace Continual Inprovement 04/16/2019	LELAP-accredited #02008 pprovement Page	lited #02 Pa	02008 Page 1 of 3
Pace Analytical - Dallas Pace Analytical - Dallas Melissa McCullough 400 West Bethany Drive Suite 190 Allen, TX 75013							Account PAMM-N	z	Project 8692	Project 869294	
cal Set	833090			Blank						E	EPA 420.4 1
<u>Parameter</u> Phenolics, Total Recoverable	PrepSet (c 832149	<i>Reading</i> ND	MDL 0.00377	MQL 0.005 CCV	Units mg/L			File 119824625			
<i>Parameter</i> Phenolics, Total Recoverable	ŧ	<i>Reading</i> 0.196 0.198 0.191	<i>Кло</i> нт 0.200 0.200 0.200	Units mg/L mg/L mg/L Duplicate	Recover% 98.0 95.5 te	Limits% 90.0 - 110 90.0 - 110 90.0 - 110		File 119824624 119824635 119824646			
<u>Parameter</u> Phenolics, Total Recoverable	c 1772654 c 1772654 1772947		Result ND 0.160	Unknown ND 0.161 ICV			<i>Unit</i> mg/L mg/L		RPD 0.623		Limie% 20.0 20.0
<i>Parameter</i> Phenolics, Total Recoverable	¢٤	Reading 0.200	Кпоwп 0.200	<i>Units</i> mg/L LCS Dup	Recover% 100 D	Limits% 90.0 - 110		File 119824623			
<u>Parameter</u> Phenolics, Total Recoverable	PrepSet e 832149	LCS 0.201	LCSD 0.206	ر ا Mat. Spike	Кпочи 0.200 ке	Limits% 90.0 - 110	LCS% 100	LCSD% 103	<i>Units</i> mg/L	RPD 2.46	Limit% 20.0
Parameter Phenolics, Total Recoverable	<i>Sample</i> e 1772654 1772947	<i>Spike</i> 0.195 0.358	Unknow ND 0.161	<i>Uпкпочт Кпочт</i> ND 0.200 0.161 0.200	Units mg/L mg/L	Recovery % 97.5 98.5	Limits % 90.0 - 110 90.0 - 110	<i>File</i> 119824630 119824633			
Analytical Set 832472 Parameter PrepSet Azinphos-methyl (Guthion) 832001 Chlorpyrifos 832001 Diazinon 832001 Diazinon 832001 Parathion, methyl 832001 Parathion, methyl 832001 Parathion, methyl 832001 Chlorpyrifos 832001 Chlorpyrifos 832001 Corpurate Shipping: 26001 (Guthion) Corpurate Shipping: 26001 (Maliev Rd. Kilgore, TX 75602	832472 <i>PrepSet</i> 832001 8322001 83	Reading ND ND ND ND ND ND ND ND ND ND ND 1770 1170 1170	<i>МDL</i> 0.0461 0.03544 0.03577 0.0466 0.0466 0.0292 0.0357 0.0357 0.0357 0.0357 0.0357 0.0357 0.0357 0.0292 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0255 0.005 0.0255 0.0255 0.0057 0.0055 0.005 0.0055 0.0055 0.005 0000	Blamk <i>MOL</i> 0.050 0.040 0.050 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.0000000 0.00000000	Blank MOL Units 0.050 ug/L 0.040 ug/L 0.050 ug/L 0.040 ug/L 0.040 ug/L 0.041 ug/L 0.042 ug/L 0.041 ug/L 0.042 ug/L 0.044 ug/L 0.051 117 ug/L 117 ug/L 103 ug/L 103	201	l exas Region:	EPA 16 File 119811245 119811245 119811245 119811245 119811245 119811245 119811245 119811245 119811245 119811245 119811245 120 119811245 120 119811228 120 119811228 North Feats Region: 11105 Shady Trl Stc. 123 Dallas TX 75229-7633 North Feats Region: 11105 Shady Trl Stc. 123 Dallas TX 75229-7633	Ste. 123 Da	EPA 1 Has TX 75229-763 Page 37 of 44	EPA 1657 529-7633 7 of 44

	-	4									
ANA-LAB	Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com Employee Owned Integrity Caring	44-0551 F.A	FAX 903/984-591 Employee Owned	84-5914 wned	e-Mail corp Integrity	n@ana-lab.con Caring		LELAP-acc Continual Improvement	LELAP-accredited #02008	lited #02	008
THE COMPLETE SERVICE LAB	0	Quality	y Co	Control			o Do	04/16/2019		P_{2}	Page 2 of 3
				CCV							
Parameter Chloromitico		Reading	Клоwп	Units	Recover%	Limits%	ł	Füle			
		1570	1000	ug/L ue/L	164 157	80.0 - 120 80.0 - 120		119811251			
Derneton		1090	1000	ng/L	109	80.0 - 120		119811228			
		1710	1000	ng/L	171	80.0 - 120		119811251			
Diazinon		1700	1000	ug/L	170	80.0 - 120	•	119811259			
		1850	1000	J/gu	185	80.0 - 120		119811228			
		2020	1000	ug/L	202	80.0 - 120	*	119811259			
Malathion		1030	1000	ug/L	103	80.0 - 120		119811228			
		1780	1000	1/gu	178	80.0 - 120	•	119811251			
Parathion. ethv]		1900	1000	ug/L	190	80.0 - 120	•	119811259			
		1580	0001	T/2n	20.07	071 - 0.08	,	110011228			
		1720	1000	J/an	172	80.0 - 120 80.0 - 120		127115611			
Parathion, methyl		1030	1000	ng/L	103	80.0 - 120		119811228			
		1590	1000	ng/L	159	80.0 - 120	•	119811251			
		1570	1000	J/gu	157	80.0 - 120	*	119811259			
				LCS Jup	đ						
Parameter		TCS	LCSD		Кпоwn	Limits%	rcs%	LCSD%	Units	RPD	Limit%
Azinpnos-methyl (Guthion) Chlomwrifos	n) 832001 832001	0.423	0.702		1.00	0.100 - 166	42.3	70.2	J/gu	49.6	50.0
Demeton	832001	0.313	0 295		1 00	0.100 101	40.8 21.2	41.3 20.5	J/gu	1.22	50.0
Diazinon	832001	0.476	0.519		1.00	0 100 - 100	6.16 47.6	0.12 0.12	חק/נ ח	76.0	0.02
Malathion	832001	0.419	0.456		1.00	0.100 - 113	41.9	45.6	ue/L.	8.46	0.05
Parathion, ethyl	832001	0.428	0.544		1.00	0.100 - 111	42.8	54.4	ng/L	23.9	50.0
Parathion, methyl	832001	0.429	0.453		1.00	0.100 - 109	42.9	45.3	ng/L	5.44	50.0
				Surrogate	te						
Parameter	Sample	Type	Reading	Кпоwn	Units	Recover%	Limits%	File			
Tributylphosphate		CCV	742		ng/L	74.2	0.100 - 118	119811228			
		CCV	1640	1000	1/gn	164 *	0.100 - 118	119811251			
		CCV	1710	1000	ug/L	171 *	0.100 - 118	119811259			
1 ripnenyipnosphate		CCV	988	1000	J/gu	98.8	0.100 - 147	119811228			
		CCV	1540	1000	ug/L.	154 *	0.100 - 147	056118611			
Triburylphosphate	832001	Blank	853	1000	ng/L	85.3	0.100 - 118	119811245			
	832001	LCS	412	1000	ng/L	41.2	0.100 - 118	119811246			
	832001	LCS Dup	473	1000	ug/L	47.3	0.100 - 118	119811247			
Тприслуприогране	832001	Blank	723	1000	ug/L	72.3	0.100 - 147	119811245			
	832001	LCS Dam	545 474	1000	ug/L	34.5	0.100 - 147	119811246			
Tributylphosphate	1773049	UNKNOWNI .02	N1.02	1.03	ug/L	4./4 99.0	0.100 - 147	119811247			
Triphenylphosphate	1773049	UNKNOWND.927	N0.927	1.03	ng/L	90.06	0.100 - 147	119811252			
Analytical Set	832836										EPA 617
				Blank							
Parameter	PrepSet	Reading	ТŒW	TŌW	Units			File			
Kelthane (Dicofol)	831994	Q P	0.0352	0.040	ug/L			119818837			
INCLUSIVACION	466100	ΠN	1 6800 0	010.0	ug/L			119818837			
Corporate Shipping: 2600 Buchey Rd. Kiles	Kilgare, TX 75662					Varia	Ferric Relation	North Feers Russians (1105 Shedde Tet Sto. 123 Ioda TV - 75794 7523	el Sto 123 Ibs	T VI vello	2232.0452
				110	ACCORD.			n âbergeen i			0001-6770
				E CALE	helac						
			NELAF	-accredit	ed #T10470	NELAP-accredited #T104704201-19-15				Pane 2	Pare 38 nf 44
LDSClient v1 14.14.171										n offer	

-

	Ana-Lab Corp.	b Corp		P.O. Box 9000	0006	Kilgore,	, TX	75663	Rep	ort Paç	Report Page 7 of 12	
CNALAR Pho	пе 903/98-	1-0551 FA	X 903/9	84-5914	Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com	@ana-lab.	COLLI	F	LELAP-accredited #02008	edited #	02008	
		Em]	Employee Owned	wned	Integrity	Caring	a B B	Continual Inprovement	provenent			
THE COMPLETE SERVICE LAB	Õ	Quality Contro	V CC	ntro	1	Pr	Printed (04/16/2019			Page 3 of 3	
				Blank								
Parameter	PrepSet	Reading	ΤŒW	ΠŌΜ	Units			File				
Mirex	831994	QN	0.00905	0.010	ng/L			119818837	37			
				CCV								
<u>Parameter</u>		Reading	Кпочт	Units	Recover%	Limits%		File				
Kelthane (Dicofol)		191	200	ug/L	95.3	70.0 - 130		119818835	35			
		280	200	ug/L	140	70.0 - 130	,	119818844	44			
		343	200	ug/L	172	70.0 - 130		119818850	50			
Methoxychlor		101	100	ug/L	101	70.0 - 130		119818835	35			
		127	100	ug/L	127	70.0 - 130		119818844	44			
Mirow		142	100	ug/L	142	70.0 - 130	•	119818850	50			
VA ITTAT		001	001		100	70.0 - 130		119818835	35			
		107	100	ug/L	103	70.0 - 130		119818844	44			
		107	001	ug/L	107	70.0 - 130		119818850	50			
				LCS Dup	Ь							
Parameter	PrepSet	LCS	LCSD		имоиХ	Limits%	LCS%	CSD%	Units	s RPD	Limit%	
Kelthane (Dicofol)	831994	1.40	1.45		2.00	0.100 - 130	70.0	72.5	ug/L	3.51	30.0	
Methoxychlor	831994	0.983	0.965		1.00	33.6 - 137	98.3	96.5	ug/L	1.85	30.0	
Mirex	831994	0.798	0.702		1.00	37.6 - 119	79.8	70.2	ng/L	12.8	30.0	
				Surrogate	te							
Parameter	Sample	Type	Reading	Кпочт	Units	Recover%	Limits%	6 File				
Decachlorobiphenyl		CCV	94.4	100	ng/L	94.4	10.0 - 150	0 119818835	35			
		CCV	90.8	100	ug/L	90.8	10.0 - 150	50 119818844	44			
		CCV	105	100	ug/L	105	10.0 - 150	0 119818850	50			
Tetrachloro-m-Xylene (Surr)		CCV	103	100	ng/L	103	10.0 - 150	0 119818835	35			
		CCV	102	100	ug/L	102	10.0 - 150		44			
Danachtachtachtach	100100	CCV	94.1	100	ug/L	94.1	10.0 - 150		50			
reachiologiphenyi	464160	Blank	67.5	100	ug/L	67.5	10.0 - 150		37			
	851994	LCS LCS	2.68	100	ug/L	85.2	10.0 - 150		38			
T	+66100	ding eng	5.1.1 	001	ug/L	77.3	10.0 - 150		39			
r cuachioto-m-Ayiene (Surt)	\$21994	Blank	43.4	100	ug/L	43.4	10.0 - 150		37			
	831994	LCS	61.3	100	ug/L	61.3	10.0 - 150	0 119818838	38			
	831994	LCS Dup	57.5	100	ug/L	57.5	10.0 - 150	0 119818839	39			
Decachlorobiphenyl	1773049	UNKNOWND.0448	ND.0448	0.103	ng/L	43.5	10.0 - 150	0 119818841	41			
Tetrachloro-m-Xylene (Surr)	1773049	UNKNOWND.0578	ND.0578	0.103	ug/L	56.1	10.0 - 150	0 119818841	41			
 Out RPD is Relative Percent Difference: abs(r1-r²) / mean(r1,r²) * 100% 	Difference: at	s(r1-r2) / me	an(r1,r2) *	100%			Recover%	Recover% is Recovery Percent: result / known * 100%	ent: result/kno	wп * 100%		
Blank	k - Method Bl	ank; CCV - C	Continuing	Calibration	Blank - Method Blank; CCV - Continuing Calibration Verification; ICV - Initial Calibration Verification	CV - Initial Cal	libration V	erification				

......

Report Page 7 of 12

Corpurate Shipping: 2600 Budley Rd. Kilgure, 3X 75662

Page 39 of 44 Form rpiPROJQCGrpt Created 01/27/2005 v1.0

North Texas Region: 11105 Shady Trl Ste. 123 Dallas TN 75229-7633

N ACCON

VELAP-accredited #T104704201-19-15 www.ana-lab.com

LDSClient v1_14.14_1771

Chain of Custody -----

1 of 5

869294 CoC Print Group 001 of 001

Report	/ Invoice To	Subc	ontract To		14	_	-		-	T			Recto		nalysis		- 1	
Pace / 400 W Sulte ' Allen, Phone Emeil:	a McCullough Anelytical Dallas est Bethany Drive 190 TX 75013 (972)727-1123 melissa.mccullough@pacelabs.co of Sample OrigIn: TX TPDES		_ab	P.(IB200		132	7/1657	1 Phenol				linysis			
11		1	1	1	+ '		rved C	ontain	ars T	10	120,	n I						
ltem	Sample ID	Collect Date/Time	Lab ID	Matrix	H2SO4	Unpreserved					4							LAB USE ON
1	548261	4/1/2019 10:15	75105824002	Water							X				++			273 011
2	548263	4/1/2019 15:51	75105824004	Water	-				+		X				+-+			11504
3	548265	4/1/2019 21:57	75105824006	Water	1						X			-	++		++	- 00-
£	548267	4/2/2019 05:35	75105824008	Water	-		-	-1-	+		X				++		+-+-	- 04
5	548270	4/2/2019 08:00	75105824010	Water	-		-	-	+	x			++		++-		++	_04
100		di como	-	-	1				11			-		-	Con	ments	<u></u>	_04
Fransfe		Date/T	ime Receive	d By				Dat	e/Time	8	TI	PDES L	imits Se	e attach	ed list			
1	Magande Ch> Feak	4:4=19	105 The	() (L_1) U Ověrma	lei			-4.i	91-	101	1	henol Ri						

See Attached for Tracking # and Temp

Thursday, April 04, 2019 12:28:15 PM

FMT-ALL-C-002rev.00 24March2009

Page 1 of 1

Page 40 of 44

Pace Analytical.

1

2 of 5

869294 CoC Print Group 001 of 001

75105824

÷

 \mathbf{x}_{i}

Profile List

PASI Dallas Laboratory

	.!.		с П	ш	ш	ш	ш	ш	щ	щ	ц	1	
		MDI Jinte	0.01 ug/L	0.02 ug/L	0.01 ug/L	0.02 ugh.	C.D1 ug/L	CLDT LIGAL	0.02 ugh.	0.02 uph	0.5 100		
		Cd		-		0.1	0.1		N	0.02	÷		
12		CAS No.	86-50-0	2921-38-2	333-41-5	56-38-2	121-75-5	8065-48-3	72-43-5	2385-86-5	115-32-2		
Profile N 6252 Line 12		Analyte	metiny (Guthion)	Ø		Parafition (Eility) parafition)	Malathion	Total Demeton	Methoxychior	METER	Dicafal		
rofile i		Cunp		chily		hđ	alen;	demt	TIBOX	mirx		pedillo.	
		Curp List	1667 W						617 W			ot instrument s	
PCS		Acode	1657 W						817 W			"The MDLs lieted are not instrument specific.	
Client	enL	Wern /	1						9			Net	#CI-I

ant Figures. Numeric Value - The actual number of significant figures E (EPA) - Numbers less fram 10 have 2 significant figures and numbers greater than or equal to 100 have 3 M (Melads) - Numbers less fram 100 have 2 significant figures, numbers greater than or equal to 100 have 3 O (Organics) - Numbers less fram 1 have 1 significant figures, numbers greater than 100 have 3 significant to a 2 contraction of the sector figures, and numbers greater than or equal to 100 have 3 significant

Page 41 of 44

Chain of Custody -

	rt / Invoice To	Sub	contract To	-	шira.			5				4/17/2019 Analysis		8 8
Pace 400 V Suite Allen, Phone Email	sa McCullough Analytical Dallas Vest Bethany Drive 190 TX 75013 e (972)727-1123 : mellssa.mccullough@pacelab of Sample Origin: TX TPE	s.com	aLab	P.(o. DA		2007 d Containe		.1 Phenol			×.		
ltem	Sample ID	Collect Date/Time	Lab ID	Matrix	H2SO4	pevesaudu			420.					LAB USE ONL
1	548261 -	4/1/2019 10:15	75105824002	Water			++		X	++	++			177304
2	548263	4/1/2019 15:51	75105824004	Water			+		X	++				11/207
3	548265	4/1/2019 21:57	75105824006	Water					X					04.
4	548267	4/2/2019 05:35	75105824008	Water				13	X					049
5			1											- 010
Transf	ers Released By		-		-	1		1				Comme	nts	
1		Date/						e/Time	Phi	anol RL 1	0 ug/L.			
2	Miandalt	2 4.5.10	119 1045 2	athy Tarve		e)	4.5	6/191	45					

Pace Analytical *

See Atlached for Tracking # and Temp

Thursday, April 04, 2019 12:28:15 PM

FMT-ALL-C-002rev 00 24March2009

Page 1 of 1

Report Page 11 of 12

5 7

Report Page 12 of 12

Pollution Control Services
2
ame: NBU
Sample Delivery to Lab Via: Client Drop Off Commercial Carrier: Bus UPS Lone Star FedExUSPS PCS Field Services: Collection/Pick Up Other:
Sample Kit/Cooler? No Sample Kit/Cooler? Yes No Sample Kit/Cooler? Yes No Sample Kit/Cooler: Not Present If Present, Intact Broken Custody Seals on Sample Kit/Cooler: Not Present If Present, Intact Broken Sample Containers Intact: Unbroken and Not Leaking? Yes No Custody Seals on Sample Bottles: Not Present If Present, Intact Broken Cocc Present with Shipment or Delivery or Completed at Drop Off? Yes No Has COC Present with Shipment or Delivery or Completed at Drop Off? Yes No Has COC Present with Shipment or Delivery or Completed at Drop Off? Yes No Has COC Present with Sample Bottle Information been provided by client/sampler? Yes No: Has COC agree with Sample Bottle Information, Bottle Types, Preservation, etc.? Yes No: Does COC agree with Sample Bottle Information, Bottle Types, Preservation, etc.? Yes No: All Samples Received before Hold Time Expiration? Yes No Sufficient Sample Volumes for Analysis Requested? Yes No Zero Headspace in VOA Vial if Present? Yes No
Sample Preservation: or Required or Required * Cooling: Not Required or Required or Required If cooling required, record temperature of submitted samples Observed/Corrected / > If soling required, record temperature of submitted samples Observed/Corrected / > > If soling required, record temperature of Submitted samples Observed/Corrected / > > > If soling required, record temperature of Submitted samples Observed/Corrected No Samples received same day as collected? Yes No Lab Thermometer Make and Serial Number: EX Tech 10093657 Other: Other No
Acid Preserved Sample - If present, is pH <2?
Adjusted by Tech/Analyst: Date : Time: Client Notification/ Documentation for "No" Responses Above/ Discrepancies/ Revision Comments Person Notified: Contacted by: Notified Date: Time: Method of Contact: Left Voice Mail Dable to Centact Authorized Laboratory to Proceed : Regarding / Comments: (Lab Director)
Actions taken to correct problems/discrepancies:
Receiving qualifier needed (requires client notification above) Temp. Holding Time Initails: Receiving qualifier entered into LIMS at login Initial/Date: Revision Comments:
* Samples submitted for Metals Analysis (except Hex Cr) or Drinking Water for Coliform Bacteria Only are not required to be iced. Samples collected prior day to receipt at the laboratory must meet method specific thermal cooling requirements. "or will be flagged accordingly". Samples delivered the same day as collected may more meet thermal criteria, but shall be considered acceptable if evidence that the chilling process has begun, such as arrival on ice (EPA 815-F-08-006, June 2008). "* Water samples for metals analysis that are not ucid preserved prior to shipment may be acceptably preserved by the laboratory on receipt – however, the sample for metals analysis that are not acid preserved prior to shipment may be acceptably preserved by the laboratory on receipt – however, the sample digestion procedure must be delayed for at least 24 hours after preservation by the laboratory.

PCS Sample Login Checklist 20180417

Client Information	Sample Information	Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: SK WWTP IPP Annual Sample ID: Eff Grab #1 Matrix: Non-Potable Water Date/Time Taken: 04/01/2019 1015	PCS Sample #: 548260 Page 1 of 1 Date/Time Received: 04/02/2019 11:51 Report Date: 04/17/2019 Approved by:
and want and a first of the spectrum of the section		Chuck Wallgren, President
Test Description Flag	Result Units RL Analysis Date/Ti	me Method Analyst
Cyanide, Amenable + See	Attached	Pace Analytical Services - Dallas
Quality Statement: All supporting quality control data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.		
+ Subcontract Work - NELAP Certified Lab	These analytical res All data is reported RL = Reporting Lin	ults relate only to the sample tested. on an "As Is" basis unless designated as "Dry Wt." hits
Web Site: www.pcslab.net Toll Free 800-880-4616 e-mail: chuck@pcslab.net	1532 Universal City Blvd, Sulte 100 210-34 Universal City, TX 78148-3318	0-0343 FAX # 210-658-7903

Report of Sample Analysis

CIL LA TABA AND			
Client Information	Sample Information	Laboratory Information	
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: SK WWTP IPP Annual Sample ID: Eff Grab #1 Matrix: Non-Potable Water Date/Time Taken: 04/01/2019 1015	PCS Sample #: 548261 Page 1 of 1 Date/Time Received: 04/02/2019 11:51 Report Date: 04/17/2019 Approved by: here Wallgreen	
		Chuck Wallgren, President	
		W Chuck Wungton, Prosident	
Test Description Flag Re	esult Units RL Analysis Date/Ti	me Method Analyst	
Phenolics + See At	tached	Pace Analytical Services - Dallas	
Quality Statement: All supporting quality control data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.			
+ Subcontract Work - NELAP Certified Lab	These analytical red All data is reported RL = Reporting Lir	ults relate only to the sample tested. on an "As ls" basis unless designated as "Dry Wt." nits	
Web Site: www.pcslab.netToll Free 800-880-4616e-mail: chuck@pcslab.net	1532 Universal City Blvd, Suite 100210-34Universal City, TX 78148-3318	I0-0343 FAX # 210-658-7903	

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: SK WWTP IPP Annual Sample ID: Eff Grab #2 Matrix: Non-Potable Water Date/Time Taken: 04/01/2019 1551	PCS Sample #: 548262 Page 1 of 1 Date/Time Received: 04/02/2019 11:51 Report Date: 04/17/2019 Approved by: Chuck Wallgren, President
Test Description Flag Re	esult Units RL Analysis Date	/Time Method Analyst
Cyanide, Amenable + See At	tached	Pace Analytical Services - Dallas
<u>Quality Statement:</u> All supporting quality control data adher exceptions or in a case narrative attachment. Reports with fu	ed to data quality objectives and test results meet the Il quality data deliverables are available on request.	requirements of NELAC unless otherwise noted as flagged
+ Subcontract Work - NELAP Certified Lab	These analytica All data is repor RL = Reporting	l results relate only to the sample tested. rted on an "As Is" basis unless designated as "Dry Wt." Limits
Web Site: www.pcslab.net Toll Free 800-880-4616 e-mail: chuck@pcslab.net	1532 Universal City Blvd, Suite 100 21 Universal City, TX 78148-3318	0-340-0343 FAX # 210-658-7903

Report of Sample Analysis

Cillant In Commetion			
Client Information	Sample Information	Laboratory Information	al - Chanad Say
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: SK WWTP IPP Ar Sample ID: Eff Grab #2 Matrix: Non-Potable Water Date/Time Taken: 04/01/2019 15	551 Date/Time Received: 04/02/2019 12 Report Date: 04/17/2019 Approved by: Curch MA	llgren
		W Chuck Wallgren, Pres	sident
Test Description Flag Re	esult Units RL Analys	sis Date/Time Method Analyst	
Phenolics + See At	tached	Pace Analytical Services -	Dallas
<u>Quality Statement:</u> All supporting quality control data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.			
+ Subcontract Work - NELAP Certified Lab	All	ese analytical results relate only to the sample tested. l data is reported on an "As Is" basis unless designated as "Dry Wt." , = Reporting Limits	
Web Site: www.pcslab.net Toll Free 800-880-4616 e-mail: chuck@pcslab.net	1532 Universal City Blvd, Sulte 100 Universal City, TX 78148-3318	210-340-0343 FAX # 210-658-7903	

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: SK WWTP IPP Annual Sample ID: Eff Grab #3 Matrix: Non-Potable Water Date/Time Taken: 04/01/2019 2157	Laboratory Information PCS Sample #: 548264 Page 1 of 1 Date/Time Received: 04/02/2019 11:51 Report Date: 04/17/2019 11:51 Approved by: Image: Market Maillight Market Mar
Test Description Flag Re	esult Units RL Analysis Date/I	ime Method Analyst
Cyanide, Amenable + See At	tached	Pace Analytical Services - Dallas
<u>Quality Statement:</u> All supporting quality control data adhere exceptions or in a case narrative attachment. Reports with fu	ed to data quality objectives and test results meet the r Il quality data deliverables are available on request.	equirements of NELAC unless otherwise noted as flagged
+ Subcontract Work - NELAP Certified Lab	These analytical r All data is reporte RL = Reporting L	esults relate only to the sample tested. d on an "As Is" basis unless designated as "Dry Wt." imits
Web Site: www.pcslab.net Toll Free 800-880-4616 e-mail: chuck@pcslab.net	1532 Universal City Blvd, Suite 100 210-3 Universal City, TX 78148-3318	340-0343 FAX # 210-658-7903

Climate In Francis	A. A.		
Client Information	Sample Information	보통하는 제품 변화가 문서 방법을	Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: SK WWTP IPI Sample ID: Eff Grab #3 Matrix: Non-Potable Water Date/Time Taken: 04/01/2019	Date/ Repo	Sample #: 548265 Page 1 of 1 Time Received: 04/02/2019 11:51 rt Date: 04/17/2019 oved by: Chuck Wallgren, President
	Carlor Market States		Chuck wangren, Fresident
Test Description Flag Re	sult Units RL An	alysis Date/Time Method	l Analyst
Phenolics + See Att	ached		Pace Analytical Services - Dallas
Quality Statement: All supporting quality control data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.			
+ Subcontract Work - NELAP Certified Lab		These analytical results relate only to All data is reported on an "As Is" basis RL = Reporting Limits	the sample tested. s unless designated as "Dry Wt."
Web Site: www.pcslab.net Toll Free 800-880-4616 e-mail: chuck@pcslab.net	1532 Universal City Blvd, Suite 100 Universal City, TX 78148-3318	210-340-0343	FAX # 210-658-7903

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: SK WWTP IPP Annual Sample ID: Eff Grab #4 Matrix: Non-Potable Water Date/Time Taken: 04/02/2019 0535	PCS Sample #: 548266 Page 1 of 1 Date/Time Received: 04/02/2019 11:51 Report Date: 04/17/2019 Approved by: Lunch Malleren
	J	Chuck Wallgren, President
Test Description Flag Re	esult Units RL Analysis Date/Ti	ime Method Analyst
Cyanide, Amenable + See At	ttached	Pace Analytical Services - Dallas
<u>Quality Statement:</u> All supporting quality control data adher exceptions or in a case narrative attachment. Reports with fu	red to data quality objectives and test results meet the re Ill quality data deliverables are available on request.	quirements of NELAC unless otherwise noted as flagged
+ Subcontract Work - NELAP Certified Lab	These analytical res Ail data is reported RL = Reporting Lin	sults relate only to the sample tested. on an "As Is" basis unless designated as "Dry Wt." nits
Web Site: www.pcslab.net Toll Free 800-880-4616 e-mail: chuck@pcslab.net	1532 Universal City Blvd, Suite 100 210-34 Universal City, TX 78148-3318	40-0343 FAX # 210-658-7903

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: SK WWTP IPP Annual Sample ID: Eff Grab #4 Matrix: Non-Potable Water Date/Time Taken: 04/02/2019 0535	PCS Sample #: 548267 Page 1 of 1 Date/Time Received: 04/02/2019 11:51 Report Date: 04/17/2019 Approved by:
Test Description Flag Re	esult Units RL Analysis Date	e/Time Method Analyst
Phenolics + See At	tached	Pace Analytical Services - Dallas
Quality Statement: All supporting quality control data adher exceptions or in a case narrative attachment. Reports with fu		
+ Subcontract Work - NELAP Certified Lab		cal results relate only to the sample tested. Forted on an "As Is" basis unless designated as "Dry Wt." ng Limits
Web Site: www.pcslab.net Toll Free 800-880-4616 e-mail: chuck@pcslab.net	1532 Universal City Blvd, Suite 100 2 Universal City, TX 78148-3318	R10-340-0343 FAX # 210-658-7903
This report cannot be reproduce	d or duplicated, except in full, without prior written of	consent from Pollution Control Services.

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: SK WWTP IPP Annual Sample ID: Eff Grab Matrix: Non-Potable Water Date/Time Taken: 04/01/2019 1015	PCS Sample #: 548268 Page 1 of 1 Date/Time Received: 04/02/2019 11:51 Report Date: 04/17/2019 Approved by:
		Chuck Wallgren, President
Test Description R	esult Units RL Analysis Date/Ti	me Method Analyst
	ttached	Pace Analytical Services - Dallas
<u>Quality Statement:</u> All supporting quality control data adhe exceptions or in a case narrative attachment. Reports with f		quirements of NELAC unless otherwise noted as flagged
	These analytical res All data is reported RL = Reporting Lin	oults relate only to the sample tested. on an "As Is" basis unless designated as "Dry Wt." nits
Web Site: www.pcslab.netToll Free 800-880-4616e-mail: chuck@pcslab.net	1532 Universal City Bivd, Sulte 100 210-34 Universal City, TX 78148-3318	40-0343 FAX # 210-658-7903

Report of Sample Analysis

Client Information	in Haller	Si	ample Inform	ation	The second			Laboratory I	nformation	
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Sam Matr	ple ID: E ix: Non-	SK WWTI off Comp Potable Wat ken: 04/02/2	er			Date/Tir	Date: 04/19/2	04/02/2019 11:51	1 of 4
									ick Wallgren, Presiden	
Test Description	Result	Units	RL	Analysis	Date	/Time	Method	W.	Analyst	
Chloride Nitrate-N Sulfate Fluoride Kjeldahl-N, Total <u>Alkalinity, Total</u> Arsenic/ICP MS	172 28.8 100 0.70 3 132 0.0006	mg/L mg/L mg/L mg/L mg/L mg/L	1 0.1 1 0.10 1 10 0.0005	04/04/20 04/03/20 04/04/20 04/03/20 04/18/20 04/03/20 04/10/20	19 0 19 1 19 0 19 0 19 1)4:55 <u>4:51</u>)4:55)9:00 5:00	EPA 300.0 EPA 300.0 EPA 300.0 EPA 300.0 SM 4500-N SM 2320 B EPA 200.8	B/E	PLP PLP PLP CRM CRM DJL	
Test Description	Precision	Qua Limit	ility Assuranc LCL		ASD	UCI	L LCS	LCS Limit		
Chloride Nitrate-N Sulfate Fluoride Kjeldahl-N, Total Alkalinity, Total Arsenic/ICP MS	<1 <1 2 <1 <1 <1 <1 <1 2	10 20 10 10 10 10 20	92 70 93 83 92 95 70	100	99 99 96 99 97 100 99	102 130 102 108 109 107 130	107 103 108 102 106 102 97	85 - 115 85 - 115		
Quality Statement: All supporting quality control data exceptions or in a case narrative attachment. Reports	adhered to da with full quali	ta quality o ty data deliv	bjectives and t verables are av	test results n vailable on i	neet th eques	he requir 1.	ements of NE	LAC unless othe	erwise noted as flagged	d
	1/1/			All c RL = QC	lata is re Report Data 1	eported on ting Limits Reported	in %, Except BO	nless designated as " D in mg/L		
Web Site: www.pcslab.net Toll Free 800-880- e-mail: chuck@pcslab.net	4616 1		ll City Blvd, Suite ity, TX 78148-33		2	210-340-03	43	F	XX # 210-658-7903	

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information				
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: SK WWTP IPP Annual Sample ID: Eff Comp Matrix: Non-Potable Water Date/Time Taken: 04/02/2019 0800	PCS Sample #: 548269 Page 2 of 4 Date/Time Received: 04/02/2019 11:51 Report Date: 04/19/2019				

Test Description	Result	Units	RL	Analys	sis Date	/Time	Method		Analyst	
Barium/ICP (Total)	0.018	mg/L	0.003	04/04	/2019	12:44	EPA 200.7 /	6010 B	DJL	
Cadmium/ICP (Total)	< 0.001	mg/L	0.001	04/04/	/2019	12:44	EPA 200.7 /	6010 B	DJL	
Chromium/ICP (Total)	< 0.003	mg/L	0.003	04/04	/2019 1	12:44	EPA 200.7 /	6010 B	DJL	
Copper/ICP (Total)	0.008	mg/L	0.002	04/04/	/2019 1	12:44	EPA 200.7 /	6010 B	DJL	
Lead/ICP MS	< 0.0005	mg/L	0.0005	04/10/	/2019 1	11:15	EPA 200.8		DJL	
Aluminum/ICP (Total)	0.130	mg/L	0.0025	04/04/	/2019 1	12:44	EPA 200.7 /	6010 B	DJL	
Beryllium/ICP (Total)	< 0.0005	mg/L	0.0005	04/04/	/2019 1	12:44	EPA 200.7 /	6010 B	DJL	
		Qua	lity Assurance	e Summ	ary					
Test Description	Precision	Limit	LCL	MS	MSD	UCL	L LCS	LCS Limit		
Barium/ICP (Total)	1	20	75	96	95	125	110	85 - 115		
Cadmium/ICP (Total)	1	20	75	100	99	125	105	85 - 115		
Chromium/ICP (Total)	<1	20	75	96	96	125	110	85 - 115		
Copper/ICP (Total)	<1	20	75	97	97	125	105	85 - 115		
Lead/ICP MS	<1	20	70	108	108	130	106	85 - 115		
Aluminum/ICP (Total)	<1	20	75	101	101	125	105	85 - 115		
Beryllium/ICP (Total)	<1	20	75	100	100	125	110	85 - 115		

<u>Quality Statement:</u> All supporting quality control data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.

			These analytical results relate only to the All data is reported on an "As Is" basis u RL = Reporting Limits QC Data Reported in %, Except BC	nless designated as "Dry Wt."	
Wcb Site: www.pcslab.net c-mail: chuck@pcslab.net	Toll Free 800-880-4616	1532 Universal City Blvd, Suite 100 Universal City, TX 78148-3318	210-340-0343	FAX # 210-658-7903	/

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information				
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: SK WWTP IPP Annual Sample ID: Eff Comp Matrix: Non-Potable Water Date/Time Taken: 04/02/2019 0800	PCS Sample #: 548269 Page 3 of 4 Date/Time Received: 04/02/2019 11:51 Report Date: 04/19/2019				

Test Description	Flag	Result	Units	RL	Analy	sis Date	e/Time	Method		Analyst	
Molybdenum/ICP (Total)		< 0.010	mg/L	0.010	04/04	/2019	12:44	EPA 200.7 / 0	5010 B	DJL	
Hexavalent Chrome	R	< 0.003	mg/L	0.003	04/02	/2019	16:43	SM 3500-Cr	D	DJL	
Antimony/ICP (Total)		< 0.005	mg/L	0.005	04/04	/2019	12:44	EPA 200.7 / (5010 B	DJL	
Nickel/ICP (Total)		0.002	mg/L	0.002	04/04	/2019	12:44	EPA 200.7 / 0	5010 B	DJL	
Silver/ICP (Total)		< 0.0005	mg/L	0.0005	04/04	/2019	12:44	EPA 200.7 / 0	5010 B	DJL	
Zinc/ICP (Total)		0.071	mg/L	0.005	04/04	/2019	12:44	EPA 200.7 / 0	5010 B	DJL	
Selenium/ICP (Total)		< 0.005	mg/L	0.005	04/04	/2019	12:44	EPA 200.7 / 6	5010 B	DJL	
	- 71- 6	and the second second	Qua	lity Assurance	e Summ	ary					
Test Description		Precision	Limit	LCL	MS	MSD	UCI	L LCS	LCS Limit		
Molybdenum/ICP (Total)		1	20	75	100	99	125	105	85 - 115		
Hexavalent Chrome		<1	20	75	*55	*55	125	101	85 - 115		
Antimony/ICP (Total)		<1	20	75	100	100	125	105	85 - 115		
Nickel/ICP (Total)		<1	20	75	92	92	125	105	85 - 115		
Silver/ICP (Total)		1	20	75	89	90	125	110	85 - 115		
Zinc/ICP (Total)		<1	20	75	95	95	125	105	85 - 115		
Selenium/ICP (Total)		<1	20	75	100	100	125	105	85 - 115		

<u>Quality Statement:</u> All supporting quality control data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.

R Spike recovery outside control limit * Approved for release per QA Plan,			These analytical results relate only to the All data is reported on an "As Is" basis un RL = Reporting Limits		
			QC Data Reported in %, Except BO	D in mg/L	
Web Site: www.pcslab.net c-mail: chuck@pcslab.net	Toll Free 800-880-4616	1532 Universal City Blvd, Suite 100 Universal City, TX 78148-3318	210-340-0343	FAX # 210-658-7903	

Report of Sample Analysis

Client Information		Sample Inform	ation	Labo	oratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Samp Matri	ct Name: SK WWT ble ID: Eff Comp ix: Non-Potable Wat Time Taken: 04/02/	er	PCS Sample Date/Time Re Report Date:	ceived: 04/02/2019 11:51
Test Description	Result	Units RL	Analysis Date/Time	Method	Analyst
Thallium/ICP MS	<0.0005	mg/L 0.0005	04/10/2019 11:15	EPA 200.8	DJL
Test Description	Precision	Quality Assuranc Limit LCL	e Summary MS MSD UC	L LCS LCS	Timit
Thallium/ICP MS	<1	20 70	106 107 130		- 115
uality Statement: All supporting quality cont exceptions or in a case narrative attachment.	rol data adhered to data	a quality objectives and a	est results meet the requ	irements of NELAC u	nless otherwise noted as flagged
ceptions or in a case narrative attacnment.	xeports with juit quality	v aata aetiverables are av	These analytical resu	Its relate only to the sample t n an "As Is" basis unless des	tested. ignated as "Dry Wt."
				ł in %, Except BOD in mg	g/L
Web Site: www.pcslab.net Toll Free c-mail: chuck@pcslab.net	800-880-4616 15	532 Universal City Blvd, Suit Universal City, TX 78148-33	210-340-0 18	1343	FAX # 210-658-7903

Report of Sample Analysis

Client Information		Sample Infor	mation	La	aboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289		Sample ID: Eff Comp Matrix: Non-Potable W	ole ID: Eff Comp Date/		e #: 548270 Page 1 of 1 Received: 04/02/2019 11:51 : 04/17/2019
Test Description	Re	esult Units RL	Analysis Date/Ti	me Method	Analyst
Pesticides 617 604.1 Hexachlorophene Semi Volatiles 625 Pesticides 608 Pesticides 632 Pesticide 1657 Herbicides 615	See Att See Att See Att See Att See Att	tached tached tached tached tached			Pace Analytical Services - Dallas Pace Analytical Services - Dallas
<u>Duality Statement:</u> All supporting quality contro xceptions or in a case narrative attachment. Re	ol data adher ports with fu	ed to data quality objectives an Il quality data deliverables are	d test results meet the req available on request.	uirements of NELAC	unless otherwise noted as flagged
				ults relate only to the sample on an "As Is" basis unless de	

			RL = Reporting Limits		
Web Site: www.pcslab.net e-mail: chuck@pcslab.net	Toll Free 800-880-4616	1532 Universal City Blvd, Sulte 100 Universal City, TX 78148-3318	210-340-0343	1	FAX # 210-658-7903

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: SK WWTP IPP Annual Sample ID: Eff Grab Matrix: Non-Potable Water Date/Time Taken: 04/02/2019 0800	PCS Sample #: 548271 Page 1 of 1 Date/Time Received: 04/02/2019 11:51 Report Date: 04/12/2019 Approved by: Chuck Wallgren, President
Test Description Re	sult Units RL Analysis Date/T	ime Method Analyst
Mercury/CVAFS <0.000	005 mg/L 0.000005 04/05/2019 12::	54 EPA 245.7 DJL
Test Description Pro	Quality Assurance Summary ecision Limit LCL MS MSD	UCL LCS LCS Limit
Mercury/CVAFS	4 20 70	130
<u>Quality Statement:</u> All supporting quality control data adhe exceptions or in a case narrative attachment. Reports with f	red to data quality objectives and test results meet the r full quality data deliverables are available on request.	requirements of NELAC unless otherwise noted as flagged
	All data is repor RL = Reporting	Il results relate only to the sample tested. rted on an "As Is" basis unless designated as "Dry Wt," g Limits ported in %, Except BOD in mg/L
Web Site: www.pcslab.netToll Free 800-880-4616e-mail: chuck@pcslab.net	1532 Universal City Blvd, Suite 100 210- Universal City, TX 78148-3318	-340-0343 FAX # 210-658-7903

Chain of Custody Number 5 4 8 2 6 0

MULTIPLE SAMPLE ANALYSIS REQUEST AND CHAIN OF CUSTODY FORM 709 15' sample and COC as same number													
CUSTOMER INFORMA		St. 8 . 50	v. 1	151	REPOR	T IN	FOR	MATION	1 Holy			30 B.,	
Name: New Braunfels Uti	lites				Attentio	n: Tri	sh So	bechting		Pho	ne: (830) 608-8900		Fax: (830) 626-1361
SAMPLE INFORMATIC	N			100					Req	ueste	d Analysis	1.00	
Project Information:			Collee	cted By	" the	-	_			1			Instructions/Comments:
IPP SK WWTP Annual					Matrix		<u>i</u> ų į	Container					
Report "Soils" 🛛 As Is 🗆 Dry V	√t.		orine mg/L	e or	DW- Drinking Water; NPW- Nor	-			5.1				
Sector A . Will Desident	Colle	cted	Chlo Iual	osit	potable water; WW-Wastewater;	Type	Number	Preservative	33	ols			
Client / Field Sample ID	Date	Time	Field Chlorine Residual mg/L	Composite or Grab	LW-Liquid Waste		Nn		CN-A335.1	Phenols			PCS Sample Number
Eff Grab #1	Start: 4119 End:	Start: [0]5 End:		□C ⊠G	DW NPW WW Soil Sludge LW Other	■P ■G ■O	1	□ H ₂ SO4 □ HNO3 □ H ₃ PO4 ☑ NaOH ☑ ICE □	X				5 4 8 2 6 0 DS DB DN DHEM Other:
Eff Grab #1 0401930	Start: 4.1.61 End:	Start: 1015 End:		□C ⊠G	DW NPW WW Soil Sludge LW Other	□P ⊠G □O	1	$\label{eq:heads} \begin{array}{ c c c c c } \hline \blacksquare & H_2 SO_4 \ \hline \blacksquare & HNO_3 \\ \hline \blacksquare & H_3 PO_4 \ \hline \blacksquare & NaOH \\ \hline \blacksquare & ICE \ \hline & \hline \end{array}$		×			5 4 8 2 6 1
Eff Grab #2	Start: End:	Start: SSS (End:			DW NPW WW Soil Sludge LW Other	⊠P □G □O	1	□ H ₂ SO ₄ □ HNO ₃ □ H ₃ PO ₄ ☑ NaOH ☑ ICE □	×				5 4 8 2 6 2 (DS DB DN DHEM Other:
Eff Grab #2	9.1.19	Start: 1551 End:		-0	DW NPW WW Soil Sludge LW Other	□P ⊠G □O	1	☑ H ₂ SO ₄ □ HNO ₃ □ H ₃ PO ₄ □ NaOH ☑ ICE □		×			5 4 8 2 6 3 □S □B □N □HEM Other:
Eff Grab #3		Start: <u>M</u> 57 End:		□C □G	DW NPW WW Soil Sludge LW Other	■P ■G ■O	1	□ H ₂ SO ₄ □ HNO ₃ □ H ₃ PO ₄ ☑ NaOH ☑ ICE □	×				5 4 8 2 6 4
Eff Grab #3		Start: 115] End:		ПC	DW NPW WW Soil Sludge LW	□P ⊠G □O	1	 ☑ H₂SO₄ □ HNO₃ □ H₃PO₄ □ NaOH ☑ ICE □ 		×			5 4 8 2 6 5
Lift Grob #4	4-2-19	Start: SS35 End:		⊠G	DW NPW WW Soil Sludge LW	EP □G □O	1	□ H ₂ SO ₄ □ HNO ₃ □ H ₃ PO ₄ ⊠ NaOH ☑ ICE □	×				5 4 8 2 5 0 DS DB DN DHEM Other:
Eff (irah #/		Start: 555		E G	□ DW □ NPW ☑ WW □ Soil □ Sludge □ 1 W □ Other	□P ⊠G □O	1	$H_2SO_4 \square HNO_1$ $\square H_1PO_4 \square NaOH$ $\square ICE \square$		×			548267.
Required Turnaround: 🔳 R	outine (6-10 days	s) EXPEDIT	TE: (Se	e Surel	arge Schedule)	- <	8 Hrs	\Box < 16 Hrs. \Box < 24 Hrs	. D/5	days [Other: Rush	Charges Au	thorized by:
Sample Archive/Disposal:	Laboratory Stan	idard 🗆 Hold	for clier	nt pick	up Co	ontain	er Ty	pe: P = Plastic, G = Glass,	p=c	Dther	1		Carrier ID:
Relinquished By:	~		Date:	4.	ン by Time:		51	Received By:	IN	M	/	Date:	UNG Time: 151
Relinquished By:			Date:		Time			Received By:	1	V		Date:	Time:
Rev-Multiple Sample COC 20120201				-						all and a second			

1532 Universal City Blvd., Ste. 100, Universal City, Texas 78148 P (210) 340-0343 or (800) 880-4616 - F (210) 658-7903

© 2008 Pollution Control Services - All rights reserved Login at www.pcslab.net TCEQ NELAP T104704361-TX

Chain of Custody Number

MULTIPLE SAMPL	LE ANALY	SIS REQ	UES	T A	ND CH	AIN	OF (CU	STODY FORM		P	ag e	2/-	2		amp I st	sample and C	OC as same r	umber
CUSTOMER INFORMA	ATION	211 18			RE	PORT	INF	OR	MATION	90 m	8.000	1110			100	Passi			
Name: New Braunfels Uti	lities				Atte	ention:	Tris	h So	echting		Pho	one: (8	830) 6	08-89	000		Fax: (830)	526-1361	
SAMPLE INFORMATIC	DN		1				-	¥.9	- S S - Area - Ar	Req	ueste	d Ana	alysis		(**			- 15 M	di Salah
Project Information:			Colle	cted By	v: AMO	m	-					7	632	15	557		Instructio	ons/Comment	s:
IPP SK WWTP Annual					Matr	rix	W.		Container		m	031	st 6	srb 6	Pest 1				
Report "Soils" 🛛 As Is 🗆 Dry V	Vt.		Field Chlorine Residual mg/L	te or	DW-Drinki Water; NPV	W-Non-		ц		4	Metals Table 3	F, NO3N	3, Pe	SVOC 625, Herb 615	Hex 604.1, Pest 617, Pest 1657	Leve			
All Anna and Anna	Colle	ected	thal Chl	posit	potable wate		Type	Number	Preservative	62	ls]	ર્સ	60	C 62	.1, Pe	MO			
Client / Field Sample ID	Daté	Time	Field Resid	Composite or Grab	LW-Liquid			Ŋ		VOC 624	Meta	Hex	Pest 608, Pest	SVO	Hex 604	Hg Low Level	PCS	Sample Nu	ımber
	Start	Start:		ПС		NPW	□P ⊠G		$\square H_2SO_4 \square HNO_3 \square H_3PO_4 \square NaOH$										
Eff Grab	End:	End:		⊠ G	□ Sludge □ □ Other	JLW	0 0	1	■ ICE □	×	*							8 2 6	8
Eff Curl	Start:	Start:		ПС		NPW	□P ⊠G		$\square H_2SO_4 \square HNO_3 \square H_3PO_4 \square NaOH$										
Eff Grab	End:	End:			□ Sludge □ □ Other	JLW	00	I	⊠ ICE □	X								I□HEM Other:	
	Start: -19	Start:		ПC		NPW Soil	□P ⊠G												
Eff Grab	End:	End:		I G	Sludge C Other			1	□ H₃PO₄ □ NaOH ☑ ICE □	X								I□HEM Other:	
	Star: -2-19	Start:		DС			□P IIG		\square H ₂ SO ₄ \square HNO ₃										
Eff Grab	End:	End:		⊠G	🗖 Sludge 🗖			1	$\square H_3PO_4 \square NaOH$ $\blacksquare ICE \square$	X								I HEM Other:	
	Start:	Start:			Other	JDW	ØP	_	H ₂ SO ₄ HNO ₃		_								
EffComp	Start 1.19	1000		⊠ C		Soil	GG	2	H ₃ PO ₄ NaOII		X	X						8269	
Eff Comp 04021942	End: 4.2.19	End:		G	□ Sludge □ □ Other	JLW	0				~	~						HEM Other:	
	Start: 4.1.19	Start:		€C		1PW	OP		\square H ₂ SO ₄ \square HNO ₃				3.20	4 30				100.	
Eff Comp 04021943		(000) End:		GG	🛛 Sludge 🗖			7	□ H₃PO₄ □ NaOH □ ICE □				X	X	X			4 8 9 7 HEM Other:	<u> </u>
		Start:			C Other		OP		\square H ₂ SO ₄ \square HNO ₃										
The standard	Start: 19	1000		u v	🗷 WW 🗆 S	oil	ØG	3	H ₃ PO ₄ NaOH							X	5	4827	1
	End: 4.2.19	End:			 Sludge Other 											~		HEM Other:	<u> </u>
	Start:	Start:		DС					$\square H_2 SO_4 \square HNO_3$ $\square H_3 PO_4 \square NaOH$										
	End:	End:			□ Sludge □ □ Other													HEM Other,	
Required Turnaround: 🔳 R	outine (6-10 days	s) EXPEDIT	E: (Se		arge Schedu	ıle)	< 8	Hrs	□ < 16 Hrs. □ < 24 Hrs		days (Other		R	ush Cl	arges A	uthorized by:		
Sample Archive/Disposal:	Laboratory Star							-	pe: $P = Plastic, G = Glass,$		11					3.0071	Carrier ID:		
Relinquished By:	20182)	Date:	1		Time:			Received By:	M.	11	2		-		Date:	1/2/19	Time: 11.	M
Relinquished By:	0.00		Date			Time:	11	1	Received By:	11	11					Date:	(1=1) (Time:	
Rev. Multiple Sample COC 20120201							1			1				_		_ a.e.			

1532 Universal City Blvd., Ste. 100, Universal City, Texas 78148 P (210) 340-0343 or (800) 880-4616 - F (210) 658-7903

file path: Z:\COC\N\NBU\Inf_IPP_Annual_NK_Page2_Jan28_2016.pdf

2008 Pollulion Control Services All rights reserved Login at <u>www.pcslab.net</u> TCEQ NELAP T104704361-TX Ma

Pace Analytical "

Pace Analytical Services, LLC 400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

April 17, 2019

Chuck Wallgren Pollution Control Services 1532 Universal City Blvd. #100 Universal City, TX 78148 RE: Project: 548260 Pace Project No.: 75105824

Dear Chuck Wallgren:

results relate only to the samples included in this report. Results reported herein conform to the most Enclosed are the analytical results for sample(s) received by the laboratory on April 03, 2019. The current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses have been subcontracted outside of the Pace Network. The subcontracted laboratory report has been attached

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Melion Mi Cullang

Melissa McCullough melissa.mccullough@pacelabs.com (972)727-1123 Project Manager

Enclosures

cc: Michael Klang

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, LLC.

CERTIFICATIONS

 Project:
 548260

 Pace Project No.:
 75105824

Dallas Certification IDs: 400 West Bethany Dr Suite 190, Allen, TX 75013 Florida Certification #: E871118 EPA# TX00074 Texas T104704232-18.26 Texas Certification #: T104704232-18-26

Kansas Certification #: E-10388 Arkansas Certification #: 88-0647 Oklahoma Certification #: 8727 Louisiana Certification #: 30686 Iowa Certification #: 408

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE SUMMARY

Project: 548260 Pace Project No.: 75105824

	470001 C /			
Lab ID	Sample ID	Matrix	Date Collected	Date Received
75105824001	548260	Water	04/01/19 10:15	04/03/19 10:50
75105824002	548261	Water	04/01/19 10:15	04/03/19 10:50
75105824003	548262	Water	04/01/19 15:51	04/03/19 10:50
75105824004	548263	Water	04/01/19 15:51	04/03/19 10:50
75105824005	548264	Water	04/01/19 21:57	04/03/19 10:50
75105824006	548265	Water	04/01/19 21:57	04/03/19 10:50
75105824007	548266	Water	04/02/19 05:35	04/03/19 10:50
75105824008	548267	Water	04/02/19 05:35	04/03/19 10:50
75105824009	548268	Water	04/01/19 10:15	04/03/19 10:50
75105824010	548270	Water	04/02/19 08:00	04/03/19 10:50

.....

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 3 of 44

SAMPLE ANALYTE COUNT

 Project:
 548260

 Pace Project No.:
 75105824

				Analytes	
	Sample IU	Method	Analysts	Reported	Reported Laboratory
75105824001	548260	SM 4500-CN-E	SRT	-	PASI-D
		SM 4500-CN-G	SRT	4	PASI-D
75105824003	548262	SM 4500-CN-E	SRT	-	PASI-D
		SM 4500-CN-G	SRT	4	PASI-D
75105824005	548264	SM 4500-CN-E	SRT	1	PASI-D
		SM 4500-CN-G	SRT	1	PASI-D
75105824007	548266	SM 4500-CN-E	SRT	1	PASI-D
		SM 4500-CN-G	SRT	1	PASI-D
75105824009	548268	EPA 624 Low	NSR	37	PASI-D
75105824010	548270	EPA 608	JL	- 28	PASI-D
		EPA 615	DAT	3 C	PASI-D
		EPA 604.1	XLY	2	PASI-D
		EPA 632	XLY	ę	PASI-D

PASI-D

69

XLY

EPA 625

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

	•			2
	ŝ	FIC3		-
	3	NIE		
	ŝ	An		
C	5	CP	5	
1	ો	J.	1	
6	Ľ			
		1	1	

Project:	548260								
Pace Project No.:	75105824								
Sample: 548260		Lab ID:	75105824001	Collected:	04/01/19 1	0:15	Received:	Lab ID: 75105824001 Collected: 04/01/19 10:15 Received: 04/03/19 10:50 Matrix: Water	Matrix: Water
				Report					
Parameters	sters	Results Units	Units	Limit	MDL	ЪF	Prepared	Limit MDL DF Prepared Analyzed CAS No.	CAS No.
4500CNE Cyanide, Total	Total	Analytical	Analytical Method: SM 4500-CN-E Preparation Method: SM 4500-CN-C	00-CN-E Pre	sparation M	ethod: S	SM 4500-CI	4-C	

		5	DF Prepared	Analyzed	CAS No. Qual	Qual
Analytical Method: SM 4500-CN-E Preparation Method: SM 4500-CN-C	E Preparation	Method	: SM 4500-CN-C			
ND ug/L 10.0		-	04/12/19 12:27	4.0 1 04/12/19 12:27 04/12/19 15:46 57-12-5	57-12-5	
Analytical Method: SM 4500-CN-G Preparation Method: SM 4500-CN-C	G Preparation	Method	: SM 4500-CN-C			
ND ug/L 10.0		-	04/15/19 08:38	04/15/19 08:39	57-12-5	
ng/L				1 04/15/19 08:38	1 04/15/19 08:38 04/15/19 08:39	4.0 1 04/15/19 08:38 04/15/19 08:39 57-12-5

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Date: 04/17/2019 04:12 PM

	0	
	CG.	Laoutine State
	ζŢ,	Celeby
	Da Da	ed.ww
	84	*
\cap	ag a	
2	1	
	1	1

	Lab ID: 75105824003 Collected: 04/01/19 15:51 Received: 04/03/19 10:50 Matrix: Water	Analyzed CAS No. Qual		4.0 1 04/12/19 12:27 04/12/19 15:48 57-12-5	4-0	4.0 1 04/15/19 08:38 04/15/19 08:39 57-12-5
	Received:	Prepared	1: SM 4500-CN	04/12/19 12:	d: SM 4500-CN	04/15/19 08:
	9 15:51	DF	Metho	~	Metho	~
	1: 04/01/18	MDL	reparation	4.0	reparation	4.0
	Collected	Report Limit	00-CN-E P	10.0	00-CN-G P	10.0
	75105824003	Units	Analytical Method: SM 4500-CN-E Preparation Method: SM 4500-CN-C	ng/L	Analytical Method: SM 4500-CN-G Preparation Method: SM 4500-CN-C	ug/L
	Lab ID:	Results	Analytical	QN	Analytical	QN
Project: 548260 Pace Project No.: 75105824	Sample: 548262	Parameters	4500CNE Cyanide, Total	Cyanide	4500CNG Cyanide, Amenable	Amenable Cyanide

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC. **REPORT OF LABORATORY ANALYSIS**

Date: 04/17/2019 04:12 PM

Page 6 of 44

6	
	Cal
	N.
	PU13
~	8
()	a
8	7
	1

Lab ID: 75105824005 Collected: 04/01/19 21:57 Received: 04/03/19 10:50 Matrix: Water Report	Results Units Limit MDL DF Prepared Analyzed CAS No.	
Lab ID:		
mple: 548264	Parameters	
	Sample: 548264 Lab ID: 75105824005 Collected: 04/01/19 21:57 Received: 04/03/19 10:50 Matrix: Water Report	Lab ID: 75105824005 Collected: 04/01/19 Report neters Results Units Limit MDL

4500CNE Cyanide, Total Ar	A locitoriou				ī		Midiyzeu CAS NO. Quai	0.0	Qual
	u iaiyucai n	fethod: SM 4	4500-CN-E	Preparation	Method	Analytical Method: SM 4500-CN-E Preparation Method: SM 4500-CN-C			
	QN	ND ug/L	10.0		-	4.0 1 04/12/19 12:27 04/12/19 15:48 57-12-5	04/12/19 15:48	57-12-5	
4500CNG Cyanide, Amenable Ar	Vnalytical N	fethod: SM 4	1500-CN-G	Preparation	Methoc	Analytical Method: SM 4500-CN-G Preparation Method: SM 4500-CN-C			
	QN	ng/L	10.0	4.0	-	04/15/19 08:38 04/15/19 08:39 57-12-5	04/15/19 08:39	57-12-5	

	0	
	Cal	S. COM
	M	roelab
	BUN	инкре
~	9	
()	no la	
1	7	
	1	1

548260

Project:

Pace Project No.: 75105824									
Sample: 548266	Lab ID:	75105824007	Collected:	04/02/19	05:35	Lab ID: 75105824007 Collected: 04/02/19 05:35 Received: 04/03/19 10:50 Matrix: Water	03/19 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
4500CNE Cyanide, Total	Analytical	Method: SM 450	00-CN-E Pr	eparation M	Aethod:	Analytical Method: SM 4500-CN-E Preparation Method: SM 4500-CN-C			
Cyanide	QN	ng/L	10.0	4.0	-	4.0 1 04/12/19 12:27 04/12/19 15:48 57-12-5	04/12/19 15:4	8 57-12-5	
4500CNG Cyanide, Amenable	Analytical	Method: SM 450	DD-CN-G Pr	eparation N	Method :	Analytical Method: SM 4500-CN-G Preparation Method: SM 4500-CN-C			
Amenable Cyanide	QN	ng/L	10.0	4.0 1	-	04/15/19 08:38 04/15/19 08:39 57-12-5	04/15/19 08:3	39 57-12-5	

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Date: 04/17/2019 04:12 PM

Page 8 of 44

ANALYTICAL RESULTS

75105824 548260 Pace Project No.: Project:

Pace Analytical

Samula: £48768	0.401	1 of 10. 76405034000	Collection 1	04104140	1.0				Ĩ
	רמט וני.	600470001 C /	Collected: 04/01/18 10:15	04/01/18	GL:NL	Kecelved: U4	Received: 04/03/19 10:50 Matrix: Water	ıtrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
624 Volatile Organics	Analytical	Analytical Method: EPA 624 Low	24 Low		ĺ				
Acrolein	QN	ng/L	50.0	6.7	-		04/03/19 23-24	107-02-8	
Acrylonitrile	ND	ug/L	50.0	0.0			04/03/19 23-24	107-13-1	
Benzene	ND	ng/L	10.0	0.49	.		04/03/19 23:24	71-43-2	
Bromoform	ND	ng/L	10.0	7.5	٢		04/03/19 23:24	75-25-2	
Carbon tetrachlonide	ND	ng/L	2.0	1.1	-		04/03/19 23:24	56-23-5	
Chlorobenzene	ND	ng/L	10.0	0.37	-		04/03/19 23:24	108-90-7	
Dibromochloromethane	ND	ng/L	10.0	0.40	-		04/03/19 23:24	124-48-1	
Chloroethane	ND	ng/L	50.0	0.95	-		04/03/19 23:24	75-00-3	
2-Chloroethylvinyl ether	QN	ng/L	10.0	3.2	-		04/03/19 23:24	110-75-8	
Chloroform	34.2	ng/L	10.0	1.2	-		04/03/19 23:24	67-66-3	
Bromodichloromethane	18.5	ng/L	10.0	0.50	-		04/03/19 23:24	75-27-4	
1,1-Dichloroethane	QN	ng/L	5.0	1.2	-		04/03/19 23:24	75-34-3	
1,4-Dichlorobenzene	QN	ng/L	10.0	0.40	٢		04/03/19 23:24	106-46-7	
1,3-Dichlorobenzene	QN	ng/L	10.0	0.43	-		04/03/19 23:24	541-73-1	
1,2-Dichlorobenzene	ND	ng/L	10.0	0.37	-		04/03/19 23:24	95-50-1	
1,2-Dibromoethane (EDB)	ND	ng/L	10.0	0.45	. –		04/03/19 23:24	106-93-4	
1,2-Dichloroethane	QN	ng/L	10.0	1.1	.		04/03/19 23:24	107-06-2	
1,1-Dichloroethene	ND	ng/L	10.0	1.1	.		04/03/19 23:24	75-35-4	
1,2-Dichloropropane	QN	ng/L	10.0	0.49	-		04/03/19 23:24	78-87-5	
Total 1,3-Dichloropropene	ND	ng/L	10.0	3.7	-		04/03/19 23:24	542-75-6	N2
Ethylbenzene	QN	ng/L	10.0	0.46	-		04/03/19 23:24	100-41-4	
Bromomethane	ND	ng/L	50.0	1.2	. 		04/03/19 23:24	74-83-9	
Chloromethane	ND	ng/L	50.0	1.1	-		04/03/19 23:24	74-87-3	
2-Butanone (MEK)	ND	ng/L	50.0	4.9	-		04/03/19 23:24	78-93-3	1
Methylene Chloride	QN	ng/L	20.0	10.0	-		04/03/19 23:24	75-09-2	
1,1,2,2-Tetrachloroethane	QN	ng/L	10.0	1.5	-		04/03/19 23:24	79-34-5	
Tetrachloroethene	QN	ng/L	10.0	1.5	-		04/03/19 23:24	127-18-4	
Toluene	ND	ng/L	10.0	1.3	-		04/03/19 23:24	108-88-3	
trans-1,2-Dichloroethene	ND	ng/L	10.0	1.2	-		04/03/19 23:24	156-60-5	
1,1,1-Trichloroethane	ND	ng/L	10.0	0.69	-		04/03/19 23:24	71-55-6	
1,1,2-Trichloroethane	ND	ng/L	10.0	1.3	-		04/03/19 23:24	79-00-5	
Trichloroethene	ND	ng/L	10.0	0.60	-		04/03/19 23:24	79-01-6	
Vinyl chloride	QN	ng/L	10.0	0.93	-		04/03/19 23:24	75-01-4	
Total Trihalomethanes (Calc.)	59.9	ng/L	10.0	3.4	-		04/03/19 23:24		
Surrogates		;							
4-Bromotiuorobenzene (S)	101	%	70-130		-		04/03/19 23:24	460-00-4	
Ioluene-d8 (S)	66	~%	70-130		-		04/03/19 23:24	2037-26-5	
1,2-Dichloroethane-d4 (S)	108	%	70-130		-		04/03/19 23:24	17060-07-0	

Page 9 of 44

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC, **REPORT OF LABORATORY ANALYSIS**

Date: 04/17/2019 04:12 PM

0
- E
28 8
in the set
28
20
Analytical www.pacetabs.com
0
C C
100
1 at

Project: 548260 Pace Project No.: 75105824

Face Froject No.: / 5105824									
Sample: 548270	Lab ID:	Lab ID: 75105824010		Collected: 04/02/19 08:00	08:00		Received: 04/03/19 10:50 Matrix: Water	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Quai
608SF GCS Pesticides and PCBs	Analytical	Analytical Method: EPA 608 Preparation Method: EPA 608 SF	308 Prepara	tion Method	: EPA	608 SF			
Aldrin	QN	ng/L	0.010	0.0071	-	04/09/19 11:15	04/10/19 12:32	309-00-2	
alpha-BHC	QN	ng/L	0.051	0.0061	-	04/09/19 11:15	04/10/19 12:32	319-84-6	
beta-BHC	QN	ng/L	0.051	0.011	-	04/09/19 11:15	04/10/19 12:32	319-85-7	
gamma-BHC (Lindane)	QN	ng/L	0.051	0.0051	-	04/09/19 11:15	04/10/19 12:32	58-89-9	
delta-BHC	Q	ng/L	0.051	0.0041	-	04/09/19 11:15	04/10/19 12:32	319-86-8	
Chlordane (lechnical)	Q	ng/L	0.20	0.042	-	04/09/19 11:15	04/10/19 12:32	57-74-9	
4,4-UUI		ng/L	0.020	0.0051	-	04/09/19 11:15	04/10/19 12:32	50-29-3	
4,4-UUE		ng/L	0.10	0.0041	-	04/09/19 11:15	04/10/19 12:32	72-55-9	
		ug/L	0.10	0.0061	-	04/09/19 11:15	04/10/19 12:32	72-54-8	
Dielami Endonution I		ng/L	0.020	0.0041	-	04/09/19 11:15	04/10/19 12:32	60-57-1	
Endosuitai I Endosuitan II		ug/L	0.010	0.0041		04/09/19 11:15	04/10/19 12:32	959-98-8	
Endosultan sulfate		ug/L	07070	0.0041		GE: FE 91/80/40	04/10/19 12:32	33213-65-9	
Endrin		ug/L	0.000	0.0041		GF:11 81/80/80	04/10/19 12:32	70.20.50 70.20.5	
Endrin aldehvde		ug/L	0.02U 0.10	0.0041		21:11 61/60/b0	04/40/40 42:32	8-02-27	
Heptachlor	CN N	1/U	0.010	0.0061		04/00/10 11.13	04/10/13 12.32 04/10/10 13-32	1471-90-4	
Heptachlor epoxide	CN.	10/I	0.010	0.0041		04/00/10 11:13	04/10/10/10/20	1024 57 2	
Toxaphene	QN	ua/L	0.31	0.21		04/09/19 11-15	04/10/10 12:32	R001-35-3	
PCB-1242 (Arocior 1242)	QN	na/L	0.20	0 11		04/09/10 11:15	04/10/10 12:32	53460-21-00	
PCB-1254 (Aroclor 1254)	QN	na/L	0.20	0.088		04/09/10 11:15	04/10/10 12:32	11/07_60_1	
PCB-1221 (Aroclor 1221)	ND	ng/L	0.20	0.14	· -	04/09/19 11:15	04/10/19 12:32	11104-28-2	
PCB-1232 (Aroclor 1232)	DN	ua/L	0.20	0.18	-	04/09/19 11-15	04/10/19 12:32	11141-16-5	
PCB-1248 (Arocior 1248)	ND	na/L	0.20	0.073	-	04/09/19 11-15	04/10/19 12:32	12672-29-6	
PCB-1260 (Aroclor 1260)	QN	ua/L	0.20	0.15	-	04/09/19 11-15	04/10/19 12:32	11096-82-5	
PCB-1016 (Aroclor 1016)	ND	na/L	0.20	0.12		04/09/19 11-15	04/10/19 12:32	12674-11-2	
PCB, Total	QN	ua/L	0.20	0.18	-	04/09/19 11-15	04/10/19 12:32	1336-36-3	
Surrogates		1		2	-		70.71 01 01 00		
Tetrachloro-m-xylene (S)	69	%	47-135		X 7	04/09/19 11:15	04/10/19 12:32	877-09-8	
Decachlorobiphenyl (S)	87	%	16-161		v	04/09/19 11:15	04/10/19 12:32	2051-24-3	
615 Chlorinated Herbicides	Analytical	Analytical Method: EPA 615 Preparation Method: EPA 615	15 Preparat	ion Method	: EPA	315			
2,4-D	CIN	110/	0 70	0.18	x	04/00/10 22-30	04/15/10 15-48	04 75 7	
2,4,5-TP (Silvex)	QN	na/l	0.30	0.16		04/00/19 22:30	04/15/10 15-48	03-70-1 03-79-1	
Surrogates		l I	00.00	2		00.77 61 100 100		33-12-1	
2,4-DČAA (S)	53	.%	44-137		-	04/09/19 22:30	04/15/19 15:48	19719-28-9	
604.1 HPLC Hexachlorophene	Analytical	Analytical Method: EPA 604.1 Preparation Method: EPA 604.1	04.1 Prepar	ation Metho	od: EP,	A 604.1			
Hexachlorophene	QN	ng/L	10.0	3.2	-	04/09/19 14:05	04/11/19 06:31	70-30-4	N3
Surrogates Nitrobenzene (S)	48	70	25.108		٣	01/00/10 11:05	10-20 0111110		
	P	/0.	20-100		-	04/03/13 14.00	10.00 81/11/14/00		
632 HPLC Carbamates	Analytical	Analytical Method: EPA 632 Preparation Method: EPA 632	32 Preparat	ion Method	: EPA	532			
Carbaryl	QN	ng/L	4.0	0.61	x-	04/09/19 14:05	04/11/19 06:31	63-25-2	
Diuron Surrogates	ΩN	ng/L	0.080	0.020	-	04/09/19 14:05	04/11/19 06:31	330-54-1	ZZ
Nitrobenzene (S)	48	%.	18-113		-	04/09/19 14:05	04/11/19 06:31		

Date: 04/17/2019 04:12 PM

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

REPORT OF LABORATORY ANALYSIS

Pace Analytical

ANALYTICAL RESULTS

Project: 548260 Pace Project No.: 75105824

1 averiged NO. /3103624									
Sample: 3482/U	Lab ID:	Lab ID: 75105824010	Collected: 04/02/19 08:00	04/02/19	08:00		Received: 04/03/19 10:50 Matrix: Water	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	P	Prepared	Analyzed	CAS No.	Qual
625 MSSV	Analytical	Analytical Method: EPA 625 Preparation Method: EPA 625	25 Preparati	on Methoo	I: EPA	325			ĺ
Nonyiphenol	QN	ng/L	333	2.9	***	04/05/19 09:10	04/06/19 21:49	25154-52-3	N2
2-Chloropheno!	QN	ng/L	10.0	0.82	-	04/05/19 09:10	04/06/19 21:49	95-57-8	!
2,4-Dichlorophenol	QN	ng/L	10.0	0.82	-	04/05/19 09:10	04/06/19 21:49	120-83-2	
Cresols (Total)	QN	ug/L	10.0	1.5	۰-	04/05/19 09:10	04/06/19 21:49		N2
2,4-Dimethylphenol	QN	ng/L	10.0	1.4	-	04/05/19 09:10	04/06/19 21:49	105-67-9	
4,6-Dinitro-2-methylphenol	QN	ng/L	10.0	1.5	.	04/05/19 09:10	04/06/19 21:49	534-52-1	
2,4-Dinitrophenol	QN	ug/L	50.0	1.1	۳	04/05/19 09:10	04/06/19 21:49	51-28-5	
2-Nitrophenol	QN	ug/L	20.0	1.7		04/05/19 09:10	04/06/19 21:49	88-75-5	
4-Nitrophenol	QN	ng/L	50.0	1.6	-	04/05/19 09:10	04/06/19 21:49	100-02-7	
3&4-Methylphenol(m&p Cresol)	ON	ng/L	10.0	0.77	r	04/05/19 09:10	04/06/19 21:49		
4-Chloro-3-methylphenol	QN	ug/L	10.0	0.87	۰.	04/05/19 09:10	04/06/19 21:49	59-50-7	
Pentachlorophenol	QN	ng/L	5.0	2.1	7 -	04/05/19 09:10	04/06/19 21:49	87-86-5	
Phenol	QN	ug/L	10.0	0.97	*	04/05/19 09:10	04/06/19 21:49	108-95-2	
2,4,5-Inchlorophenol	ΩN	ng/L	50.0	1.9	1	04/05/19 09:10	04/06/19 21:49	95-95-4	
2,4,6-Inchlorophenol	QN	ug/L	10.0	1.8		04/05/19 09:10	04/06/19 21:49	88-06-2	
Acenaphthene	QN	ng/L	10.0	1.3	-	04/05/19 09:10	04/06/19 21:49	83-32-9	
Acenaphthylene	QN	ng/L	10.0	1.3	-	04/05/19 09:10	04/06/19 21:49	208-96-8	
Anthracene	QN	ng/L	10.0	1.1	**	04/05/19 09:10	04/06/19 21:49	120-12-7	
Benzidine	QN	ng/L	50.0	3.1	T	04/05/19 09:10	04/06/19 21:49	92-87-5	
Benzo(a)anthracene	QN	ng/L	5.0	0.93	-	04/05/19 09:10	04/06/19 21:49	56-55-3	
Benzo(a)pyrene	QN	ng/L	5.0	0.94	-	04/05/19 09:10	04/06/19 21:49	50-32-8	
Benzo(b)fluoranthene	QN	ug/L	10.0	1.0	Ţ	04/05/19 09:10	04/06/19 21:49	205-99-2	
Benzo(g,h,i)perylene	QN	ug/L	20.0	1.0	*	04/05/19 09:10	04/06/19 21:49	191-24-2	
Benzo(k)fluoranthene	QN	ng/L	2.5	0.93	-	04/05/19 09:10	04/06/19 21:49	207-08-9	
bis(2-Chloroethoxy)methane	QN	ng/L	10.0	0.99	-	04/05/19 09:10	04/06/19 21:49	111-91-1	
bis(2-Chloroethyl) ether	QN	ng/L	10.0	1.0	T	04/05/19 09:10	04/06/19 21:49	111-44-4	
bis(2-Chloroisopropyl) ether	QN	ug/L	2.5	1.2	x-	04/05/19 09:10	04/06/19 21:49	108-60-1	
bis(2-Ethylhexyl)phthalate	QN	ng/L	10.0	3.2	N	04/05/19 09:10	04/06/19 21:49	117-81-7	
4-Bromophenylphenyl ether	Q	ng/L	10.0	1.0	x -1	04/05/19 09:10	04/06/19 21:49	101-55-3	
SuryIbenzyIphthalate	QN :	ng/L	10.0	1.4	v	04/05/19 09:10	04/06/19 21:49	85-68-7	
Z-Unioronaphtnalene	QN .	ug/L	10.0	4.	1	04/05/19 09:10	04/06/19 21:49	91-58-7	
4-Uniorophenyiphenyi ether	CIN I	ug/L	10.0	1.4	1 -1	04/05/19 09:10	04/06/19 21:49	7005-72-3	
Unitysene		ug/L "	5.0	1.0	-	04/05/19 09:10	04/06/19 21:49	218-01-9	
Ulberiz(a,n)anthracene		ng/L	5.0	•	x	04/05/19 09:10	04/06/19 21:49	53-70-3	
3,3-UICNIOFODENZIAINE	(IN)	ng/L	5.0	2.7		04/05/19 09:10	04/06/19 21:49	91-94-1	
Diethylphthalate	ON I	ng/L	10.0	0.92	T	04/05/19 09:10	04/06/19 21:49	84-66-2	
Ulmethylphthalate	ΩN	ng/L	10.0	0.88	·	04/05/19 09:10	04/06/19 21:49	131-11-3	
Di-n-butyIphthalate	QN	ng/L	10.0	1.2	v -	04/05/19 09:10	04/06/19 21:49	84-74-2	
2,4-Dinitrotoluene	QN	ng/L	10.0	2.7	1 72	04/05/19 09:10	04/06/19 21:49	121-14-2	
2,6-Dinitrotoluene	QN	ng/L	10.0	1.8	***	04/05/19 09:10	04/06/19 21:49	606-20-2	
Di-n-octylphthalate	QN	ng/L	10.0	1.7	¥	04/05/19 09:10	04/06/19 21:49	117-84-0	
1,2-Diphenylhydrazine	QN	ng/L	20.0	1.2	1 7.	04/05/19 09:10	04/06/19 21:49	122-66-7	
Fluoranthene	QN	ng/L	10.0	1.1	77	04/05/19 09:10	04/06/19 21:49	206-44-0	
Fluorene	QN	ng/L	10.0	1.3	-	04/05/19 09:10	04/06/19 21:49	86-73-7	
Hexachlorobenzene	QN	ng/L	5.0	0.97	v -	04/05/19 09:10	04/06/19 21:49	118-74-1	
Hexachloro-1,3-butadiene	QN	ng/L	10.0	1.8	T ¹⁰	04/05/19 09:10	04/06/19 21:49	87-68-3	

Date: 04/17/2019 04:12 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Pace Analytical [®]

ANALYTICAL RESULTS

 Project:
 548260

 Pace Project No.:
 75105824

Sample: 548270	Lab ID:	Lab ID: 75105824010	Collected: 04/02/19 08:00	04/02/19	08:00	Received: 04/03/19 10:50		Matrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
625 MSSV	Analytical	Analytical Method: EPA 625 Preparation Method: EPA 625	25 Preparatio	on Method	: EPA	525			
Hexachlorocyclopentadiene	ND	ng/L	10.0	1.2	۰.	04/05/19 09:10	04/06/19 21:49	77-47-4	
Hexachloroethane	ND	ng/L	20.0	1.9	<u>.</u>	04/05/19 09:10	04/06/19 21:49	67-72-1	
Indeno(1,2,3-cd)pyrene	ND	ng/L	5.0	0.98	÷	04/05/19 09:10	04/06/19 21:49	193-39-5	
lsophorone	ND	ng/L	10.0	1.8	-	04/05/19 09:10	04/06/19 21:49	78-59-1	
Naphthalene	ND	ng/L	10.0	2.0		04/05/19 09:10	04/06/19 21:49	91-20-3	
Nitrobenzene	ND	ng/L	10.0	1.2	***	04/05/19 09:10	04/06/19 21:49	98-95-3	
N-Nitrosodiethylamine	ND	ng/L	20.0	0.93	***	04/05/19 09:10	04/06/19 21:49	55-18-5	
N-Nitrosodimethylamine	ND	ng/L	50.0	0.65	۰.	04/05/19 09:10	04/06/19 21:49	62-75-9	
N-Nitroso-di-n-butylamine	QN	ng/L	20.0	0.74	-	04/05/19 09:10	04/06/19 21:49	924-16-3	
N-Nitroso-di-n-propylamine	ND	ug/L	20.0	1.1	-	04/05/19 09:10	04/06/19 21:49	621-64-7	
N-Nitrosodiphenylamine	QN	ug/L	20.0	0.83	-	04/05/19 09:10	04/06/19 21:49	86-30-6	
Phenanthrene	QN	ng/L	10.0	1.1	-	04/05/19 09:10	04/06/19 21:49	85-01-8	
Pentachlorobenzene	ND	ng/L	20.0	1.3	-	04/05/19 09:10	04/06/19 21:49	608-93-5	
Pyrene	ND	ng/L	10.0	1.2	r	04/05/19 09:10	04/06/19 21:49	129-00-0	
Pyridine	QN	ng/L	20.0	1.2	-	04/05/19 09:10	04/06/19 21:49	110-86-1	
1,2,4-Trichlorobenzene	QN	ng/L	10.0	1.6	***	04/05/19 09:10	04/06/19 21:49	120-82-1	
1,2,4,5-Tetrachlorobenzene	QN	ng/L	20.0	1.3	-	04/05/19 09:10	04/06/19 21:49	95-94-3	
Surrogates									
Nitrobenzene-d5 (S)	67	%.	15-106		*	04/05/19 09:10	04/06/19 21:49	4165-60-0	
2-Fluorobiphenyl (S)	69	.%	26-102		v-	04/05/19 09:10	04/06/19 21:49	321-60-8	
p-Terphenyl-d14 (S)	92	.%	10-120		***	04/05/19 09:10	04/06/19 21:49	1718-51-0	
Phenol-d6 (S)	28	%.	10-54		-	04/05/19 09:10	04/06/19 21:49	13127-88-3	
2-Fluorophenol (S)	38	.%	10-66		1	04/05/19 09:10	04/06/19 21:49	367-12-4	
2,4,6-Tribromophenol (S)	06	%.	29-132		r -	04/05/19 09:10	04/06/19 21:49	118-79-6	

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC,

Date: 04/17/2019 04:12 PM

Page 12 of 44

Pace Analytical *

QUALITY CONTROL DATA

EPA 624 Low 624 MSV

Analysis Method: Anatysis Description:

	ŋ	0		
) 324	115157 EPA 624 Low les: 75105824009	5 75105824009		
548260 75105824	115157 EPA 62 nples: 7	518445 nples:	neter	thane
Project: Pace Project No.:	QC Batch: 115 QC Batch Method: EP/ Associated Lab Samples:	METHOD BLANK: 518445 Associated Lab Samples:	Parameter	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 112-Trichloroethane

Associated Lab Samples: 75105824009							
METHOD BLANK: 518445		Matrix: Water	Water				
Associated Lab Samples: 75105824009							
Parameter	Units	Biank Result	Reporting Limit	MDL	Analyzed	Qualifiers	
1,1,1-Trichloroethane	ng/L	QN	10.0	0.69	04/03/19 11:54		
1,1,2,2-Tetrachloroethane	ng/L	QN	10.0	1.5	04/03/19 11:54		
1,1,2-Trichloroethane	ng/L	QN	10.0	1.3	04/03/19 11:54		
1,1-Dichloroethane	ng/L	QN	5.0	1.2	04/03/19 11:54		
1,1-Dichloroethene	ng/L	QN	10.0	1.1	04/03/19 11:54		
1,2-Dibromoethane (EDB)	ng/L	QN	10.0	0.45	04/03/19 11:54		
1,2-Dichlorobenzene	ng/L	QN	10.0	0.37	04/03/19 11:54		
1,2-Dichloroethane	ng/L	QN	10.0	1.1	04/03/19 11:54		
1,2-Dichloropropane	ng/L	QN	10.0	0.49	04/03/19 11:54		
1,3-Dichlorobenzene	ng/L	QN	10.0	0.43	04/03/19 11:54		
1,4-Dichlorobenzene	ng/L	QN	10.0	0.40	04/03/19 11:54		
2-Butanone (MEK)	ng/L	QN	50.0	4.9	04/03/19 11:54		
2-Chloroethylvinyl ether	ng/L	QN	10.0	3.2	04/03/19 11:54		
Acrolein	ng/L	QN	50.0	7.9	04/03/19 11:54		
Acrylonitrile	ng/L	QN	50.0	6.0	04/03/19 11:54		
Benzene	ng/L	QN	10.0	0.49	04/03/19 11:54		
Bromodichloromethane	ng/L	QN	10.0	0.50	04/03/19 11:54		
Bromoform	ng/L	QN	10.0	7.5	04/03/19 11:54		
Bromomethane	ng/L	QN	50.0	1.2	04/03/19 11:54		
Carbon tetrachlonde	ng/L	QN	2.0	1.1	04/03/19 11:54		
Chlorobenzene	ng/L	QN	10.0	0.37	04/03/19 11:54		
Chloroethane	ng/L	QN	50.0	0.95	04/03/19 11:54		
Chloroform	ng/L	QN	10.0	1.2	04/03/19 11:54		
Chloromethane	ng/L	QN	50.0	1.1	04/03/19 11:54		
Dibromochłoromethane	ng/L	QN	10.0	0.40	04/03/19 11:54		
Ethylbenzene	ng/L	Q	10.0	0.46	04/03/19 11:54		
Methylene Chloride	ng/L	QN	20.0	10.0	04/03/19 11:54		
Tetrachloroethene	ng/L	QN	10.0	1.5	04/03/19 11:54		
Toluene	ng/L	QN	10.0	1.3			
lotal 1,3-Dichloropropene	ng/L	QN	10.0	3.7	04/03/19 11:54	N2	
lotal Trihalomethanes (Calc.)	ng/L	QN	10.0	3.4	04/03/19 11:54		
trans-1,2-Dichloroethene	ng/L	QN	10.0	1.2	04/03/19 11:54		
Trichloroethene	ng/L	QN	10.0	09.0	04/03/19 11:54		
Vinyl chloride	ng/L	QN	10.0	0.93	04/03/19 11:54		
1,2-Dichloroethane-d4 (S)	%.	103	70-130		04/03/19 11:54		
4-Bromofluorobenzene (S)	%.	103	70-130		04/03/19 11:54		
Toluene-d8 (S)	.%	66	70-130		04/03/19 11:54		

Results presented on this page are in the units indicated by the "Units" column except where an altermate unit is presented to the right of the result.

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC. **REPORT OF LABORATORY ANALYSIS**

	vtical	and com	
0	aceAnal	CECHNAM	
2	A.		

QUALITY CONTROL DATA

75105824 548260 Pace Project No .: Project:

LABORATORY CONTROL SAMPLE:	PLE: 518446										
Parameter	Units	(0	Spike Conc.	LCS Result		LCS % Rec	% Rec Limite	C	Oualifiars		
1 1 1-Trichloroethane	Voo	Î							מווובוא		
4 4 0 0 Totrochlorocitions	ng/L		1 9.0		C.12	108	Z9L-ZG	20			
	ng/L		20.1		17.1	85	46-157	57			
1, 1, 2- I nonioroethane	ng/L		19.9		18.5	93	52-150	50			
1,1-Dichloroethane	ng/L		20		20.3	101	59-155	55			
1,1-Dichloroethene	ng/L		19.8		22.0	111	1-234	ह			
1,2-Dibromoethane (EDB)	ng/L		20		18.5	92	81-118	18			
1,2-Dichlorobenzene	ng/L		20		19.8	66	18-190	06			
1,2-Dichloroethane	ng/L		19.9		18.5	63	49-155	55			
1,2-Dichloropropane	ng/L		19.9		20.9	105	76-124	24			
1,3-Dichlorobenzene	na/L		19.9		21.0	105	59-156	20			
1,4-Dichlorobenzene	na/L		20		21.0	105	18-190	80			
2-Butanone (MEK)	na/L		101		57.0	25	60-1	60-130 I 2			
2-Chloroethylvinyl ether	na/L		20.1		15.8	78	1-305	3.50			
Acrolein	na/L		200		120	9.	49-138	2 8			
Acrylonitrile	- na/L		199		150	76 76	57-137	27			
Benzene	na/L		20		217	108	37-151				
Bromodichloromethane	1/011		19.9		10 0	1001	35 155	- 4			
Bromoform	1/01		10 A		18.0	000		3 6			
Bromomethane	100/L		0.61	*	7.01	20	40-109	ה מ י מ			
Carbon tetrachlorido	ng/L		10.0	_	19. IJ	C. A.	1-242	47			
	ng/L		19.8	- •	21.8	110	70-140	6			
	ng/L		19.8		20.7	104	37-160	00			
Chloroethane	ng/L		20.1	2	20.7J	103	14-230	30			
Chloroform	ng/L		19.8		19.6	66	51-138	38			
Chloromethane	ng/L		19.9	~	19.5J	98	1-273	73			
Dibromochloromethane	ng/L		19.8		18.4	93	53-149	49			
Ethylbenzene	ng/L		20.1		21.8	109	37-162	52			
Methylene Chloride	ng/L		20.4	1	19.8J	97	1-221	21			
Tetrachloroethene	ng/L		19.9		21.2	106	64-148	48			
Toluene	ng/L		20		21.3	106	47-150	20			
Total 1,3-Dichloropropene	ng/L		40.1		38.1	95	70-1:	70-130 N2			
Total Trihalomethanes (Calc.)	ng/L				76.1						
trans-1,2-Dichloroethene	ng/L		20		20.8	104	54-156	56			
Trichloroethene	ng/L		20		21.2	106	71-157	57			
Vinyl chloride	ng/L		20		20.5	102	1-251	51			
1,2-Dichloroethane-d4 (S)	%.					93	70-130	00			
4-Bromofluorobenzene (S)	%.					104	70-130	08			
Toluene-d8 (S)	%.					101	70-130	2 08			
MATRIX SPIKE & MATRIX SPIKE DUPLICATE:		518447			518448						Ì
			MS	MSD							
Parameter	75105729002 Units Result		Spike S	Spike	MS	MSD Decuit	MS MS	MSD %	% Rec	Max	
	Ť	1 T	1	2016	Incodi	Nesul	4	ט אבר			
1.1.1.Trichloroethane	1/0/1	CN	1000	1000	0040	0100	111	106	E0 100	500	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

			Qual				
		Мах	RPD	20	20	20	
			RPD	2	-	co	
		% Rec	Limits	52-162	46-157	52-150	
		MSD	% Rec	106	96	100	
		MS	% Rec	111	96	103	
		MSD	Result	2100	1920	1990	
011010		MS	Result	2210	1940	2050	
	MSD	Spike	Conc.	1990	2010	1990	
	MS	Spike	Conc.	1990	2010	1990	
		5105729002	Result	QN	ND	QN	
		2	Units	ng/L	ng/L	ng/L	
			Parameter	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	

Page 14 of 44

Date: 04/17/2019 04:12 PM

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

REPORT OF LABORATORY ANALYSIS

Pace Analytical

QUALITY CONTROL DATA

75105824 548260 Pace Project No .: Project:

Qual ZZ Max RPD RPD 20 20 20 20 2 2 2 2 9 4 ŝ 4007 ဖ 0 85129 Ŧ \sim 9 4 4 5 0 8 ~ 0 8 4 59-155 1-234 77-122 18-190 49-155 1-210 59-156 18-190 40-140 10-140 70-140 10-273 62-131 10-140 37-151 35-155 45-169 1-242 37-160 14-230 51-138 53-149 1-221 64-148 47-150 70-130 54-156 71-157 1-251 37-162 % Rec Limits 97 96 86 110 98 102 96 96 105 85 46 108 103 95 95 72 105 98 103 97 66 93 102 89 100 102 104 103 103 102 91 % Rec MSD 118 00 66 100 84 52 73 5 00 107 66 66 107 110 66 96 102 111 109 94 109 113 103 100 100 107 8 106 105 8 % Rec MS 1960 1890 1890 1440 2090 1950 1950 1920 1970 2170 1970 1940 1900 2030 1910 1930 10600 1710 9300 21600 2070 1830 2050 1880 2030 2000 3660 7540 2030 2050 2080 Result MSD 2080 2330 2000 1980 1990 2130 1980 1990 10000 1700 10300 2200 1970 1890 1460 2210 2030 2230 2020 2130 1860 1980 21400 2180 2120 2100 3740 7740 2180 2170 2260 Result 518448 MS 2000 2000 2000 2000 1980 2000 2000 1990 1990 1990 1980 1990 1980 2010 2040 1990 2000 4010 Spike MSD Conc. 1990 2000 2010 2010 2010 19900 19900 1980 2000 1980 2000 2000 1990 1990 2000 1980 1980 2010 1980 1990 1980 2010 2000 2000 2000 2040 1990 2000 4010 Spike Conc. MS 518447 Q Q Q Q QN Q Q Q 9 Q QN Q Q Q Q 9 Q Q Q 9 Q 99 Q Q 75105729002 9 Q ð Result MATRIX SPIKE & MATRIX SPIKE DUPLICATE: Units ng/L ng/L ng/L ug/L ug/L ng/L ng/L ng/L J/br ng/L Ug/L J/Gr ug/L %, %, ng/L ng/L 7/br Total 1,3-Dichloropropene Total Trihalomethanes (Calc.) 1,2-Dibromoethane (EDB) 1,2-Dichloroethane-d4 (S) trans-1,2-Dichloroethene 2-Chloroethylvinyl ether Bromodichloromethane Dibromochloromethane Parameter 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane Carbon tetrachloride 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane Methylene Chloride 2-Butanone (MEK) Tetrachloroethene Chloromethane Trichloroethene Bromomethane Chlorobenzene Chloroethane Ethylbenzene Vinyl chloride Acrylonitrile Chloroform Bromoform Benzene Acrolein Toluene

Resufts presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

70-130 70-130 70-130

4-Bromofluorobenzene (S)

Toluene-d8 (S)

Date: 04/17/2019 04:12 PM

without the written consent of Pace Analytical Services, LLC

This report shall not be reproduced, except in full,

REPORT OF LABORATORY ANALYSIS

P F
tical
nafy
EA.
(Jac)
7 66

j 1

			QUALITY CONTROL DATA	ONTROL	DATA				
Project:	548260								
Pace Project No.:	75105824								
QC Batch:	115494		Analysis Method:	thod:	EPA 604.1				
QC Batch Method:	EPA 604.1		Analysis Description:	scription:	604.1 HPLC F	604.1 HPLC Hexachloronhene	ene Ene		
Associated Lab Samples: 75105824010	tples: 75105824	4010							
METHOD BLANK: 520111	520111		Matrix:	Matrix: Water					
Associated Lab Samples:	ples: 75105824010	1010							
Parameter	heter	Units	Blank Result	Reporting Limit	MDL	Anal	Analyzed	Qualifiers	
Hexachlorophene Nitrohenzene (S)		ng/L %	N F		0.0	3.2 04/11/1	04/11/19 00:15	N3	1
		/0.	5	801-62	δ	04/11/1	04/11/19 00:15		
LABORATORY CONTROL SAMPLE:	ITROL SAMPLE:	520112							
Parameter	leter	Inite	Spike	LCS	LCS	% Rec	0		
Haved Level				VCOUL	- 11		rualifiers	liels	
Hexacniorophene Nitrobenzene (S)		ug/L %.	50	30.3	61 76	28-123 N3 25-108	3 N3		
						2	5		
MATRIX SPIKE SAMPLE:	(PLE:	520118							
Parameter	leter	Units	75105824010 Result	Conc.	MS Result	MS % Rec		% Rec Limits	Qualifiers

22-130 N3 25-108

67

33.3

20

R

ug/L %.

Hexachlorophene Nitrobenzene (S)

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 16 of 44

Date: 04/17/2019 04:12 PM

REPORT OF LABORATORY ANALYSIS

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Face Analytical "

QUALITY CONTROL DATA

75105824 548260 Pace Project No .: Project:

QC Batch: 115478		Analysis Method	FDA 608	SOS			
				000			
UL BAICH MEINOU: EPA 608 SP		Analysis Description:		608 GCS Pest PCB	~		
Associated Lab Samples: 75105824010	10						
METHOD BLANK: 520023		Matrix: Water	ater				
Associated Lab Samples: 75105824010	10						
			Reporting				
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers	
4,4'-DDD	ng/L	QN	0.10	09000	04/10/19 11:34		
4,4'-DDE	ng/L	DN	0.10	0.0040	04/10/19 11:34		
4,4'-DDT	ng/L	QN	0.020	0.0050	04/10/19 11:34		
Aldrin	ng/L	QN	0.010	0.0070	04/10/19 11:34		
alpha-BHC	ng/L	QN	0.050	0.0060	04/10/19 11:34		
beta-BHC	ng/L	ND	0.050	0.011	04/10/19 11:34		
Chlordane (Technical)	ng/L	QN	0.20	0.041	04/10/19 11:34		
delta-BHC	ng/L	ND	0.050	0.0040	04/10/19 11:34		
Dieldrin	ng/L	QN	0.020	0.0040	04/10/19 11:34		
Endosulfan I	ng/L	QN	0.010	0.0040	04/10/19 11:34		
Endosulfan II	ng/L	ND	0.020	0.0040	04/10/19 11:34		
Endosulfan sulfate	ng/L	ND	0.10	0.0040	04/10/19 11:34		
Endrin	ng/L	ND	0.020	0.0040	04/10/19 11:34		
Endrin aldehyde	ng/L	ND	0.10	0.012	04/10/19 11:34		
gamma-BHC (Lindane)	ng/L	QN	0:050	0.0050	04/10/19 11:34		
Heptachlor	ng/L	QN	0.010	0.0060	04/10/19 11:34		
Heptachlor epoxide	ng/L	DN	0.010	0.0040	04/10/19 11:34		
PCB-1016 (Aroclor 1016)	ng/L	QN	0.20	0.12	04/10/19 11:34		
PCB-1221 (Aroclor 1221)	ng/L	ND	0.20	0.13	04/10/19 11:34		
PCB-1232 (Aroclor 1232)	ng/L	QN	0.20	0.18	04/10/19 11:34		
PCB-1242 (Aroclor 1242)	ng/L	ND	0.20	0.11	04/10/19 11:34		
PCB-1248 (Aroclor 1248)	ng/L	QN	0.20	0.072	04/10/19 11:34		
PCB-1254 (Aroclor 1254)	ng/L	ND	0.20	0.086	04/10/19 11:34		
PCB-1260 (Aroclor 1260)	ng/L	QN	0.20	0.14	04/10/19 11:34		
Toxaphene	ng/L	QN	0.30	0.21	04/10/19 11:34		
Decachlorobiphenyl (S)	%.	73	16-161		04/10/19 11:34		
Tetrachloro-m-xylene (S)	%.	84	47-135		04/10/19 11:34		
LABORATORY CONTROL SAMPLE	520024						
					ſ		
		Splike LCS	LCS.		% Rec		

lualifiers									
Quali									
% Rec Limits	31-141	30-145	10-160	42-142	37-134	17-147	19-140	36-146	45-153
LCS % Rec	106	101	101	89	101	96	81	98	96
LCS Result	0.53	0.50	0.51	0.45	0.51	0.48	0.40	0.49	0.48
Spike Conc.	0.5	0,5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Units	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L
Parameter	DDD	4,4'-DDE	-DDT	in	la-BHC	1-BHC	a-BHC	drin	ndosulfan

Resufts presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Date: 04/17/2019 04:12 PM

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC. **REPORT OF LABORATORY ANALYSIS**

548260 Project:

Pace Analytical

75105824 Pace Project No .:

	LCS % Rec % Rec Limits Qualifiers	100	96	101	67	£	06	95	71 16-161	
	LCS Result	0.50	0.48	0.50	0.48	0.51	0.45	0.48		
	Spike Conc.	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
520024	Units	ng/L	ug/L	ng/L	ng/L	ng/L	ng/L	ng/L	%.	20
LABORATORY CONTROL SAMPLE:	Parameter	Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde	gamma-BHC (Lindane)	Heptachlor	Heptachlor epoxide	Decachlorobiphenyl (S)	Tetrachloro m vidoao (C)

520025 MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:	E DUPLIC	CATE: 520025	D.		520026							
			MS	MSD								
		75106002001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
4,4'-DDD	ng/L	Q	0.5	0.5	0.56	0.54	111	109	24-177	1~	4	
4,4'-DDE	ng/L	QN	0.5	0.5	0.47	0.47	95	94	22-161	~	4	
4,4'-DDT	ng/L	QN	0.5	0.5	0.53	0.53	106	105	10-180	-	40	
Aldrin	ng/L	QN	0.5	0.5	0.45	0.44	89	89	10-156	F	40	
alpha-BHC	ng/L	QN	0.5	0.5	0.50	0.51	100	102	71-143	2	40	
beta-BHC	ng/L	QN	0.5	0.5	0.50	0.47	66	95	72-149	5	40	
delta-BHC	ng/L	QN	0.5	0.5	0.42	0.41	85	83	44-151	2	40	
Dieldrin	ng/L	QN	0.5	0.5	0.55	0.54	110	108	33-166	2	40	
Endosulfan I	ng/L	QN	0.5	0.5	0.48	0.48	67	97	27-167	0	40	
Endosulfan II	ng/L	QN	0.5	0.5	0.52	0.51	104	102	37-173	2	40	
Endosulfan sulfate	ng/L	QN	0.5	0.5	0.52	0.51	104	101	33-167	ო	4	
Endrin	ng/L	QN	0.5	0.5	0.53	0.52	107	105	39-173	N	4	
Endrin aldehyde	ng/L	QN	0.5	0.5	0.55	0.53	109	105	14-180	4	40	
gamma-BHC (Lindane)	ng/L	QN	0.5	0.5	0.53	0.52	107	105	69-139	2	4	
Heptachlor	ng/L	QN	0.5	0.5	0.46	0.46	93	91	48-141	2	40	
Heptachlor epoxide	ng/L	QN	0.5	0.5	0.49	0.48	98	96	28-164	2	40	
Decachlorobiphenyl (S)	%.						85	85	16-161			
Tetrachloro-m-xylene (S)	%.						2	87	47-135			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Page 18 of 44

Date: 04/17/2019 04:12 PM

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

REPORT OF LABORATORY ANALYSIS

CT III
近
(international)
A
C S
1 20
Q \
~

			QUALIT	Y CONT	QUALITY CONTROL DATA	TA					
Project: Pace Project No.:	548260 75105824										
QC Batch: 115 QC Batch Method: EP Associated Lab Samples:	115532 EPA 615 pples: 75105824010	0	Analysi	Analysis Method: Analysis Description:		EPA 615 615 GCS Herbicides	vicides				
METHOD BLANK: 520324 Associated Lab Samples:	520324 101es: 75105824010	10	Σ	Matrix: Water	Ŀ						
Parameter	leter	Units	Blank Result		Reporting Limit	MDL	Ā	Analyzed	Qu	Qualifiers	
2,4,5-TP (Silvex) 2,4-D 2,4-DCAA (S)		ug/L vg/L %.		ND ND 45	0.30 0.70 44-137		0.15 04/1	04/15/19 11:32 04/15/19 11:32 04/15/19 11:32			
LABORATORY CONTROL SAMPLE: Parameter	() ()	520325 Units	Spike Conc.	LCS Result		LCS % Rec	% Rec Limits		Qualifiers		
2,4,5-TP (Silvex) 2,4-D 2,4-DCAA (S)		ug/L ug/L %.	м м		2.5	32 83 85	57- 49- 44-	57-125 49-133 44-137			
MATRIX SPIKE & M/ Parameter	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 75106 Parameter Units F	ICATE: 520326 75106015001 Result	Spike	MSD Spike	520327 MS Result	MSD	MS MS	MSD MSD	% Rec	Max	
		ł			ווחפסעו	- 1	-	20100			Guai

6 6 210

44-134 49-145 44-137

89 80 56

90 85 00

2.7

2.8 2.6

3.1 3.1

3.1 3.1

Q Q

ug/L %.

2,4,5-TP (Silvex) 2,4-D 2,4-DCAA (S)

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC,

Date: 04/17/2019 04:12 PM

REPORT OF LABORATORY ANALYSIS

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Page 19 of 44

	8	F	
	E.	100 St	
	17	celat	
	na	ww.pacelabs.com	
	A	MM	
2	Sc		
	12		
Q)	h	
	1		

QUALITY CONTROL DATA

Project: 548260 Pace Project No.: 75105824 QC Batch: 115297 QC Batch Method: EPA 625 Associated Lab Samples: 75105824010 METHOD BLANK: 519256 Associated Lab Samples: 75105824010 Parameter U

EPA 625 625 MSS

Analysis Method: Analysis Description:

20		Matrix: Water	/ater			
Associated Lab Samples: 75105824010						
Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
1,2,4,5-Tetrachlorobenzene	ng/L	QN	20.0	1.3	04/06/19 13:45	
1,2,4-Trichlorobenzene	ng/L	QN	10.0	1.6	04/06/19 13:45	
1,2-Diphenylhydrazine	ng/L	QN	20.0	1.2	04/06/19 13:45	
2,4,5-Trichlorophenol	ng/L	ND	50.0	1.9	04/06/19 13:45	
2,4,6-Trichlorophenol	ng/L	QN	10.0	1.8	04/06/19 13:45	
2,4-Dichlorophenol	ng/L	ND	10.0	0.82	04/06/19 13:45	
2,4-Dimethylphenot	ng/L	QN	10.0	1.4	04/06/19 13:45	
2,4-Dinitrophenol	ng/L	QN	50.0	1.1	04/06/19 13:45	
2,4-Dinitrotoluene	ng/L	QN	10.0	2.7	04/06/19 13:45	
2,6-Dinitrotoluene	ng/L	QN	10.0	1.8	04/06/19 13:45	
2-Chloronaphthalene	ng/L	QN	10.0	1.4	04/06/19 13:45	
2-Chlorophenol	ng/L	QN	10.0	0.82	04/06/19 13:45	
2-Nitrophenol	ng/L	QN	20.0	1.7	04/06/19 13:45	
3&4-Methylphenol(m&p Cresol)	ng/L	QN	10.0	0.77	04/06/19 13:45	
3,3'-Dichlorobenzidine	ng/L	QN	5.0	2.7	04/06/19 13:45	
4,6-Dinitro-2-methylphenol	ng/L	QN	10.0	1.5	04/06/19 13:45	
4-Bromophenylphenyl ether	ng/L	QN	10.0	1.0	04/06/19 13:45	
4-Chloro-3-methylphenol	ng/L	QN	10.0	0.87	04/06/19 13:45	
4-Chlorophenylphenyl ether	ng/L	QN	10.0	1.4	04/06/19 13:45	
4-Nitrophenot	ng/L	QN	50.0	1.6	04/06/19 13:45	
Acenaphthene	ng/L	QN	10.0	1.3	04/06/19 13:45	
Acenaphthylene	ng/L	QN	10.0	1.3	04/06/19 13:45	
Anthracene	ng/L	QN	10.0	1.1	04/06/19 13:45	
Benzidine	ng/L	QN	50.0	3.1	04/06/19 13:45	
Benzo(a)anthracene	ng/L	ND	5.0	0.93	04/06/19 13:45	
Benzo(a)pyrene	ng/L	QN	5.0	0.94	04/06/19 13:45	
Benzo(b)fluoranthene	ng/L	QN	10.0	1.0	04/06/19 13:45	
Benzo(g,h,i)perylene	ng/L	QN	20.0	1.0	04/06/19 13:45	
Benzo(k)fluoranthene	ng/L	QN	2.5	0.93	04/06/19 13:45	
bis(2-Chloroethoxy)methane	ng/L	QN	10.0	0.99	04/06/19 13:45	
bis(2-Chloroethyl) ether	ug/L	٩N	10.0	1.0	04/06/19 13:45	
bis(2-Chloroisopropyl) ether	ng/L	QN	2.5	1.2	04/06/19 13:45	
bis(2-Ethylhexyl)phthalate	ng/L	QN	10.0	3.2	04/06/19 13:45	
Butylbenzylphthalate	ng/L	ND	10.0	1.4	04/06/19 13:45	
Chrysene	ng/L	QN	5.0	1.0	04/06/19 13:45	
Cresols (Total)	ng/L	QN	10.0	1.5	04/06/19 13:45 1	N2
Di-n-butylphthalate	ng/L	QN	10.0	1.2	04/06/19 13:45	
Di-n-octytphthalate	ng/L	QN	10.0	1.7	04/06/19 13:45	
Dibenz(a,h)anthracene	ng/L	DN	5.0	1.1	04/06/19 13:45	
Diethylphthalate	ng/L	QN	10.0	0.92	04/06/19 13:45	
Dimethylphthalate	ng/L	QN	10.0	0.88	04/06/19 13:45	

Results presented on this page are in the units indicated by the "Units" column except where an attemate unit is presented to the right of the result.

Date: 04/17/2019 04:12 PM

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

REPORT OF LABORATORY ANALYSIS

Pace Analytical

QUALITY CONTROL DATA

Project: 548260 Pace Project No.: 75105824

Blank	75105824010
Blank	
-	
Kesult	r
QN	
Q	
QN	
8	
102	
53	
97	
122	
41	

LABORATORY CONTROL SAMPLE: 519257

	Qualifiers													
	% Rec Limits C	35-108	44-142	62-114	60-118	37-144	39-135	32-119	1-191	39-139	50-158	60-118	23-134	
	LCS % Rec	91	88	95	102	66	94	69	06	106	104	26	86	
	LCS Result	45.5	43.9	47.7	50.9	49.7	47.1	34.5	44.9J	52.9	52.2	48.5	42.9	
	Spike Conc.	50	50	50	50	50	50	50	50	50	50	50	50	
/ GZR1 G	Units	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	
EABORALORT CONTROL SAMPLE.	Parameter	1,2,4,5-Tetrachlorobenzene	1,2,4-Trichlorobenzene	1,2-Diphenylhydrazine	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	

Results presented on this page are in the units indicated by the "Units" column except where an altermate unit is presented to the right of the result.

Date: 04/17/2019 04:12 PM

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

REPORT OF LABORATORY ANALYSIS

Pace Analytical

QUALITY CONTROL DATA

 Project:
 548260

 Pace Project No.:
 75105824

LABORATORY CONTROL SAMPLE: 5	519257						
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
2-Nitrophenol	ng/L	50	50.7	101	29-182		
3&4-Methylphenol(m&p Cresol)	ng/L	50	38.8	78	33-110		
3,3'-Dichlorobenzidine	ng/L	100	112	112	1-262		
4,6-Dinitro-2-methylphenol	ng/L	50	48.2	96	1-181		
4-Bromophenylphenyl ether	ng/L	50	48.2	96	53-127		
4-Chloro-3-methytphenol	ng/L	50	49.5	66	22-147		
4-Chlorophenylphenyl ether	ng/L	50	48.7	97	25-158		
4-Nitrophenol	ng/L	50	36.3J	23	1-132		
Acenaphthene	ng/L	50	46.2	92	47-145		
Acenaphthylene	ng/L	50	47.5	95	33-145		
Anthracene	ng/L	50	48.1	96	27-133		
Benzidine	ng/L	100	81.6	82	10-140		
Benzo(a)anthracene	ng/L	50	44.5	89	33-143		
Benzo(a)pyrene	ng/L	50	49.5	66	17-163		
Benzo(b)fluoranthene	ng/L	50	51.2	102	24-159		
Benzo(g,h,i)perylene	ng/L	50	52.9	106	1-219		
Benzo(K)tluoranthene	ng/L	50	48.5	67	11-162		
bis(2-Chloroethoxy)methane	ng/L	50	45.4	91	33-184		
bis(2-Chioroethyl) ether	ng/L	50	43.8	88	12-158		
bis(2-Chloroisopropyl) ether	ng/L	50	42.9	86	36-166		
bis(2-Ethylhexyl)phthalate	ng/L	50	50.6	101	8-158		
Butylbenzylphthalate	ng/L	50	48.1	96	1-152		
Chrysene	ng/L	50	47.2	94	17-168		
Cresols (Total)	ng/L	100	78.7	62	36-110 N2	2	
Di-n-butylphthalate	ng/L	50	49.4	66	1-118		
Di-n-octylphthalate	ng/L	50	53,2	106	4-146		
Uibenz(a,h)anthracene	ng/L	50	54.0	108	1-227		
	ng/L	50	49.7	66	1-114		
Ulmetnylphthalate	ng/L	50	49.7	66	1-112		
rluoranmene Elimmano	ng/L	50	50.4	101	26-137		
Lowohloro 1.0 historicano	ug/L	50	48.2	96	59-121		
Hexactilior 0- 1,3- putagiene Hexachtorohonzono	ug/L	50	44.5	89	24-116		
Hexadiiui uuei izelie Hexadhlaraa alaanaa diana	ug/L	00	48.4	97	1-152		
riexaction ocycloperitadiene Hexachloroethane	ug/L	09	47.8	96	12-121		
Indeno(1.2.3-cd)pvrene	ug/L	00	40.1 63 7	80 107	40-113		
Isophorone	10/1	50	100	201	1/1-1		
N-Nitroso-di-n-butylamine	ua/L	50	48.4	90 02	ZI-190 40-117		
N-Nitroso-di-n-propylamine	ua/L	50	46.4	03	1-230		
N-Nitrosodiethylamine	ng/L	50	43.9	000	40-140		
N-Nitrosodimethylamine	ng/L	50	29.3J	59	26-77		
N-Nitrosodiphenylamine	ng/L	50	52.0	104	67-115		
Naphthalene	ng/L	50	44.2	88	21-133		
Nitrobenzene	ng/L	50	45.7	91	35-180		
Nonyiphenol	ng/L	50	47.3J	95	57-136 N2	2	
Pentachlorobenzene	ng/L	50	48.0	96	40-140		
Pentachlorophenol	ng/L	50	31.8	64	14-176		
	:						

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC,

Pace Analytical

QUALITY CONTROL DATA

75105824 548260 Pace Project No .: Project:

LABORATORY CONTROL SAMPLE:

ABORATORY CONTROL SAMPLE: 519257	519257					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
	ng/L	50	47.5	95	54-120	
	ng/L	50	20.4	41	5-112	
	ng/L	50	50.5	101	52-115	
	ng/L	50	23.9	48	12-110	
,4,6-Tribromophenol (S)	%.			105	29-132	
orobiphenyl (S)	%.			97	26-102	
	%.			57	10-66	
(%.			93	15-106	
Terphenyl-d14 (S)	%.			100	10-120	
	%.			4	10-54	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:	KE DUPLIC	CATE: 519258	0		519259							Ĩ
			MS	MSD								
		75105745001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Мах	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,2,4,5-Tetrachlorobenzene	ng/L	QN	49.5	20	40.1	37.5	81	75	37-105	9	64	
1,2,4-Trichlorobenzene	ng/L	ON	49.5	50	38.8	35.8	78	72	44-142	ø	40	
1,2-Diphenylhydrazine	ng/L	QN	49.5	50	45.0	43.9	91	88	43-124	0	40	
2,4,5-Trichlorophenol	ng/L	QN	49.5	50	48.1J	46.3J	97	93	50-121	4	40	
2,4,6-Trichlorophenol	ng/L	QN	49.5	50	47.4	45.0	96	06	37-144	S	40	
2,4-Dichlorophenol	ng/L	QN	49.5	50	45.1	41.7	91	83	39-135	œ	40	
2,4-Dimethylphenol	ng/L	QN	49.5	50	42.4	39.4	86	79	32-119	7	40	
2,4-Dinitrophenol	ng/L	QN	49.5	50	48.5J	44.9J	98	06	1-191	8	40	
2,4-Dinitrotoluene	ng/L	QN	49.5	50	51.4	50.5	104	101	39-139	2	40	
2,6-Dinitrotoluene	ng/L	QN	49.5	50	49.7	48.0	100	96	50-158	4	40	
2-Chloronaphthalene	ng/L	QN	49.5	50	43.8	38.0	88	76	60-118	14	40	
2-Chlorophenol	ng/L	QN	49.5	50	39.8	36.9	80	74	23-134	7	40	
2-Nitrophenol	ng/L	QN	49.5	50	48.0	44.8	97	06	29-182	7	40	
3&4-Methylphenol(m&p Cresol)	ng/L	QN	49.5	50	37.7	34.3	76	69	10-105	6	40	
3,3'-Dichlorobenzidine	ng/L	QN	66	100	40.3	36.4	41	36	1-262	10	40	
4,6-Dinitro-2-methylphenol	ng/L	QN	49.5	50	49.1	48.3	66	67	1-181	2	40	
4-Bromophenylphenyl ether	ng/L	QN	49.5	50	44.9	43.5	91	87	53-127	ი	40	
4-Chloro-3-methylphenol	ng/L	QN	49.5	50	49.3	47.2	100	94	22-147	4	40	
4-Chlorophenylphenyl ether	ng/L	QN	49.5	50	45.8	44.0	92	88	25-158	4	40	
4-Nitrophenol	ug/L	QN	49.5	50	37.4J	35.1J	76	20	1-132	9	40	
Acenaphthene	ng/L	QN	49.5	50	42.7	40.8	86	82	47-145	4	40	
Acenaphthylene	ng/L	QN	49.5	50	43.3	40.9	87	82	33-145	9	40	
Anthracene	ng/L	QN	49.5	50	44.6	44.0	06	88	27-133	-	40	
Benzidine	ng/L	QN	66	100	3.9J	3.4J	4	с С	10-74		40 M1	-
Benzo(a)anthracene	ng/L	QN	49.5	50	42.1	40.9	85	82	33-143	ო	40	
Benzo(a)pyrene	ng/L	QN	49.5	50	44.5	43.8	60	88	17-163	2	40	
Benzo(b)fluoranthene	ng/L	QN	49.5	50	46.1	45.1	93	06	24-159	2	40	
Benzo(g,h,i)perylene	ng/L	QN	49.5	50	52.4	52.4	106	105	1-219	0	40	
Benzo(k)fluoranthene	ng/L	QN	49.5	50	43.7	43.5	88	87	11-162	0	40	

Results presented on this page are in the units indicated by the "Units" column except where an altermate unit is presented to the right of the result.

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC. **REPORT OF LABORATORY ANALYSIS**

Date: 04/17/2019 04:12 PM

Pace Analytical®

QUALITY CONTROL DATA

Project: 548260

519259 519258 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 75105824 Pace Project No.

		Qual							0																					2												
	Max		4	40	40	40	40	40	40 N2	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40 N2	40	40	40	40	40	40						
	_	RPD F	~	7	2	2		2	6	ო	0	0	ო	S	2	4	Ø	4	14	9	0	ω	7	ø	00	1	-	Ω	ო	ო	2	2	2	12	2	ω						
	% Rec	Limits	33-184	12-158	36-166	8-158	1-152	17-168	10-118	1-118	4-146	1-227	1-114	1-112	26-137	59-121	24-116	1-152	10-123	40-113	1-171	21-196	41-119	1-230	25-126	14-77	35-131	21-133	35-180	37-142	48-111	14-176	54-120	5-112	52-115	10-69	29-132	26-102	10-66	15-106	10-120	10-54
	MSD	% Rec	62	78	75	96	92	87	70	94	102	105	95	91	93	87	72	87	2	99	105	85	88	81	29	50	98	83	66	06	8	82	86	36	91	38	102	62	47	78	94	37
	MS	% Rec	86	85	81	66	94	89	78	98	104	107	66	96	96	91	79	92	75	71	107	93	95	89	86	57	100	88	103	94	06	85	89	41	94	42	103	83	51	82	93	40
	MSD	Result	39.4	39.2	37.3	48.1	45.9	43.6	70.1	47.0	51.0	52.7	47.5	45.3	46.5	43.6	35.9	43.5	32.1	33.1	52.5	42.5	43.8	40.7	39.5	25.2J	49.0	41.3	49.4	45.2J	42.2	41.2	43.2	18.1	45.6	19.2J						
519259	MS	Result	42.4	42.0	40.2	48.8	46.5	44.3	77.0	48.5	51.3	52.7	48.8	47.6	47.5	45.2	39.0	45.3	37.0	35.1	52.8	45.8	47.0	44.2	42.7	28.1J	49.6	43.6	50.9	46.7J	44.5	42.0	44.0	20.4	46.7	20.7						
MSD	Spike	Conc.	50	50	50	50	50	50	100	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50						
MS	Spike	Conc.	49.5	49.5	49.5	49.5	49.5	49.5	66	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5	49.5						
VIE: 519258	75105745001	Result	QN	QN	QN	QN	QN	QN	QN	QN	QN	QN	QN	QN	QN	QN	QN	QN	ND	ND	ND	ND	QN	ND	QN	QN	QN	QN	QN	ND	ND	QN	QN	QN	QN	ND						
IA SPIRE DUPLICATE:		Units	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	%	%	%	°%	%.	-°%
IMALIKIA OPINE & MALIKIA OPIN		Parameter	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl) ether	bis(2-Chloroisopropyl) ether	bis(2-Ethylhexyl)phthalate	Butylbenzylphthalate	Chrysene	Cresols (Total)	Di-n-butylphthalate	Di-n-octylphthalate	Dibenz(a,h)anthracene	Diethylphthalate	Dimethylphthalate	Fluoranthene	Fluorene	Hexachloro-1,3-butadiene	Hexachlorobenzene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	lsophorone	N-Nitroso-di-n-butylamine	N-Nitroso-di-n-propylamine	N-Nitrosodiethylamine	N-Nitrosodimethylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Nonylphenol	Pentachlorobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	Pyridine	2,4,6-Tribromophenoł (S)	2-Fluorobiphenyl (S)	2-Fluorophenol (S)	Nitrobenzene-d5 (S)	p-Terphenyl-d14 (S)	Phenol-d6 (S)

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the night of the result.

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC,

REPORT OF LABORATORY ANALYSIS

Pace Analytical					40	Pace Analytical Services, LLC 400 West Bethany Drive - Suite 190	00
www.pacelabs.com						Allen, TX 75013 (972)727-1123	
		QUALITY CONTROL DATA	NTROL D	АТА			
Project: 548260 Pace Project No.: 75105824							
QC Batch: 115496 QC Batch Method: EPA 632 Associated Lab Samples: 75105824010	010	Analysis Method: Analysis Description:		EPA 632 632 HPLC Carbamates	lates		ï
METHOD BLANK: 520122 Associated Lab Samples: 75105824010	010	Matrix: Water	Vater				i i
	Units	Blank Result	Reporting Limit	MDL	Analvzed	Qualifiers	
Carbaryl	ng/L	QN	4.0		04/11/19 00:15	1	
Diuron Nitrobenzene (S)	ug/L %.	ND 73	0.080 18-113	0	04/11/19 00:15 04/11/19 00:15	N2	
LABORATORY CONTROL SAMPLE:	520123						Ŷ
Parameter	Units	Spike LC Conc. Rev	LCS Result	LCS % Rec	% Rec Limits Oue	Oualifiers	
Carbaryl	ng/L	10		10	-119		
Diuron Nitrobenzene (S)	ug/L %.	Ω	4.5	90 76	61-114 N2 18-113		
MATRIX SPIKE SAMPLE:	520124						
Parameter	l Inite	75105824010	Spike	MS Beent	SM MS		
		- 1-		וורפאו	% Kec	LIMITS QUAIMERS	
carbaryl Diuron Nitrobenzene (S)	ug/L %.		2 2	4.6	91 92 70	45-139 54-127 N2 18-113	
Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.	age are in the units i	ndicated by the "Units" col	lumn except wh	sere an alternate unit is	s presented to the righ	t of the result.	
	REI	REPORT OF LABORATORY ANALYSIS	RATORY /	ANALYSIS			

Page 25 of 44

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Date: 04/17/2019 04:12 PM

Pace Analytical www.pacalats.com							40	Pace Analytical Services, LLC 400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123	a lytica l (thany Dri A (Pace Analytical Services, LLC West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123	LLC 190 123
		QUALIT	QUALITY CONTROL DATA	SOL DAT	Z						8
Project: 548260 Pace Project No.: 75105824											
QC Batch: 115682 QC Batch Method: SM 4500-CN-C Associated Lab Samples: 7510582	2 Analysis Method: 00-CN-C Analysis Description: 75105824001, 75105824003, 75105824005, 75105824007	Analysik Analysis , 751058240	Analysis Method: Analysis Description: 105824005, 75105824		SM 4500-CN-E 4500CNE Cyan	SM 4500-CN-E 4500CNE Cyanide, Total					Ĩ
METHOD BLANK: 521009		W	Matrix: Water								1
Associated Lab Samples: 7510582	75105824001, 75105824003, 75105824005, 75105824007	3, 751058240	05, 751058;	24007							
Parameter	Units	Blank Result		Keporting Limit	MDL	A	Analyzed	Qua	Qualifiers		
Cyanide	ng/L		QN	10.0		4.0 04/12	04/12/19 15:43	1		5	
LABORATORY CONTROL SAMPLE:	521010										Ĩ
Parameter	Units	Spike Conc.	LCS Result	⊣ %	LCS % Rec	% Rec Limits	Qu	Qualifiers			
Cyanide	ng/L	100		104	104	85-115	115				
MATRIX SPIKE & MATRIX SPIKE DUPLICATE:	PLICATE: 521011		Ω.	521012							T
Parameter	75105934001 Units Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	A RPD R	Max RPD Qual	.
Cyanide	ng/L ND	100	100	Q	Ð	0	0	85-115		20 M1	
MATRIX SPIKE & MATRIX SPIKE DUPLICATE:	PLICATE: 521013	3	in Com	521014							ľ.
Parameter	75105824007 Units Result	Spike Conc.		MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD R	Max RPD Qual	<u></u>
Cyanide	DN T/bn	100	100	88.3	103	88	103	85-115	15	20	ľ.

Pace Analytical Services, LLC

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Date: 04/17/2019 04:12 PM

REPORT OF LABORATORY ANALYSIS

Results presented on this page are in the units indicated by the "Units" column except where an attemate unit is presented to the right of the result.

ż

Page 26 of 44

•
tic se
S II
G
6
6
~

QUALITY CONTROL DATA

	ae, Amenable			Analyzed Qualifiers	4.0 04/15/19 08:39
SM 4500-CN-G	4000000 Cyanide, Amenaple			MDL	
	5105824007	Matrix: Water	5105824007	Limit	10.0
Analysis Method:	75105824001, 75105824003, 75105824005, 75105824007	Matrix:	75105824001, 75105824003, 75105824005, 75105824007	Biank Result	QN
	, 75105824003,		, 75105824003,	Units	ng/L
115814 SM 4500-CN-C	- 1	67		er	
Pace Project No.: 75105824 QC Batch: 115814 QC Batch Method: SM 4500	Associated Lab Samples:	METHOD BLANK: 521767	Associated Lab Samples:	Parameter	Amenable Cyanide

Page 27 of 44

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Date: 04/17/2019 04:12 PM

REPORT OF LABORATORY ANALYSIS

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

75105824 548260 Pace Project No. Project:

DEFINITIONS

DF - Dilution Factor, if reported. represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit. PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix. S - Surrogate

1.2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration. Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The Nelac Institute

LABORATORIES

Pace Analytical Services - Dallas PASI-D

ANALYTE QUALIFIERS

- Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low. 2
 - Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery. ž
- The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request. ZZ
 - Accreditation is not offered by the relevant laboratory accrediting body for this parameter. ß
 - S
- Surrogate recovery exceeded laboratory control limits. Analyte presence below reporting limits in associated sample.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

 Project:
 548260

 Pace Project No.:
 75105824

Lab ID	Sample ID	OC Batch Method	OC Batch	Anshrical Mothod	Analytical
					Datu
75105824010	548270	EPA 608 SF	115478	EPA 608	115547
75105824010	548270	EPA 615	115532	EPA 615	115834
75105824010	548270	EPA 604.1	115494	EPA 604.1	115692
75105824010	548270	EPA 632	115496	EPA 632	115560
75105824010	548270	EPA 625	115297	EPA 625	115354
75105824009	548268	EPA 624 Low	115157		
75105824001	548260	SM 4500-CN-C	115682	SM 4500-CN-E	115778
75105824003	548262	SM 4500-CN-C	115682	SM 4500-CN-E	115778
75105824005	548264	SM 4500-CN-C	115682	SM 4500-CN-E	115778
75105824007	548266	SM 4500-CN-C	115682	SM 4500-CN-E	115778
75105824001	548260	SM 4500-CN-C	115814	SM 4500-CN-G	115815
75105824003	548262	SM 4500-CN-C	115814	SM 4500-CN-G	115815
75105824005	548264	SM 4500-CN-C	115814	SM 4500-CN-G	115815
75105824007	548266	SM 4500-CN-C	115814	SM 4500-CN-G	115815

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Document Revised: 03-14-19 Page 1 of 1 Issuing Authority: Issuing Authority: Pace Dallas Quality Office MOD#: 75105824 MOD#: 75105824 Bagser Foam In None Other Into Other IntoOther Into Other Into Other I		
Document Name: Sample Condition Upon Receipt Document No.: F-DAL-C-001-rev.9 ample Condition Upon Re Dallas	All Yes No Yes Yes No Yes Yos No Hrs Yes No Hrs Yes No Yes Yos No	
dex DVS DVSPS Cli dex DVS DVSPS Cli dex Ves No DVN tice: Ves No DVN tice: Ves No DVN	Chain of Custody relinquished Sampler name & signature on COC Short HT analyses (<72 hrs) Sufficient Volume received Correct Container used Correct Container used Container Intact Sample pH Acceptable pH Strips: ADS ACC ACCENTION A PACE Sample pH Acceptable pH Strips: ADS ACCENTION A PACE Container Intact Sample pH Acceptable pH Strips: ADS ACCENTION A PACE Container Intact Container Intact Container Intact Sample pH Acceptable pH Strips: ADS ACCENTION A PACE Container Intact State Samples (volatiles, TPH) received in 5035A Kits Unpreserved 5035A soil frozen within 48 hrs Headspace in VOA (>6mm) Project sampled in USDA Regulated Area: State Sampled in USDA Regulated Area: State Sampled in USDA Regulated Area:	
Client Name: Courier: FedE) Tracking #: Custody Seal o Received on ice Thermometer	Chain Sample Sufficie Correc Contai Contai Residu Residu Sulfide Are soi Unpres Project	

Page 30 of 44

RACKING SHEET Greg Felux			ļ.	Wet Wr. IPare	1050	Pres T A T	H Std	H2SO4 Std	NAOH Std	H2SO4 Std	NAOH Std	H2SO4 Std	NAOH Std	H2SO4 Std	ICE Std	ICE STD	WO#:75105824 PM: MLM Due Date: 04/17/19 CLIENT: PCS	Date: 42/9 Date: 2000 Dage 31 of 44
	TODY & SUBCONTRACT TRACKING SHEET	, Inc. Relinquished by:	06	Received by:	Date/Time:	Analysis Requested	Cyanide, Amenable	Phenolics	Volatiles 624	604.1 Hexachlorophene	results and invoice to:	Blvd, Suite 100 78148-3318						
NT C TO	UF CUS	I Services	y Rd, Ste	13		Time	1015	1015	1551	1551	2157	2157	0535	0535	1015	0800	al Instructions; requested, sen	City Blvc TX 7814
CHAIN OF CUSTODY		Pace Analytical Services,	400 W Bethany Rd,	en, TX 7501		Date	04/01/2019	04/01/2019	04/01/2019	04/01/2019	04/01/2019	04/01/2019	04/02/2019	04/02/2019	04/01/2019	04/02/2019	ents/Special Instructions:	1532 Universal City Blvd, Universal City, TX 78148 rized by:
		TO: Pace	400	Allen,		PCS#	548260	548261	548262	548263	548264	548265	548266	548267	548268	548270	Comments/Speci Unless otherwise Chuck Wa	1532 Un Universa Authorized by:

				T.A. T.		1	1	1		1				74	Due Date: 04/17/19		11 9	
ES	IG SHEET	elux 19 @ 1700		Pres	ICE				4	ICE				HZRGNTGJ : HOM		-	4/2/1	
TION CONTROL SERVICES 1532 Universal City Blvd, Suite 100 Universal City, TX 78148-3318 Facsimilie 210.658.7903 210.340.0343	CHAIN OF CUSTODY & SUBCONTRACT TRACKING SHEET	s, Inc. Relinquished by: Greg Felux 190 Date/Time: 4/2/2019 @	Received by: Date/Time:	Analysis Reguested	Semi Volatiles 625	Herbicides 615	Pesticide 1657	Pesticides 608	Pesticides 617	Pesticides 632			Unless otherwise requested, send results and invoice to:	r edu	es CLIENT: PCS	Universal City, TX, 78148-3318	Date:	
POLLUTION 1532 L Univ	N OF CUS	cal Service ny Rd, Ste	013	Time	I	1			i and i a	-		pecial Instructions;	uested. ser	1.000	trol Servic	, TX/ 78148-	Mills	1
	CHAI	Pace Analytical Services, Inc. 400 W Bethany Rd, Ste 190	Allen, TX 75013	Date					5			s/Special I	herwise rec	11 7 17 -1	Pollution Control Services	Universal City,	d by:	
		TO: Pa	AI	PCS#	548270	548270	548270	548270	548270	548270		Comments/S	Unless of	5	Pol	inU	Authorized b	

Page 32 of 44 Document l

	Ana-Lab Corp. P.O. B	P.O. Box 9000	Kilgore,	TX 75663	33	Report	Report Page 1 of 12	2
ANA-LAB	Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com Employee Owned integrity Caring	114 e-Mail corp(p@ana-lab.co ty Caring	011 Continual Improvement	LED KUD NOLED	مرر		1
THE COMPLETE SERVICE LAB	Results Printed:	04/16/2019	14:43				Page 1 of 4	4
Report To	75105824	1	Aco	Account PAMM_N		Pro	Project	
Pace Analytical - Dallas Melissa McCullough 400 West Bethany Drive Suite 190 Allen, TX 75013							-	1
	æ	Results						
1773045 75105824002						Received: (04/05/2019	a.
Non-Potable Water	Collected by: Client Pac Taken: 04/01/2019 10:15:00	Pace Analytical - Da			PO:	DASUB2007		
EPA 420.4 1	Prepared: 832149	04/09/2019	10:00:00	Analyzed 833	833090	04/12/2019	11:20:00 MLC	LC L
Parameter N Phenolics, Total Recoverable	Results <0.005	Units RL mg/L 0.005		Flag		CAS	Bottle 02	Ĩ
1773046 75105824004						Received: 0	04/05/2019	3
Non-Potable Water	Collected by: Client Pac Taken: 04/01/2019 15:51:00	Pace Analytical - Da			PO:	DASUB2007		
EPA 420.4 1	Prepared: 832149	04/09/2019	10:00:00	Analyzed 833	833090	04/12/2019	11:22:00 MLC	S
Parameter N Phenolics, Total Recoverable	Results <0.005	Units RL mg/L 0.005		Flag		CAS	Bottle 02	Ĩ
1773047 75105824006						Received: C	04/05/2019	Ŷ
Non-Potable Water	Collected by: Client Pac Taken: 04/01/2019 21:57:00	Pace Analytical - Da			PO:	DASUB2007		
EPA 420.4 1	Prepared: 832149	04/09/2019	10:00:00	Analyzed 833	833090 (04/12/2019	11:25:00 MLC	C I
Parameter N Phenolics, Total Recoverable	Results <0.005	Units RL mg/L 0.005		Flag		CAS	Bottle 02	1
1773048 75105824008						Received: 0	04/05/2019	с.
Non-Potable Water	Collected by: Client Pac Taken: 04/02/2019 05:35:00	Pace Analytical - Da			PO:	DASUB2007		1
Corpurate Shipping: 2050 (Judiey Rd., Kilgare, TN	gare, 1N 75662		Narth I	Narth Texas Region: 11105 Shady Trl Ste. (23 Dallas TX -75229-7633	ybady 3	I'rI Ste. (23 Dall	las IX 75229-763	10
	NELAP-accr	NELAP-accredited #T104701-19-15)4201-19-15				Dorro 22 of 11	
LDSClient v1,14,14,1771	эгнии	www.ana-lab.com		Form	rptPROJI	Form rpiPROJRES Created 10/13/2004 v1.2	13/2004 v1.2	

	Ana-Lab Corp. P	P.O. Box 9000	000	Kilgore,	TX 75663	Repo	Report Page 2 c	of 12
ANA-LAB	Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com Employee Owned meghty Caring	/984-5914 e-	Mail corp(@ Integrity	@ana-lab.co Camg	III Continual Improvement	hont		1
THE COMPLETE SERVICE LAB	Results Pr	Printed: 04/10	04/16/2019 1	14:43			Page 2 of 4	of 4
1773048 75105824008 Non-Potable Water	8 Collected by: Client Taken: 04/02/2019 05:35:00	Pace Analytical - Da	ytical - Da		ă,	Received: 0 PO: DASUB2007	04/05/2019	1
EPA 420.4 1	Prepared:	832149	04/09/2019	10:00:00	Analyzed \$33090	04/12/2019	11:27:00	MLC
Parameter N Phenolics, Total Recoverable	Results <0.005	Units mg/L	RL 0.005		Flag	CAS	Bottle 02	
1773049 75105824010						Received:	04/05/2019	Ĩ
Non-Potable Water	Collected by: Client Taken: 04/02/2019 08:00:00	Pace Analytical - Da	ytical - Da		PO:	DASUB2007	07	
EPA 1657	Prepared:	832001	04/08/2019	08:00:00	Analyzed 832472	04/09/2019	20:51:00	EMT
	Results	Units	RL		Flag	CAS	Bottle	
z Chlorovrifos z Chlorovrifos	<0.0513	1/gu	0.0513		×	86-50-0	4	
	<0.0513	Л/gu	0.0513		× ×	2921-88-2 8065-48-3	23	
	<0.050	∏/ân	0.050		х	333-41-5	64	
z Malathion z Parathion.ethvl	<0.0513		0.0513		×	121-75-5	6	
	C1000>	Л/an т/an	0.041		<	56-38-2 298-00-0	5 5	
EPA 617	Prepared:	831994	04/08/2019	08:00:00	Analyzed 832836	04/10/2019	20:50:00	EMT
Parameter	Route	I fuite	DI		1-1		,	
	<0.041	ug/L	0.041		rug X	LAD 115-32-2	Bottle 03	
	<0.0103	ng/L	0.0103		х	72-43-5	03	
z Mirex	<0.0103	J/gu	0.0103	A an and a state		2385-85-5	03	1
	S	Sample Preparation	aration					
1773045 75105824002						Received:	04/05/2019	Î
						DASUB2007	07	
EPA 420.4 1	Prepared:	832149	04/09/2019	10:00:00	Analyzed 832149	04/09/2019	10:00:00	CRS
N Phenol Distillation	50/50	E					5	I
							5	
Corporate Shipping: 2646 bud ev Bd. K	Kilgure 1N 75662			Narth D	Narth Texas Region: 11105 Shady Trl Ste. 123 Dallav TX 75229-7633	idy I'rd Ste. 123 D	allav TN 75229-	2633
	NFL	VEL AP-accredited #T104704201-10-15	ABCON AT	201-10-15				
LDSClient v1 4.14.1771		www.ana-fal.com	Ron.		Form rptPh	Page 34 c Form rptPROJRES Created 10/13/2004 v1.2	Page 34 of 44 9/13/2004 v1.2	4

	Ana-Lab Corp. P.O. Box 9000 Kilgore, TX 75663	Report Page 3 of 12
ANA:LAB	Phone 903/984-0551 FAX 903/984-5914 e-Mail corrp@ana-lab.com Employee Owned Integrity Caring Continual Improvement	
THE COMPLETE SERVICE LAB	Results <i>Printed:</i> 04/16/2019 14:43	Page 3 of 4
1773046 75105824004	Re	Received: 04/05/2019
		DASUB2007
EPA 420.4 1	Prepared: 832149 04/09/2019 10:00:00 Analyzed 832149 04	04/09/2019 10:00:00 CRS
N Phenol Distillation	50/50 mJ	01
1773047 75105824006	Re	Received: 04/05/2019
		DASUB2007
EPA 420.4 1	Prepared: 832149 04/09/2019 10:00:00 Anabyzed 832149 04/	04/09/2019 10:00:00 CRS
N Phenol Distillation	50/50 ml	01
1773048 75105824008	Re	<i>Received:</i> 04/05/2019 DASUB2007
EPA 420.4 1	Prepared: 832149 04/09/2019 10:00:00 Analyzed 832149 04/	04/09/2019 10:00:00 CRS
N Phenol Distillation	50/50 ml	01
1773049 75105824010	Re	Received: 04/05/2019
		DASUB2007
EPA 1657	Prepared: \$32001 04/08/2019 08:00:00 Analyzed \$32472 04/	04/09/2019 20:51:00 EMT
Organophos. Pesticides	Entered	64
EPA 614/608/617/1657	Prepared: 831994 04/08/2019 08:00:00 Analyzed 831994 04/	04/08/2019 08:00:00 SJN
Liquid-Liquid Extr. W/Hex Ex	1/975 ml	02
Corporate Shipping: 2608 Dodley Rd. Kil	Kiigure, TX 75662 North Texas Region: 11105 Shady Trl Ste. 123 Dallas TX 75229-7633	Ste. 123 Dallas TX 75229-7633
	WHI AP-according #T1047047011015	
LDSClient vl. 14, 14, 1771		Form rpiPROJRES Created 10/13/2004 v1.2

ATT AND A DECIMAND	
SERVICE LAB	
SEL	
WIII III C	
¥ No	

Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com

Employee Owned Integrity Caring Continual Improvement Results

Printed: 04/16/2019 14:43

.

Page 4 of 4

1773049 75105824010

Received: 04/05/2019 DASUB2007

EPA 614/608/617/1657	Prepared:	832001	Prepared: 832001 04/08/2019	08:00:00	Analyzed	832001	08:00:00 Anabzed 832001 04/08/2019	08:00:00 SJN	SJN
Solvent Extraction	1/975	B	I					02	
EPA 617	Prepared:	831994	Prepared: 831994 04/08/2019		Analyzed	832836	08:00:00 Analyzed 832836 04/10/2019	20:50:00	EMT
z Dicofol/Methoxychlor/Mirex	Entered							03	

Qualifiers:

X - Standard reads higher than desired.

corporate laboratory that holds the following Federal and State certificates: EPA Lab Number TX00063, US Department of Agriculture Soil Oklahoma Department of Environmental Quality TNI Laboratory Accreditation Program Certificate No. 2018-126, Arkansas Department of Import Permit P330-17-00117, Texas Commission on Environmental Quality Commercial Drinking Water Lab Approval (Lab ID: TX219), Environmental Quality Certification #18-068-0. The Accredited column designates accreditation by N -- NELAC, or z -- not covered under Certification (NELAP, LELAP) #02008, Louisiana Department of Health and Hospitals Drinking Water (NELAP) Certificate No LA026, We report results on an As Received or wet basis unless marked Dry Weight. Unless otherwise noted, testing was performed at Ana-labs Texas Commission on Environmental Quality NELAP T104704201-19-15, Louisiana Department of Environmental Quality Laboratory NELAC scope of accreditation.

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of Ana-Lab Corp. Unless otherwise specified, these test results meet the requirements of NELAC.

MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' column of our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical prevent it, we work to have our RL at or below the MAL

Bill Peery, MS, VP Technical Services

Corporate Shipping: 26 is itstor, but Kipping, TX 75662

North Texas Region: 11105 Shady Fr1 Ste. 123 Dallas TX 75229-7633

LDSClient v1, 14.14, 1771

www.ana-lab.com

Form rptPROJRES Created 10/13/2004 v1.2

Page 36 of 44

	Ana-Lab Corp.	in Corp		1.0. DUA 7000	2000	Mugore,		conci		>	Inchuit raye a ur 12
THE COMPLETE SERVICE LAB	Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com Employee Owned Integrity Caing Quality Control Printed	984-0551 FAX 903/984-5914 e- Employee Owned Quality Control	FAX 903/984-59 Employee Owned ity Contr	84-5914 wrred MtrO	e-Mail corp Integrity	o@ana-lab.con Caring Printe	Ô	LELAP-ace Continual Inprovement 04/16/2019	LELAP-accredited #02008 pprovement Page	lited #02 Pa	02008 Page 1 of 3
Pace Analytical - Dallas Pace Analytical - Dallas Melissa McCullough 400 West Bethany Drive Suite 190 Allen, TX 75013							Account PAMM-N	z	Project 8692	Project 869294	
cal Set	833090			Blank						E	EPA 420.4 1
<u>Parameter</u> Phenolics, Total Recoverable	PrepSet (c 832149	<i>Reading</i> ND	MDL 0.00377	MQL 0.005 CCV	Units mg/L			File 119824625			
<i>Parameter</i> Phenolics, Total Recoverable	ŧ	<i>Reading</i> 0.196 0.198 0.191	<i>Кло</i> нт 0.200 0.200 0.200	Units mg/L mg/L mg/L Duplicate	Recover% 98.0 95.5 te	Limits% 90.0 - 110 90.0 - 110 90.0 - 110		File 119824624 119824635 119824646			
<u>Parameter</u> Phenolics, Total Recoverable	c 1772654 c 1772654 1772947		Result ND 0.160	Unknown ND 0.161 ICV			<i>Unit</i> mg/L mg/L		RPD 0.623		Limie% 20.0 20.0
<i>Parameter</i> Phenolics, Total Recoverable	¢۵	Reading 0.200	Кпочт 0.200	<i>Units</i> mg/L LCS Dup	Recover% 100 D	Limits% 90.0 - 110		File 119824623			
<u>Parameter</u> Phenolics, Total Recoverable	PrepSet e 832149	LCS 0.201	LCSD 0.206	ر ا Mat. Spike	Кпочи 0.200 ке	Limits% 90.0 - 110	LCS% 100	LCSD% 103	<i>Units</i> mg/L	RPD 2.46	Limit% 20.0
Parameter Phenolics, Total Recoverable	<i>Sample</i> e 1772654 1772947	<i>Spike</i> 0.195 0.358	Unknow ND 0.161	<i>Uпкпочт Кпочт</i> ND 0.200 0.161 0.200	Units mg/L mg/L	Recovery % 97.5 98.5	Limits % 90.0 - 110 90.0 - 110	<i>File</i> 119824630 119824633			
Analytical Set 832472 Parameter PrepSet Azinphos-methyl (Guthion) 832001 Chlorpyrifos 832001 Diazinon 832001 Diazinon 832001 Parathion, methyl 832001 Parathion, methyl 832001 Parathion, methyl 832001 Chlorpyrifos 832001 Chlorpyrifos 832001 Corpurate Shipping: 26001 (Guthion) Corpurate Shipping: 26001 (Maliev Rd. Kilgore, TX 75602	832472 <i>PrepSet</i> 832001 8322001 83	Reading ND ND ND ND ND ND ND ND ND ND ND 1770 1170 1170	<i>МDL</i> 0.0461 0.03544 0.03577 0.0466 0.0466 0.0292 0.0357 0.0357 0.0357 0.0357 0.0357 0.0357 0.0357 0.0292 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0295 0.0255 0.005 0.0255 0.0255 0.0057 0.0055 0.005 0.0055 0.0055 0.00	Blamk <i>MOL</i> 0.050 0.040 0.050 0.0000 0.00000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000000	Blank MOL Units 0.050 ug/L 0.040 ug/L 0.050 ug/L 0.040 ug/L 0.040 ug/L 0.041 ug/L 0.042 ug/L 0.041 ug/L 0.042 ug/L 0.044 ug/L 0.051 117 ug/L 117 ug/L 103 ug/L 103	201	l exas Region:	EPA 16 File 119811245 119811245 119811245 119811245 119811245 119811245 119811245 119811245 119811245 119811245 119811245 120 119811245 120 119811228 120 119811228 120 119811228 North Feats Region: 11105 Shady Trl Ste. 123 ballas TX 75229-7633 North Feats Region: 11105 Shady Trl Ste. 123 ballas TX 75229-7633	Ste. 123 Da	EPA 1 Has TX 75229-763 Page 37 of 44	EPA 1657 529-7633 7 of 44

	-	4									
ANA-LAB	Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com Employee Owned Integrity Caring	44-0551 FA	FAX 903/984-591 Employee Owned	84-5914 wned	e-Mail corp Integrity	n@ana-lab.con Caring		LELAP-acc Continual Improvement	LELAP-accredited #02008	lited #02	008
THE COMPLETE SERVICE LAB	0	Quality	y Co	Control			o Do	04/16/2019		P_{2}	Page 2 of 3
				CCV							
Parameter Chlorumites		Reading	Клоwп	Units	Recover%	Limits%	ł	Füle			
		1570	1000	ug/L ue/L	164 157	80.0 - 120 80.0 - 120		119811251			
Derneton		1090	1000	ng/L	109	80.0 - 120		119811228			
		1710	1000	ng/L	171	80.0 - 120		119811251			
Diazinon		1700	1000	ug/L	170	80.0 - 120	•	119811259			
		1850	1000	J/gu	185	80.0 - 120		119811228			
		2020	1000	ug/L	202	80.0 - 120	*	119811259			
Malathion		1030	1000	ug/L	103	80.0 - 120		119811228			
		1780	1000	1/gu	178	80.0 - 120	•	119811251			
Parathion. ethv]		1900	1000	ug/L	190	80.0 - 120	•	119811259			
		1580	0001	T/2n	20.07	071 - 0.08	,	110011228			
		1720	1000	J/an	172	80.0 - 120 80.0 - 120		127115611			
Parathion, methyl		1030	1000	ng/L	103	80.0 - 120		119811228			
		1590	1000	ng/L	159	80.0 - 120	•	119811251			
		1570	1000	J/gu	157	80.0 - 120	*	119811259			
				LCS Jup	đ						
Parameter		TCS	LCSD		Кпоwn	Limits%	rcs%	LCSD%	Units	RPD	Limit%
Azinpnos-methyl (Guthion) Chlomwrifos	n) 832001 832001	0.423	0.702		1.00	0.100 - 166	42.3	70.2	J/gu	49.6	50.0
Demeton	832001	0.313	0 295		1 00	0.100 101	40.8 21.2	41.3 20.5	J/gu	1.22	50.0
Diazinon	832001	0.476	0.519		1.00	0 100 - 100	6.16 47.6	0.12 0.12	חק/נ ח	76.0	0.02
Malathion	832001	0.419	0.456		1.00	0.100 - 113	41.9	45.6	ue/L.	8.46	0.05
Parathion, ethyl	832001	0.428	0.544		1.00	0.100 - 111	42.8	54.4	ng/L	23.9	50.0
Parathion, methyl	832001	0.429	0.453		1.00	0.100 - 109	42.9	45.3	ng/L	5.44	50.0
				Surrogate	te						
Parameter	Sample	Type	Reading	Кпоwn	Units	Recover%	Limits%	File			
Tributylphosphate		CCV	742		ng/L	74.2	0.100 - 118	119811228			
		CCV	1640	1000	1/gn	164 *	0.100 - 118	119811251			
		CCV	1710	1000	ug/L	171 *	0.100 - 118	119811259			
1 ripnenyipnosphate		CCV	988	1000	J/gu	98.8	0.100 - 147	119811228			
		ccv	1540	1000	ug/L.	154 *	0.100 - 147	056118611			
Triburylphosphate	832001	Blank	853	1000	ng/L	85.3	0.100 - 118	119811245			
	832001	LCS	412	1000	ng/L	41.2	0.100 - 118	119811246			
	832001	LCS Dup	473	1000	ug/L	47.3	0.100 - 118	119811247			
Тприслуприогране	832001	Blank	723	1000	ug/L	72.3	0.100 - 147	119811245			
	832001	LCS Dam	545 474	1000	ug/L	34.5	0.100 - 147	119811246			
Tributylphosphate	1773049	UNKNOWNI .02	N1.02	1.03	ug/L	4./4 99.0	0.100 - 147	119811247			
Triphenylphosphate	1773049	UNKNOWND.927	N0.927	1.03	ng/L	90.06	0.100 - 147	119811252			
Analytical Set	832836										EPA 617
				Blank							
Parameter	PrepSet	Reading	ТŒW	TŌW	Units			File			
Kelthane (Dicofol)	831994	Q P	0.0352	0.040	ug/L			119818837			
INCLUSIVACION	466100	ΠN	1 6800 0	010.0	ug/L			119818837			
Corporate Shipping: 2600 Budhy Rd. Kilga	Kilgare, TX 75662					Varia	Ferric Relation	North Feers Russians (1105 Shedde Tet Sto. 123 Ioda TV - 75794 7523	el Sto 123 Ibs	T VI vello	2232.0452
				110	ACCORD.			n âbergeen i	11 2161 TT 21		0001-6770
				E CALE	helac						
			NELAF	-accredit	ed #T10470	NELAP-accredited #T104704201-19-15				Pane 2	Pare 38 nf 44
LDSClient v1 14.14.171										n offer	

-

	Ana-Lab Corp.	b Corp		P.O. Box 9000	0006	Kilgore,	, TX	75663	Rep	ort Paç	Report Page 7 of 12	
CNALAR Pho	пе 903/98-	1-0551 FA	X 903/9	84-5914	Phone 903/984-0551 FAX 903/984-5914 e-Mail corp@ana-lab.com	@ana-lab.	COLLI	F	LELAP-accredited #02008	edited #	02008	
		Em]	Employee Owned	wned	Integrity	Caring	a B B	Continual Inprovement	provenent			
THE COMPLETE SERVICE LAB	Õ	Quality Contro	V CC	ntro	1	Pr	Printed (04/16/2019			Page 3 of 3	
				Blank								
Parameter	PrepSet	Reading	ΤŒW	ΠŌΜ	Units			File				
Mirex	831994	QN	0.00905	0.010	ng/L			119818837	37			
				CCV								
<u>Parameter</u>		Reading	Кпочт	Units	Recover%	Limits%		File				
Kelthane (Dicofol)		191	200	ug/L	95.3	70.0 - 130		119818835	35			
		280	200	ug/L	140	70.0 - 130	,	119818844	44			
		343	200	ug/L	172	70.0 - 130		119818850	50			
Methoxychlor		101	100	ug/L	101	70.0 - 130		119818835	35			
		127	100	ug/L	127	70.0 - 130		119818844	44			
Mirow		142	100	ug/L	142	70.0 - 130	•	119818850	50			
VA ITTAT		001	001		100	70.0 - 130		119818835	35			
		107	100	ug/L	103	70.0 - 130		119818844	44			
		107	001	ug/L	107	70.0 - 130		119818850	50			
				LCS Dup	Ь							
Parameter	PrepSet	LCS	LCSD		имоиХ	Limits%	LCS%	CSD%	Units	s RPD	Limit%	
Kelthane (Dicofol)	831994	1.40	1.45		2.00	0.100 - 130	70.0	72.5	ug/L	3.51	30.0	
Methoxychlor	831994	0.983	0.965		1.00	33.6 - 137	98.3	96.5	ug/L	1.85	30.0	
Mirex	831994	0.798	0.702		1.00	37.6 - 119	79.8	70.2	ng/L	12.8	30.0	
				Surrogate	te							
Parameter	Sample	Type	Reading	Кпочт	Units	Recover%	Limits%	6 File				
Decachlorobiphenyl		CCV	94.4	100	ng/L	94.4	10.0 - 150	50 119818835	35			
		CCV	90.8	100	ug/L	90.8	10.0 - 150	50 119818844	44			
		CCV	105	100	ug/L	105	10.0 - 150	0 119818850	50			
Tetrachloro-m-Xylene (Surr)		CCV	103	100	ng/L	103	10.0 - 150	0 119818835	35			
		CCV	102	100	ug/L	102	10.0 - 150		44			
Danachtachtachtach	100100	. ccv	94.1	100	ug/L	94.1	10.0 - 150		50			
reachiologiphenyi	464160	Blank	67.5	100	ug/L	67.5	10.0 - 150		37			
	851994	LCS LCS	2.68	100	ug/L	85.2	10.0 - 150		38			
T	+66100	ding eng	511	001	ug/L	77.3	10.0 - 150		39			
r cuachioto-m-Ayiene (Surt)	\$21994	Blank	43.4	100	ug/L	43.4	10.0 - 150		37			
	831994	LCS	61.3	100	ug/L	61.3	10.0 - 150	0 119818838	38			
	831994	LCS Dup	57.5	100	ug/L	57.5	10.0 - 150	0 119818839	39			
Decachlorobiphenyl	1773049	UNKNOWND.0448	ND.0448	0.103	ng/L	43.5	10.0 - 150	0 119818841	41			
Tetrachloro-m-Xylene (Surr)	1773049	UNKNOWND.0578	ND.0578	0.103	ug/L	56.1	10.0 - 150	0 119818841	41			
 Out RPD is Relative Percent Difference: abs(r1-r²) / mean(r1,r²) * 100% 	Difference: at	s(r1-r2) / me	an(r1,r2) *	100%			Recover%	Recover% is Recovery Percent: result / known * 100%	ent: result / kno	wп * 100%		
Blank	k - Method Bl	ank; CCV - C	Continuing	Calibration	Blank - Method Blank; CCV - Continuing Calibration Verification; ICV - Initial Calibration Verification	CV - Initial Cal	libration V	erification				

......

Report Page 7 of 12

Corpurate Shipping: 2600 Budley Rd. Kilgure, 3X 75662

Page 39 of 44 Form rpiPROJQCGrpt Created 01/27/2005 v1.0

North Texas Region: 11105 Shady Trl Ste. 123 Dallas TN 75229-7633

N ACCON

VELAP-accredited #T104704201-19-15 www.ana-lab.com

LDSClient v1_14.14_1771

Chain of Custody -----

1 of 5

869294 CoC Print Group 001 of 001

Report	/ Invoice To	Subc	ontract To		14	_	-		-	T			Recto		nalysis		- 1	
Pace / 400 W Sulte ' Allen, Phone Emeil:	a McCullough Anelytical Dallas est Bethany Drive 190 TX 75013 (972)727-1123 melissa.mccullough@pacelabs.co of Sample OrigIn: TX TPDES		∟ab	P.(IB200		132	7/1657	1 Phenol				linysis			
11		1	1	1	+ '		rved C	ontain	ars T	10	120,	n I						
ltem	Sample ID	Collect Date/Time	Lab ID	Matrix	H2SO4	Unpreserved					4							LAB USE ON
1	548261	4/1/2019 10:15	75105824002	Water							X				++			273 011
2	548263	4/1/2019 15:51	75105824004	Water	-				+		X				+-+			11504
3	548265	4/1/2019 21:57	75105824006	Water	1						X			-	++		++	- 00-
£	548267	4/2/2019 05:35	75105824008	Water	-		-	-1-	+		X				++		+-+-	- 04
5	548270	4/2/2019 08:00	75105824010	Water	-		-	-	+	x			++				++	_04
100		di como	-	-	1				11			-		-	Con	ments	<u></u>	_04
Fransfe		Date/T	ime Receive	d By				Dat	e/Time	8	TI	PDES L	imits Se	e attach	ed list			
1	Magande Ch>	4:4=19	105 The	() (L_1) U Ověrma	Lei			-4.i	91-	101	1	henol Ri						

See Attached for Tracking # and Temp

Thursday, April 04, 2019 12:28:15 PM

FMT-ALL-C-002rev.00 24March2009

Page 1 of 1

Page 40 of 44

Pace Analytical.

1

2 of 5

869294 CoC Print Group 001 of 001

75105824

÷

 \mathbf{x}_{i}

Profile List

PASI Dallas Laboratory

	.!.		с П	ш	ш	ш	ш	ш	щ	щ	ц	1	
		MDI Jinte	0.01 ug/L	0.02 ug/L	0.01 ug/L	0.02 ugh.	C.D.1 ug/L	CLDT LIGAL	0.02 ugh.	0.02 uph	0.5 100		
		Cd		-		0.1	0.1		N	0.02	÷		
12		CAS No.	86-50-0	2921-38-2	333-41-5	56-38-2	121-75-5	8065-48-3	72-43-5	2385-86-5	115-32-2		
Profile N 6252 Line 12		Analyte	metiny (Guthion)	Ø		Parafition (Eility) parafition)	Malathion	Total Demeton	Methoxychior	METER	Dicafal		
rofile i		Cunp		chily		htt	alen	demt	TIBOX	mirx		pedillo.	
		Curp List	1667 W						617 W			ot instrument s	
PCS		Acode	1657 W						817 W			"The MDLs lieted are not instrument specific.	
Client	enL	Wern /	1						9			Net	#CI-I

ant Figures. Numeric Value - The actual number of significant figures E (EPA) - Numbers less fram 10 have 2 significant figures and numbers greater than or equal to 100 have 3 M (Melads) - Numbers less fram 100 have 2 significant figures, numbers greater than or equal to 100 have 3 O (Organics) - Numbers less fram 1 have 1 significant figures, numbers greater than 100 have 3 significant to a 2 contraction of the sector figures, and numbers greater than or equal to 100 have 3 significant

Page 41 of 44

Chain of Custody -

	rt / Invoice To	Sub	contract To	-	шira.			5				4/17/2019 Analysis		8 8
Pace 400 V Suite Allen, Phone Email	sa McCullough Analytical Dallas Vest Bethany Drive 190 TX 75013 e (972)727-1123 : mellssa.mccullough@pacelab of Sample Origin: TX TPE	s.com	aLab	P.(o. DA		2007 d Containe		.1 Phenol			×.		
ltem	Sample ID	Collect Date/Time	Lab ID	Matrix	H2SO4	pevesaudu			420.					LAB USE ONL
1	548261 -	4/1/2019 10:15	75105824002	Water			++		X	++	++			177304
2	548263	4/1/2019 15:51	75105824004	Water			+		X	++				11/207
3	548265	4/1/2019 21:57	75105824006	Water					X					04.
4	548267	4/2/2019 05:35	75105824008	Water				13	X					049
5			1											- 010
Transf	ers Released By		-		-	1		1				Comme	nts	
1		Date/						e/Time	Phi	anol RL 1	0 ug/L.			
2	Miandalt	2 4.5.10	119 1045 2	athy Tarve		e)	4.5	6/191	45					

Pace Analytical *

See Atlached for Tracking # and Temp

Thursday, April 04, 2019 12:28:15 PM

FMT-ALL-C-002rev 00 24March2009

Page 1 of 1

Report Page 11 of 12

5 7

Report Page 12 of 12

Pollution Control Services
2
ame: NBU
Sample Delivery to Lab Via: Client Drop Off Commercial Carrier: Bus UPS Lone Star FedExUSPS PCS Field Services: Collection/Pick Up Other:
Sample Kit/Cooler? No Sample Kit/Cooler? Yes No Sample Kit/Cooler? Yes No Sample Kit/Cooler: Not Present If Present, Intact Broken Custody Seals on Sample Kit/Cooler: Not Present If Present, Intact Broken Sample Containers Intact: Unbroken and Not Leaking? Yes No Custody Seals on Sample Bottles: Not Present If Present, Intact Broken Cocc Present with Shipment or Delivery or Completed at Drop Off? Yes No Has COC Present with Shipment or Delivery or Completed at Drop Off? Yes No Has COC Present with Shipment or Delivery or Completed at Drop Off? Yes No Has COC Present with Sample Bottle Information been provided by client/sampler? Yes No: Has COC agree with Sample Bottle Information, Bottle Types, Preservation, etc.? Yes No: Does COC agree with Sample Bottle Information, Bottle Types, Preservation, etc.? Yes No: All Samples Received before Hold Time Expiration? Yes No Sufficient Sample Volumes for Analysis Requested? Yes No Zero Headspace in VOA Vial if Present? Yes No
Sample Preservation: or Required or Required * Cooling: Not Required or Required or Required If cooling required, record temperature of submitted samples Observed/Corrected / > If soling required, record temperature of submitted samples Observed/Corrected / > > If soling required, record temperature of Submitted samples Observed/Corrected / > > > If soling required, record temperature of Submitted samples Observed/Corrected No Samples received same day as collected? Yes No Lab Thermometer Make and Serial Number: EX Tech 10093657 Other: Other No
Acid Preserved Sample - If present, is pH <2?
Adjusted by Tech/Analyst: Date : Time: Client Notification/ Documentation for "No" Responses Above/ Discrepancies/ Revision Comments Person Notified: Contacted by: Notified Date: Time: Method of Contact: Left Voice Mail Dable to Centact Authorized Laboratory to Proceed : Regarding / Comments: (Lab Director)
Actions taken to correct problems/discrepancies:
Receiving qualifier needed (requires client notification above) Temp. Holding Time Initails: Receiving qualifier entered into LIMS at login Initial/Date: Revision Comments:
* Samples submitted for Metals Analysis (except Hex Cr) or Drinking Water for Coliform Bacteria Only are not required to be iced. Samples collected prior day to receipt at the laboratory must meet method specific thermal cooling requirements. "or will be flagged accordingly". Samples delivered the same day as collected may more meet thermal criteria, but shall be considered according treatments. "or will be flagged accordingly". Samples delivered the same day as collected may more meet thermal criteria, but shall be considered according to view the chilling process has begun, such as arrival on ice (EPA 815-F-08-006, June 2008). ** Water samples for metals analysis that are not acid preserved prior to shipment may be acceptably preserved by the laboratory on receipt – however, the sample digestion procedure must be delayed for at least 24 hours after preservation by the laboratory.

PCS Sample Login Checklist 20180417

North Kuehler Total Dissolved Solids 437 mg/c 23.5° 4.11.19/1344 Conductivity 902 us 4.11.19/1344 LK

South Kuehler

Total Dissolved Solids 518mg/ 24/12 4-11-9/ 1346

Conductivity 1072 us 4.11.19/1346 UK

Spike: Spike? <u>~</u> ml of 100 mg/L standard to 25 ml of sample= sample conc. _ Duplicate: Standard: Date 449.NO9 GRN 677 Tech ME EFF GRN CFT のろうのかか Mr GFF OPN CET SML EFF うへやす そうのたち SK EFt 10mg Std NKEFT Sample 4.16.19 93.96 100 20,04 4.4.69 4.10.19 4.5.19 4. 18-19 birch 4.00.10 61,0,19 Hisila 413.19 4.10.19 416.19 4.461A 4.16-19 Date % deviation % recovery % recovery Dilution 2156 8.001 1199 los. 86.3 119.7 SJ'G qq.y hiel 98.6 1-68 13 -25 6 ΜV 0 CIID. D 5.0040/21,9 D. OHHO/DJ. H 0.0330/22.2 3.CC/8/10.0 hid /21600 heeleuro C.C493/ 22-2 C1880.0 0.167 LAO' O _mg/L Result / Temp °C 5.318/22.8 9.15 136/ 2219 32.6 1,25 23.0 0-1-2 all' シートつ 218 W 2-1.2 1.1 2.120 1-1-0 2.120 1110 21.0 Report mg/L 1.140 0-1 15 0 0

Standard Methods, 22nd edition, Method 4500-NH3 D.

Ammonia/Nitrogen

spike result / expected spike result x spike vol. / original vol. x 100% expected spike result=sample result + standard conc.

Tech Vin		Star	Ammon dard Methods, 22 nd	Ammonia/Nitrogen Standard Methods, 22 nd edition, Method 4500-NH3 D.		
Date 4.16.19	<i>a</i> ′					
Sample	Date	Dilution	mV	Result / Temp °C	Report mg/L	
NETHE	1.19.12		9,9	h. cc/ Ee.E	3,23) 32
NILTATA	4.16 49		1.0	3.11/22.6	317	
with the spo	4-16-19		- 9,3	Are/2014	US dave	
Homes A	Q.16.12		1-25-1	5'22/31'b		ĸ
			2			
Standard: 06	% recovery	very				ę
spike: 93.96		very		U		
Duplicate: 0.14	۲ % deviation	ation				
spike result / expected	ng/L standard spike result x	to 25 ml of sam spike vol. / origi	_ml of 100 mg/L standard to 25 ml of sample= sample conc / expected spike result x spike vol. / original vol. x 100% expec	spike result / expected spike result x spike vol. / original vol. x 100% expected spike result=sample result + standard conc.	+ standard conc.	
			The source and the so	red spike result-sample result	+ standard conc.	

I

5

Total Phosphorous Hach Method 8190 الاربار بر مراجع PhosVer 3 with Acid Persulfate Digestion

Technician: NK Eff. Spike **NK** Gravity NK Eff Dup. **NK Perm** Standard SMK Eff SAMPLE **Grn Eff** SK Eff NK Eff Blank **Date Collected** 4-12-19 ------Date: -11 Analysied & 11 4-12-19 1. -1 11 -Date --PH 5 **Results as** 12:0 0.76 0 0 0 0 0 0 0 0 .55 56 .60 25. 543 53 05 0 4H 0.01-134 0.05 0.05 0. 0.05 0.05 0.05 0.05 0.05 Correction 0 Factor Blank 3 05 Adjusted Result 0.50 0 0 0.38 0.3 65.0 0.3 0.5 5.0 11 -6 X Dilution Factor 12.5 12.5 G G ŝ S S S JILO.80 4.88 6.25 0.80 Total P mg/l 51.7 1.90 0 .90 in 25 NN 3.2382 Sin 5.20 x5 54 peru 0.848 NKAVIN C. 904 n. mutc 1.90

Cu = measured conc. Of unknown Sx, Vu = volume of unknown Sx, Cs = Conc. Of standard, Vs = volume of standard, [(Ave. of Sx and Dup. mg/l X x ml) + (16.31 mg/l x 0.3 mL)] / (x mL + 0.3 ml) = Theoretical Concentration Spike: 101 10 % Recovery (0.3 mls of 16.31 mg/L Std. as "P" to x mls of sample) (Spike Result/Theoretical Concentration) x 100 = % Rec. of Spike Duplicate: Standard: Theoretical Concentration Formula: [(Cu x Vu) + (Cs x Vs)] / (Vu + Vs) 100 0 % Recovery (5 mls of 1.0 mg/L Std. to vial = 0.33 mg/L P) % Deviation 1.90 x5 +4.893 ÷ 5.3 - 2.72

amonta Sur i.yurs AL 64.1 256 INP 41/1×1×1×1×1×

TOTAL SUSPENDED SOLIDS

.

DATE COLLECTED 417.19 TIME INC 1000 00	
	DATE COLLECTED 4.16 L9 TIME INC DO WO
INCO/ SAWFLE SOA	DATE ANALYZED 71719 TIME WT #0 1915 F
SAMPLE TYPE/LOCATION: Blank	MEDI SAMIFLE SOR
# # 412	SAMPLE TYPE/LOCATION: _GRN EFF
1. 1. 1. 1.	# 43 # 44
1. 1. 7146	1. 6629 1. 6713
	1. 6623 1.603
0.0005	0.0006 0.0010
DATE COLLECTED (/)	MG/L:) * (e
DATE COLLECTED 4.16.19 TIME INC 112000	DATE COLLECTED 4-16-19 TIME INC 12000
DATE ANALYZED 4.17.19 TIME INC 1120100 MLS/ SAMPLE 500	MISISAMPLE
SAMPLE TYPE/LOCATION: _ GRN EFE do 0	MLS/ SAMPLE SOG
	SAMPLE TYPE/LOCATION: NK FEF
1 101100 # 40	# 97 # 4X
1. 1933	1 101055
1. 10412 1. 6742	1. 10801
0.0010 010011	11 0 00 1
MG/L: 21	0.0007 0.0006
	MG/L: 1+3
DATE COLLECTED 4/6 TIME INC 1120 00	
TIME WITH TIME WITHO	DATE COLLECTED 4.16.19 TIME INC 112002
SOO	DATE ANALYZED 4.17.6 TIME WT.#2 14156
SAMPLE TYPE/LOCATION: SK CFF	WILS/ SAMPLE -000
# 49 # 50	SAMPLE TYPE/LOCATION: MCK + FF
1 10553	# 51 # 52
	1. 659 1. 6836
	1 Latin UKDU
0.0020 0.0023	1.6815
MG/L: 4.2	0.0011 0.0021
	MG/L: 6.8
DATE COLLECTED 417.19 TIME INC 12000	DATE COLLECTER (
EANALIZED THE TIME WIT HO	DATE COLLECTED 47714 TIME INC 1120 CH
	DATE ANALYZED 4.17.14 TIME WT.#2 1415 Ph
SAMPLE TYPE/LOCATION: GRN EFF	
# 53 # 54	SAMPLE TYPE/LOCATION:EFF
1.6999 1.0000	56
1 60 30 1000	the standard standa
1.6978 1.6975	
1 60 30 1000	1.6923 1.6903
1.6978 1.6975 0.0021 0.0025	1. 16923 1. 16903 1. 10911 1. 16895-0.0008
1. 6978 1. 6975 0.0021 0.0035 MG/L: 4.6	1.6923 1.6903
1. 6978 1. 6975 0.0021 0.0035 MG/L: 4.6	1. 16923 1. 6903 1. 10911 1. 6895-0.0008 0. 0012 MG/L: 2.0
1. 6978 1. 6975 0.0021 0.0025 MG/L: 4.6 MG/L: 4.6	1. 16923 1. 6903 1. 10911 1. 6895= 0.0008 0. 0012 MG/L: 2.0
1. 6978 1. 6975 0.0021 0.0035 MG/L: 9.6 MG/L: 9.6 ATE COLLECTED 9.7.6 MG/L: 9.6	I II I 1.0923 I 1.0925 I 1.0925 I 1.0925 I 1.0925 I 1.0925 I 1.0926 I 1.0926 I 1.0926 I 1.0926
1. 6978 1. 6975 0.0021 0.0035 MG/L: 9.6 MG/L: 9.6 ATE COLLECTED 9/17.6 TIME INC 112000 ATE ANALYZED 9.17.9 TIME WT.#2 ILS/ SAMPLE 500 SLEFE	I II I 1.0923 I 1.0924
1. 6978 1. 6975 0.0021 0.0035 MG/L: 9.6 ATE COLLECTED 9.17.6 TIME INC 1120 MP	I II I 1.0923 I 1.0925 I 1.0925 I 1.0925 I 1.0925 I 1.0925 I 1.0926 I 1.0926 I 1.0926 I 1.0926
1. 6978 1. 6975 0.0021 0.0035 MG/L: 9.6 MG/L: 9.6	I II I 1.0923 I 1.0925 O 0.0012 MG/L: 2.0 DATE COLLECTED 977.6 TIME INC 1120102 DATE ANALYZED 4.17.15 TIME WT.#2 14156 MLS/ SAMPLE 500 SAMPLE TYPE/LOCATION: MCL ETT
1. 6978 1. 6975 0.0021 0.0025 MG/L: 9.6 MG/L: 9.6 MG/L: 9.6	I II I I I </td
1. 6978 1. 6975 0.0021 0.0035 MG/L: 4.6 MG/L: 4.6 ATE COLLECTED 4.17.9 TIME INC 112000 ATE ANALYZED 4.17.9 TIME WT.#2 191500 AMPLE 580 AMPLE TYPE/LOCATION: S8 10940 1. 6890	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1. 6978 1. 6975 0.0021 0.0035 MG/L: 9.6 ATE COLLECTED 9.17.6 TIME INC ATE ANALYZED 9.17.6 TIME WT.#2 MIS/SAMPLE 500 MISION: AMPLE TYPE/LOCATION: SLEFE S 58 · 6919 1. 6890 · 6919 1. 6871	I II 1. 10923 1. 10923 1. 10923 1. 10923 1. 10923 1. 10923 1. 10923 1. 10923 1. 10923 1. 10923 0. 0012 MG/L: 2.0 DATE COLLECTED 977.6 TIME INC 1. 10912 MG/L: 2.0 DATE COLLECTED 977.6 TIME INC 1. 10912 MG/L: 2.0 DATE ANALYZED 4.17.17 MLS/ SAMPLE 500 SAMPLE TYPE/LOCATION: MCL EFF 55 60 1. 10920 1. 7041
1. 6978 1. 6975 1. 6978 1. 6975 0.0021 0.0035 MG/L: 9.6 ATE COLLECTED 9/7.69 TIME INC 112000 ATE ANALYZED 9.17.9 TIME WT.#2 191500 ATE ANALYZED 9.17.9 TIME WT.#2 191500 AMPLE TYPE/LOCATION: SLEFE ST 58 . 6919 1. 6890 . 6919 1. 6871 0.0031 0.0019	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1. 6978 1. 6975 0.0031 0.0035 MG/L: 9.6 ATE COLLECTED 977.69 TIME INC ATE ANALYZED 9.17.69 TIME WT.#2 ILS/ SAMPLE 500 AMPLE TYPE/LOCATION: SLEFE SJ 58 · 6919 1. 6890 · 6919 1. 6871	I II 1. 10923 1. 10923 1. 10923 1. 10923 1. 10923 1. 10923 1. 10923 1. 10923 1. 10923 1. 10923 0. 0012 MG/L: 2.0 DATE COLLECTED 977.6 TIME INC 1. 10912 MG/L: 2.0 DATE COLLECTED 977.6 TIME INC 1. 10912 MG/L: 2.0 DATE ANALYZED 4.17.17 MLS/ SAMPLE 500 SAMPLE TYPE/LOCATION: MCL EFF 55 60 1. 10920 1. 7041

Duplicate %Deviation: 3.5

TOTAL SUSPENDED SOLIDS

101AL 303	PENDED SOLIDS
DATE COLLECTED 1/ 1211	
DATE COLLECTED 4.17 19 TIME INC 12000	DATE COLLECTED LIDUA
DATE ANALYZED 11/2/1/ TIME WIT HO	DATE COLLECTED 4.17.14 TIME INC 112002
	DATE ANALYZED 417 OTIME WIT HO TUE
SAMPLE TYPE/LOCATION: BLANK	WILD SAWFLE
# #	SAMPLE TYPE/LOCATION: GRN INF
1	# 62 # 63
	# 63
1. 1. 6 108	
	1. 700 1. 68 03
- 0. 6004	
	0.0186
	MG/L: 448 0
DATE COLLECTED	110.0
TIME ANALIZED U PLUG TIME ME INT	- DAIL VULLELIEN VI 1964 THAT HAD
MLS/ SAMPLE Sa	DATE COLLECTED 9.17:4 TIME INC 120000 DATE ANALYZED 9.17.19 TIME WT.#2 19510
SAMPLE TYPE/LOCATION: GRAV Frit due	
# 64 # GRAD the dup	SAMPLE TYPE/LOCATION: _WK_ TOT
# (0.5	
1.7146 1.7289	# 66 # 67
11.0000	1. 6932 1. 7/47
1. 1106	1
0.0217 0.0183	
MC/L: Lucio	0.039 0.036
MG/L: 400-0	
DATE COLLEGTER	MG/L: 275.0
DATE COLLECTED 4.17.19 TIME INC 11 Julion	DATE COLLEGET
CALCANALIZED U. D. IGTIME MAT VA	DATE COLLECTED 4 17.19 TIME INC 1200
	DATE ANALIZED 91/21/0 TIME WIT HO 1/01/1-4
SAMPLE TYPE/LOCATION:	MED/ SAMPLE
	SAMPLE TYPE/LOCATION: Small ToF
# 6	
1. 6878 1. 6860	4 10 0 0 # 1
1.6794 1.6702	
0.0102 0,0000	1 100 80
0,007	S 0220
MG/L: 199.0	0.001
	MG/L: 174.0
DATE COLLECTED TIME INC	
TIME WIT HO	DATE COLLECTED TIME INC
VILS/ SAMPLE	DATE ANALYZED TIME ME
SAMPLE TYPE/LOCATION:	MLS/ SAMPLE TIME WT.#2
	SAMPLE TYPE/LOCATION:
# #	
1. 1.	
MG/L:	
	MG/L:
ATE COLLECTED	
	DATE COLLECTED
TIME WIT #0	DATE COLLECTED TIME INC
	TIME WIT HO
AMPLE TYPE/LOCATION:	
	SAMPLE TYPE/LOCATION:
Mor	
MG/L:	hto:
	MG/L:
Duplicate % Dovietion Succ	

Duplicate %Deviation: 2.66

E. COLILERT-18 OR COLILERT-24 (SM 9223 B) (Circle one)

COLLECTED AND RELINQUISHED BY, DATE/TIME: Grivener 4.11.1914 The Drel Marish de
RECEIVED BY, DATE/TIME: JE 1325 4-1119
COLLECTED AND RELINQUISHED BY, DATE/TIME: USESTP. 4-11-19/ (DD 2 PURCHARUSH RECEIVED BY, DATE/TIME: 1825 4-11-19/ (DD 5 4-11-19/1322/00)
SAMPLES ANALYZED BY: JI
TEST VALIDATED BY: 10 DATE/TIME: 4-12-14 0730
COMMENTS: SAMPLES ARE ICED IN TRANSIT / REFIGERATED UPON ARRIVAL AT THE LAB

SAMPLE IDENTIFICATION		CTION MATION	NBU SAMPLE #		ELLS	MPN	FINAL COUNT
	DATE	TIME		LRG	SML		E. COLI / 100 MLS
Blank	1-11-10	13:25	545	0	õ		0
Gruene 100 ml	4.11.19	1123	344	5	0		5.2
North Kuehler 100 ml	4-11-19	1319	245	Ś	0		0
South Kuehler 100 ml	4-11.19	1315	346	0	0		0
Sam McKenzie 100 ml	4.11.19	1021	347	5	D		5,2
Sam McKenzie 100 ml ^{dup}	4.11.19	1021	348	4	D		4.1
Gruene 10%	化 1919	1123	349	1	0	XIU	10.0
<u></u>							
Pos. (first Tues. every month)							

>4%

Report of Sample Analysis

Client Information	Sample Information		Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: Sample ID: NKSTP Effluent 041 Matrix: Non-Potable Water Date/Time Taken: 04/15/2019 10	51974 Da Re 009	CS Sample #: 549876 Page 1 of 1 ate/Time Received: 04/15/2019 10:55 oport Date: 04/26/2019 oproved by: limit Mallepren
			Chuck Wallgren, President
Test Description Flag Res	sult Units RL Analys	sis Date/Time Meth	od Analyst
Cyanide, Amenable + See Atta	ached		Pace Analytical Services - Dallas
<u>Quality Statement:</u> All supporting quality control data adhere exceptions or in a case narrative attachment. Reports with fu	ed to data quality objectives and test result Il quality data deliverables are available o	ts meet the requirements on request.	of NELAC unless otherwise noted as flagged
+ Subcontract Work = NELAP Certified Lab	Th	ese analytical results relate only	to the sample tested. basis unless designated as "Dry Wt."
Web Site: www.pcslab.net Toll Free 800-880-4616 e-mail: chuck@pcslab.net	1532 Universal City Blvd, Suite 100 Universal City, TX 78148-3318	210-340-0343	FAX # 210-658-7903

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: Sample ID: NKSTP Effluent 04151975 Matrix: Non-Potable Water Date/Time Taken: 04/15/2019 1009	PCS Sample #: 549877 Page 1 of 1 Date/Time Received: 04/15/2019 10:55 Report Date: 04/22/2019 Approved by: Curch Wallgreen, President
Test Description Re	sult Units RL Analysis Date/Time	
Oil and Grease (H.E.M.) <	5.0 mg/L 5 04/19/2019 11:00	EPA 1664 EMV
Test Description Pro	Quality Assurance Summary ecision Limit LCL MS MSD UC	L LCS LCS Limit
Oil and Grease (H.E.M.)	5 18 N/A N/A N/A N/A	A 88 78 - 114
<u>Quality Statement:</u> All supporting quality control data adher exceptions or in a case narrative attachment. Reports with fu	red to data quality objectives and test results meet the required to data quality objectives and test results meet the required to the request.	irements of NELAC unless otherwise noted as flagged
	All data is reported or RL = Reporting Limi	Its relate only to the sample tested. n an "As Is" basis unless designated as "Dry Wt." ts I in %, Except BOD in mg/L
Web Site: www.pcslab.netToll Free 800-880-4616e-mail: chuck@pcslab.net	1532 Universal City Blvd, Suite 100 210-340-0 Universal City, TX 78148-3318	343 FAX # 210-658-7903

This report cannot be reproduced or duplicated, except in full, without prior written consent from Pollution Control Services.

Report of Sample Analysis

Client Information	Sample Informatio	n	Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: Sample ID: SKSTP Effluent Matrix: Non-Potable Water Date/Time Taken: 04/15/201		PCS Sample #: 549878 Page 1 of 1 Date/Time Received: 04/15/2019 10:55 Report Date: 04/22/2019 Approved by:
			Chuck Wallgren, President لي
	esult Units RL An	alysis Date/Time	e Method Analyst
	Quality Assurance Su		EPA 1664 EMV
	the second s		
Oil and Grease (H.E.M.)	5 18 N/A N/	/A N/A N/2	A 88 78-114
<u>Quality Statement:</u> All supporting quality control data adhe exceptions or in a case narrative attachment. Reports with y	red to data quality objectives and test i full quality data deliverables are availa	results meet the requi	irements of NELAC unless otherwise noted as flagged
		All data is reported o RL = Reporting Limi	ults relate only to the sample tested. on an "As Is" basis unless designated as "Dry Wt." its d in %, Except BOD in mg/L
Web Site: www.pcslab.netToll Free 800-880-4616e-mail: chuck@pcslab.netToll Free 800-880-4616	1532 Universal City Blvd, Suite 100 Universal City, TX 78148-3318	210-340-0	0343 FAX # 210-658-7903

This report cannot be reproduced or duplicated, except in full, without prior written consent from Pollution Control Services.

Report of Sample Analysis

Client Information	Sample Information		Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131-0289	Project Name: Sample ID: GSTP Effluent 04 Matrix: Non-Potable Water Date/Time Taken: 04/15/2019		PCS Sample #: 549879 Page 1 of 1 Date/Time Received: 04/15/2019 10:55 Report Date: 04/22/2019 Approved by:
Test Description Re	esult Units RL An	alysis Date/Time	
		/19/2019 11:00	EPA 1664 EMV
Test Description Pr	Quality Assurance Su recision Limit LCL M		L LCS LCS Limit
Oil and Grease (H.E.M.)	5 18 N/A N/A	A N/A N/2	A 88 78 - 114
<u>Quality Statement:</u> All supporting quality control data adhe exceptions or in a case narrative attachment. Reports with	ered to data quality objectives and test re full quality data deliverables are availal	esults meet the require ole on request.	irements of NELAC unless otherwise noted as flagged
		All data is reported o RL = Reporting Limi	ults relate only to the sample tested. on an "As Is" basis unless designated as "Dry Wt." its d in %, Except BOD in mg/L
Web Site: www.pcslab.netToll Free 800-880-4616e-mail: chuck@pcslab.net	1532 Universal City Blvd, Suite 100 Universal City, TX 78148-3318	210-340-0	0343 FAX # 210-658-7903

This report cannot be reproduced or duplicated, except in full, without prior written consent from Pollution Control Services.

Chain of Custody Number

5 4 9 8 7 6

MULTIPLE SAMPLE ANALYSIS REQUEST AND CHAIN OF CUSTODY FORM

Stamp 1st sample and COC as same number

CUSTOMER INFORM					REPORT	IN	FOR	RMATION								
Name: New Braunfels Uti	lities				Attention	Tri	sh S	occhting		Ph	one: (830) 60)8-8905		Fax: (830) 6	26-1361	
SAMPLE INFORMATIC	DN								Req	uest	ed Analysis					
Project Information:			Colle	cted By	y: L. KCR	15								Instructio	ns/Comm	ents:
				1	Matrix	T		Container		1	1			6		
Report "Soils" 🗇 As Is 🗇 Dry V	Vt.		84		DW-Drinking	1	Γ		-	1	1 1 1					
			lori I ng	ite	Water; NPW-Non- potable water;	ψ	бег			B						
Client / Field Sample ID	Colle		d Ct	۵.	WW-Wastewater;	Type	Number	Preservative	A	Ø	$ $ $ $					
-	Date	Time	Field Chlorine Residual mg/L	Composite or Grab	LW-Liquid Waste		2		C	I				PCS	Sample	Number
NICSTP EFFLUENT 04151974	Start: 15-19	Start: 1009		□с	DW NPW			$\square H_2SO_4 \square HNO_3 \square H_3PO_4 \blacksquare NaOH$	~						98	
	End:	End:		₽G	C Sludge LW Other	D 0		■ ICE □	×						□HEM Oth	ier:
NKSTP EFFLUONT	Start: 4-15-19	Start: (009		□с	DW NPW			$H_2SO_4 \square HNO_3$ $H_3PO_4 \square NaOH$						5	498	7(7)
04157715	End:	End: —	1		C Other	0 0				X						
SKSTP ETFECUENT	Start: 15-19	Start: 1006		ПC	DW NPW	□P □G		H ₂ SO ₄ HNO ₃ H ₂ PO ₄ NaOH		X				5	498	7.8
04151976	End:	End:		G G		D 0				$ $ \land						er:
GSTP EFFLUENT	Start: -15-19	Start:0915			DW NPW	□P □G		$H_2SO_4 \square HNO_3$ $\square H_3PO_4 \square NaOH$		V				5	498	7(9
04151877	End:	End:		□G		۵D				$ \chi $					□HEM Oth	er:
STOM MCKEMZIE	Start 15-1	Start:		□с	DW DNPW WW DSoil			$\square H_2SO_4 \square HNO_3 \square H_3PO_4 \square NaOH$	-	Y						
04151978	End:	End:		□G		D 0				P					HEM Oth	er:
	Start:	Start:		□с		DP DG		H ₂ SO ₄ HNO ₃ H ₃ PO ₄ NaOH	1							
	End:	End:				00										cr:
	Start:	Start:		□с				$\square H_2SO_4 \square HNO_3$ $\square H_1PO_4 \square NaOH$								
	End:	End:				00									HEM Oth	er:
	Start:	Start:		□с				$\square H_2SO_4 \square HNO_3 \square H_1PO_4 \square NaOH$								
	End:	End:			C Sludge LW	0									EIHEM Othe	er
Required Turnaround: 🔳 R	outine (6-10 days	s) EXPEDIT	TE: (Se	e Surch	arge Schedule)	- - 8	8 Hrs	🔲 < 16 Hrs. 📋 < 24 Hi	rs 🗖 5 (lays] Other:	Rush C	harges A	athorized by:		
Sample Archive/Disposal;	Laboratory Star	dard 🗆 Hold	for clie	nt pick	up Con	taine	r Ty	pe: P = Plastic, G = Glass	0=0	ther				Carrier, ID:		
Relinquished By:	+ Kluin	2	Date	4-1	5-19 Time:	10	253	Received By:	her	/	_		Date:	4/15/19	Time:	1055
Relinquished By: Hul	in		Date	4.1	15.19 Time:	C	93	🕙 Received By:	any	- 7	ling		Date:	4-19-19	Time:	0738

Rev. Multiple Sample COC 20120201

1532 Universal City Blvd., Ste. 100, Universal City, Texas 78148 P (210) 340-0343 or (800) 880-4616 - F (210) 658-7903 © 2008 Pollution Control Services "All rights reserved

Login at <u>www.pcslab.net</u> TCEQ NELAP T104704361-TX 19600

Pace Analytical

Pace Analytical Services, LLC 400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

April 25, 2019

Chuck Wallgren Pollution Control Services 1532 Universal City Blvd. #100 Universal City, TX 78148 RE: Project: 549876 Pace Project No.: 75106706

Dear Chuck Wallgren:

results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where Enclosed are the analytical results for sample(s) received by the laboratory on April 17, 2019. The applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mellon Mr. Cullough

Melissa McCullough melissa.mccullough@pacelabs.com (972)727-1123 Project Manager

Enclosures

cc: Michael Klang

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

CERTIFICATIONS

Project: 549876 Pace Project No.: 75106706 Dallas Certification IDs: 400 West Bethany Dr Suite 190, Allen, TX 75013 Florida Certification #: E871118 EPA# TX00074 Texas T104704232-18-26 Texas Certification #: T104704232-18-26

Kansas Certification #: E-10388 Arkansas Certification #: 88-0647 Oklahoma Certification #: 8727 Louisiana Certification #: 30686 Iowa Certification #: 408

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Pace Analytical www.paculats.com

SAMPLE SUMMARY

Project: Pace Project No.:	549876 75106706			
	Sample ID	Matrix	Date Collected Date Received	Date Received
5106706001	549876	Water	04/15/19 10:09 04/17/19 10:34	04/17/19 10:34

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

REPORT OF LABORATORY ANALYSIS

Page 3 of 11

Pace Analytical

SAMPLE ANALYTE COUNT

Project: 549876 Pace Project No.: 75106706

Lab ID	Sample ID	Method	Analysts	Analytes Reported Laboratory	Laboratory
75106706001	549876	SM 4500-CN-E	SRT	-	PASI-D
		SM 4500-CN-G	SRT	-	PASI-D

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 4 of 11

Pace Analytical www.penselets.com	Pace Analytical Services, LLC 400 West Bethany Drive - Suite 190 Allen, TX 75013 Allen, TX 75013 (972)727-1123
Project: 549876 Pace Project No.: 75106706	ANALYTICAL RESULTS
	Lab ID: 75106706001 Collected: 04/15/19 10:09 Received: 04/17/19 10:34 Matrix: Water
Parameters	Results Units Report Limit DF Prepared Analyzed CAS No. Qual
4500CNE Cyanide, Total	Analytical Method: SM 4500-CN-E Preparation Method: SM 4500-CN-C
Cyanide	ND ug/L 10.0 1 04/24/19 15:08 04/24/19 17:21 57-12-5
4500CNG Cyanide, Amenable	
Date: 04/25/2019 04:21 PM	REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC. Page 5 of 11

	ticc
	al
	An
0	3
	E S
1	$\langle \rangle$
	1

			QUALIT	QUALITY CONTROL DATA	ROL DA	ΙŢΑ						
Project: 549876 Pace Project No.: 75106706	3 206											
QC Batch: 116547 QC Batch Method: SM 450 Associated Lab Samples: 7	116547 SM 4500-CN-C les: 75106706001	5	Analysi Analysi	Analysis Method: Analysis Description:		SM 4500-CN-E 4500CNE Cyanide, Total	E Inide, Total	_				1
METHOD BLANK: 525086 Associated Lab Samples:	5 75106706001	5	×	Matrix: Water	5							
Parameter		Units	Blank Result		Reporting Limit	Analyzed	Ŕ	Qualifiers				
Cyanide		ng/L		QN	10.0	10.0 04/24/19 17:19	7:19		t			
LABORATORY CONTROL SAMPLE:		525087										
Parameter		Units	Spike Conc.	LCS Result		LCS % Rec	% Rec Limits		Qualifiers			
Cyanide		ng/L	100		106	106	85	85-115				
MATRIX SPIKE & MATRIX SPIKE DUPLICATE:	SPIKE DUPLI	CATE: 525088	0		525089							
Parameter	Units	75106678007 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Cyanide	ng/L	QN	100	100	73.1	66.8	73	67	85-115	6	20 M1	5
MATRIX SPIKE & MATRIX SPIKE DUPLICATE:	SPIKE DUPLI	CATE: 525090			525091							Ĩ
Parameter	Units	75106763002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Cyanide	ng/L	0.015 mg/L	100	100	27.1	24.8	12	10	85-115	0	20 M1	

Page 6 of 11

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Date: 04/25/2019 04:21 PM

REPORT OF LABORATORY ANALYSIS

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

	· 777 ·	
	tic.	
	A C	
	A	
0	3	
1	de la	
0	1	
	~	

QUALITY CONTROL DATA

	menable		Qualifiers	
	SM 4500-CN-G 4500CNG Cyanide, Amenable		Analyzed	10.0 04/25/19 12:04
		Matrix: Water	Reporting Limit	
	Analysis Method: Analysis Description:	Matrix	Blank Result	QN
			Units	ng/L
549876 75106706	116681 SM 4500-CN-C ples: 75106706001	525697 ples: 75106706001	eter	
Project: Pace Project No.:	QC Batch: 116681 QC Batch Method: SM 4500-CN-C Associated Lab Samples: 75106706	METHOD BLANK: 525697 Associated Lab Samples:	Parameter	Amenable Cyanide

Results presented on this page are in the units indicated by the "Units" column except where an altermate unit is presented to the right of the result.

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

REPORT OF LABORATORY ANALYSIS

QUALIFIERS

75106706 549876 Pace Project No.: Project:

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot. ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix. S - Surrogate

1.2-Diphenylthydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate) MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The Nelac Institute

LABORATORIES

Pace Analytical Services - Dallas PASI-D

ANALYTE QUALIFIERS

Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery. ž

without the written consent of Pace Analytical Services, LLC. This report shall not be reproduced, except in full,

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 549876 Pace Project No.: 75106706

ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
5106706001	549876	SM 4500-CN-C	116547	SM 4500-CN-E	116602
5106706001	549876	SM 4500-CN-C	116681	SM 4500-CN-G	116682

Page 9 of 11

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

REPORT OF LABORATORY ANALYSIS

Date: 04/25/2019 04:21 PM

Pace Analytical	Document Name: Sample Condition Upon Receipt	Vame: Jpon Receipt	Document Revised: 03-14-19 Page 1 of 1	
subate Frazi an a mana a	F-DAL-C-001-rev.9	No.: -rev.9	Issuing Authority: Pace Dallas Quality Office	
	Sample Condition Upon Receipt	on Upon Rec	I	а 1
		□Ft Worth	M0#:75106706	
ne: DC dex = UPS = USPS =	Client D ISO PACE D Other:	Project Work order:	75106706	
Custody Seal on Cooler/Box: Yes Do No Da Received on ice: Yes No D Type of Ice: Webd Thermometer Used: <u>1/h -1 </u> Cooler Temp	cking Materia Blue 🛛 °C: 5.0	i: Bubble Wrap/Bags	ap/Bags D Foam D None Other D	ŭ.
	Temperature sho	Temperature should be above freezing to 6°C	ing to 6°C	
Chain of Custody relinquished		Yes of No D		-
Sampler name & signature on COC	2	Yes D No p		<u> </u>
Short HT analyses (<72 hrs)		Yes 🗆 No 🗹		1
Sufficient Volume received		Yes to No D		
Correct Container used		Yes A No D		T
Container Intact	-	Yes h No		r
Sample pH Acceptable pH Strips: 191031			NA 🗆	
Residual Chlorine Present Cl Strips: <u>1 4(364</u> Sulfide Present Lead Acetate Strips: <u>14(36</u>	5	Yes D No 7 Yes D No 7	NA 🛛	
Are soil samples (volatiles, TPH) received in 5035A Kits	eived in 5035A Kits	Yes 🗆 No 🗆	NA 9	T-
Unpreserved 5035A soil frozen within 48 hrs	in 48 hrs	Yes 🛛 No 🗆	NA 5	T -
Headspace in VOA (>6mm)		Yes 🗆 No 🗆	NA př	
Project sampled in USDA Regulated State Sampled:	Area:	Yes D No D	19 - C	
Non-Conformance(s):		Yes 🗆 No 🖉		
		-		ľ

Page 10 of 11

-

1

SERVICES 100 18	T TRACKING SHEET	ime: 4/16/2019 @ 1700 Iby: Alver Each, Mun	AC	110# · 7£106706	PM: MLM Due Date: 05/01/19 CLIENT: PCS Date: 4/16/19
TION CONTROL S 1532 Universal City Blvd, Suite 100 Universal City, TX 78148-3318 Facsimilie 210.658.7903 210.340.0343	CHAIN OF CUSTODY & SUBCONTRACT TRACKING SHEET nalytical Services, Inc. Relinquished by: Greg Felux	190 Date/Time: Received by: Date/Time:	Analysis Requested Cyanide, Amenable		Unless otherwise requested, send results and invoice to: Chuck Wallgren Pollution Control Services 1532 Universal City Blvd, Suite 100 Universal City, TX 78148-3318 Authorized by:
POLLUTION 1532 U Unive Fi	l OF CUS ll Services	y Rd, Ste 13	Time 1009	suructions	n ol Servic City Blv TX 781
4	CHAIN OF CUSTOD	400 W Bethany Rd, Ste 190 Allen, TX 75013	Date 04/15/2019	Comments/ special instructions:	s otherwise requested, send Chuck Wallgren Pollution Control Services 1532 Universal City Blvd, Universal City, TX 78148 rized by:
	TO: Pac	40(All	PCS# 549876	Comment	Unless otherwi Chuck W Pollutior 1532 Un Universa Authorized by:

Page 11 of 11 Document1

Pollution Control Services
PCS Sample No(s) 5 4 9 8 74 6 - R 10 0 7 And No.
ame: IBUC
Sample Delivery to Lab Via: Client Drop Off Commercial Carrier: Bus UPS Lone Star FedEx USPS PCS Field Services: Collection/Pick Up Other:
Sample Kit/Cooler: No Sample Kit/Cooler: No Sample Kit/Cooler: Yes No No Custody Seals on Sample Kit/Cooler: Not Leaking? Yes No Custody Seals on Sample Kit/Cooler: Not Leaking? Yes No Custody Seals on Sample Kit/Cooler: Not Leaking? Yes No Custody Seals on Sample Bottles: Not Present If Present, Intact Broken Custody Seals on Sample Bottles: Not Present If Present, Intact Broken Cord Present with Shipment or Delivery or Completed at Drop Off? Yes No Has COC Present with Signed when Received/Relinquished? Yes No Has COC sample Bottle Information been provided by client/sampler? Yes: No: All Samples Received before Hold Time Expiration? Yes No Does COC agree with Sample Bottle Information, Bottle Types, Preservation, etc.? Yes No All Samples Volumes for Analysis Requested? Yes No Zero Headspace in VOA Vial if Present? Yes No
Sample Preservation: or Required * Cooling: Not Required or Required If cooling required, record temperature of submitted samples Observed/Corrected I If cooling required, record temperature of submitted samples Observed/Corrected I If cooling required, record temperature of submitted samples Observed/Corrected I Is fce Present in Sample Kit/Cooler? Yes No Samples received same day as collected? Yes Lab Thermometer Make and Senial Number: EX Tech 10093657 Other.
Acid Preserved Sample - If present, is $pH < 2$?YesNo H_2SO_4 HNO_3 H_3PO_4 Base Preserved Sample - If present, is $pH > 12$?YesNo $NaOH$ $NaOH$ $NaOH$ Other Preservation:If Present, Meets Requirements? YesNoSample Preservations Checked by:Date $MaOH$ $NaOH$ Phaper used to check sample preservation (PCS log #): $MaOH$ $MaOH$ Paper used to check sample preservation (PCS log #): $MaOH$ $MaOH$ Samples Preserved/Adjusted by Lab:Lab #Parameters PreservedPreservative UsedLab #Parameters PreservedPreservative UsedLog #
Adjusted by Tech/Analyst: Date : Time:
Client Notification/ Documentation for "No" Responses Above/ Discrepancies/ Revision Comments Person Notified: Contacted by: Contacted by: <thcontacted by:<="" th=""> Contacted by:</thcontacted>
Actions taken to correct problems/discrepancies:
Receiving qualifier needed (<i>requires client notification above</i>) Temp. Holding Time Initails: Receiving qualifier entered into LIMS at login Initial/Date: Revision Comments:
* Samples submitted for Metals Analysis (except Hex Cr) or Drinking Water for Coliform Bacteria Only are not required to be ited. Samples collected prior day to receipt at the laboratory must meet method specific thermal cooling requirements, "or will be flagged accordingly". Samples collected the same day as collected may not meet thermal criteria, but shall be considered acceptable if evidence that the chiling process has begun, such as arrival on tice (EPA 815-F-08-006 June 2008) ** Water samples for metals analysis that are not acid preserved prior to shipment may be acceptably preserved by the laboratory on receipt however, the sample for must be delayed for at least 24 hours after preservation by the laboratory.

ATTACHMENT N

EFFLUENT PARAMETERS ABOVE THE MAL

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

South Kuehler 2018					
Pollutant	Concentration	MAL	Units	Date	
Arsenic	0.6	0.5	ug/L	4/9/2018	
Copper	6.0	2	ug/L	4/9/2018	
Nickel	2.0	2	ug/L	4/9/2018	
Zinc	63.0	5	ug/L	4/9/2018	
Chloroform	26.3	10	ug/L	4/9/2018	
Dichlorobromomethane	15.0	10	ug/L	4/9/2018	
Aluminum	240.0	2.5	ug/L	4/9/2018	
Barium	21.0	3	ug/L	4/9/2018	
Fluoride	600.0	500	ug/L	4/9/2018	
Nitrate-Nitrogen	26400.0	100	ug/L	4/9/2018	
TTHM (Total Trihalomethanes)	49.1	10	ug/L	4/9/2018	
Arsenic	0.6	0.5	ug/L	10/4/2018	
Copper	11.0	2	ug/L	10/4/2018	
Zinc	67.0	5	ug/L	10/4/2018	
Aluminum	270.0	2.5	ug/L	10/4/2018	
Barium	19.0	3	ug/L	10/4/2018	

Table 6.0(1) Effluent Paramaters Above the MAL

ATTACHMENT O

REGIONALIZATION SURVEYS

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

JONES CARTER

Texas Board of Professional Engineers Registration No. F-439 6330 West Loop South, Suite 150 + Bellaire, TX 77401 + 713.777.5337

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WWTP PERMIT NO. WQ0010232001

1575 Sawdust Road, Suite 400 The Woodlands, Texas 77380-3795 Tel: 281.363.4039 Fax: 281.363.3459 www.jonescarter.com

June 6, 2019

Ms. Debbie Magin, Director of Water Quality Services Guadalupe-Blanco River Authority 933 East Court Street Seguin, TX 78155

Re: Wastewater Treatment Plant Regionalization Inquiry New Braunfels Utilities Comal County, Texas

Dear Ms. Magin:

New Braunfels Utilities is applying for a TPDES permit amendment and is seeking to determine if there are any wastewater treatment plants or collection systems within three (3) miles of the South Kuehler WWTP have capacity or are willing to expand to provide capacity for the ultimate needs of the proposed wastewater treatment plant. You have been identified as operating a wastewater collection system and possibly a wastewater treatment plant within three (3) miles of the service area for the South Kuehler WWTP. It would be greatly appreciated if you could complete the attached survey and either fax, e-mail (sbarry@jonescarter.com) or mail this questionnaire to me no later than June 24, 2019.

Please feel free to call 281-363-4039 should you have any questions.

Sincerely, Steve Barry, P.E.

SGB/

K:\05487\05487-0005-00 North & South Kuehler Wastewater Treatme\2 Design Phase\005 - WWTP TPDES Permit Major Amendment\01 -Permit Preparation\CapacitySurvCvr 2010.doc

Attachment

WASTEWATER TREATMENT CAPACITY AVAILABILITY SURVEY

District or Company Name Guadalupe - Blanco River Authority

New Braunfels Utilities is seeking to determine if there are any wastewater treatment plants within three (3) miles that have capacity or are willing to expand to provide capacity for the ultimate needs of New Braunfels Utilities. Following is the projected flow for the New Braunfels Utilities South Kuehler.

Month/Year	Flow (gpd)
Jan-20	2,982,250
Jan-21	3,171,490
Jan-22	3,364,330
Jan-23	3,561,730
Jan-24	6,340,930
Jan-25	6,657,010
Jan-30	8,379,610
Jan-35	10,422,380
Jan-40	12,802,160
Jul-44	15,400,000

Yes No

- 1. Do you currently have wastewater treatment plant capacity available to serve the ultimate needs of New Braunfels Utilities?
- 2. Are you willing to expand your wastewater treatment plant to provide capacity to serve the ultimate needs of New Braunfels Utilities?
- 3. If you are willing to expand your wastewater treatment plant provide capacity to serve the ultimate needs of New Braunfels Utilities, can you meet the time constraints outlined in the above table?

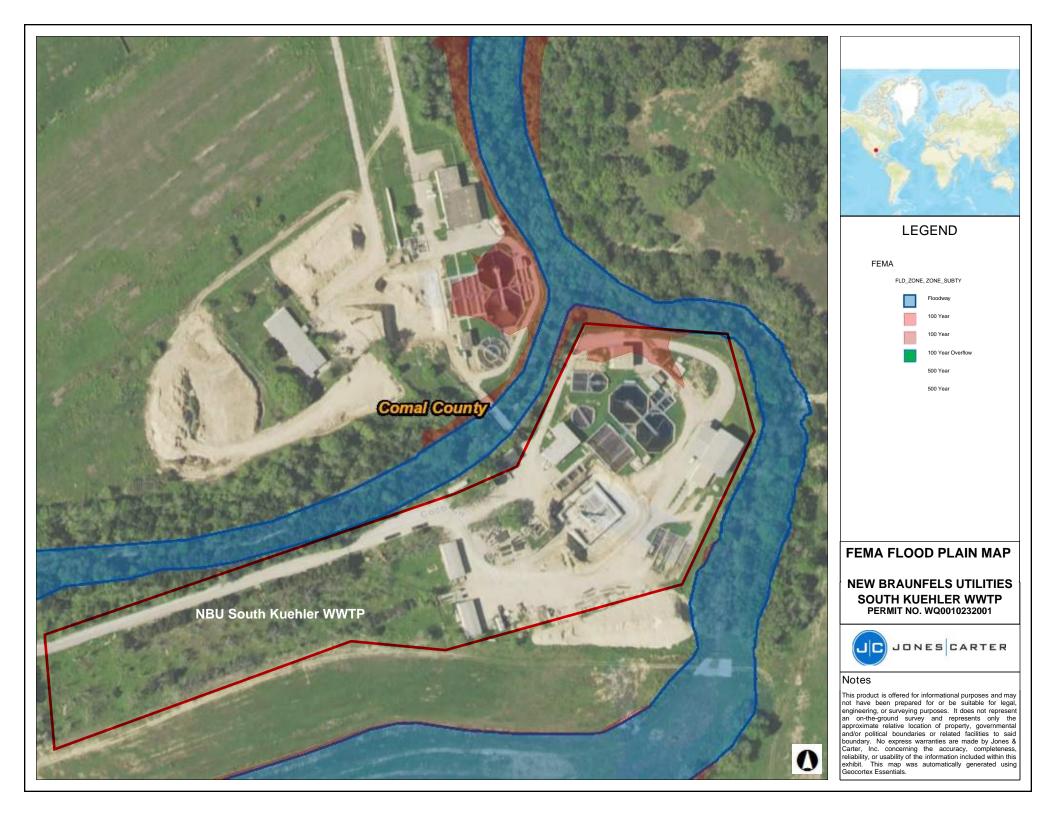
<u>Michael Urrutia</u> Signature <u>Michael Urrutia</u> Print Name

Deputy Exer. Mgr. Opwations

830-379-5822

Phone Number

6/14/19


Date

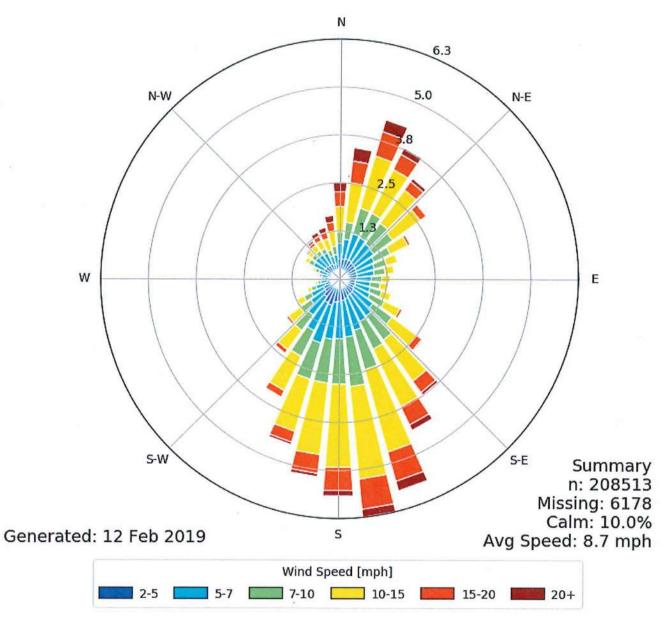
ATTACHMENT P

FLOOD PLAIN MAP

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

ATTACHMENT Q

WIND ROSE


NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

[BAZ] NEW BRAUNFELS MUNI APT (WAS 3R5) Windrose Plot [All Year] Period of Record: 01 Nov 1998 - 12 Feb 2019

ATTACHMENT R

OUTFALL USE DURING EXPANSION CONSTRUCTION

NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

OUTFALL USE DURING EXPANSION CONSTRUCTION NEW BRAUNFELS UTILITIES SOUTH KUEHLER WASTEWATER TREATMENT PLANT

Upon completion of the next proposed expansion phase, the existing North Kuehler WWTP and existing South Kuehler WWTP will no longer discharge from their existing, permitted outfalls. Both outfalls will be abandoned. Additionally, all flow that currently flows to the existing North Kuehler WWTP will now go to the South Kuehler WWTP, and it will operate as a single WWTP under a single TPDES permit. A new outfall will be constructed slightly upstream of the existing South Kuehler outfall that will be used for all future phases.

As part of the expansion construction, flow will be diverted from the existing outfalls to the new outfall. To accommodate this transition, there will be periods during construction where it will be necessary to utilize different combinations of the three outfall. There will be periods where flow is discharged from all three outfalls, the new outfall and the existing North Kuehler outfall, and the new outfall and the South Kuehler outfall. During these periods, the combined actual flow from the three outfalls will not be greater than the total flow permitted from the new outfall for the expansion. Continuous flow measurement will be provided at each outfall while it is in service. Additionally, individual sampling will occur at each of the outfalls, meaning if three outfalls are active, there will be three samples taken. The type of sample, frequency of samples, and the parameters tested for the sample taken at each outfall will be consistent with the requirements from the most recent phase of the permit (i.e. the North Kuehler WWTP outfall will follow the requirements of the 3.1 MGD phase of its existing permit, the South Kuehler WWTP outfall will follow the requirements of the 9.3 MGD phase in the permit). No composite or comingled samples will be taken between the different outfalls.

Flow discharged from the new outfall will receive different tertiary treatment than that discharged from the existing North Kuehler WWTP and South Kuehler WWTP outfalls. Flow discharged through both the existing North Kuehler WWTP and South Kuehler WWTP outfalls are disinfected with chlorine gas and dechlorinated with sulfur dioxide gas prior to discharge. Flow discharged through the new outfall will go through travelling bridge dual media filters and then disinfection channels utilizing ultraviolet light. The methods of tertiary treatment at each of the different outfalls will provide adequate treatment for the flow being discharged from the respective outfalls based on the required parameters in their TPDES permits. Ultimately all flow will go through the new outfall and will travel through travelling bridge dual media filters and then disinfection channels utilizing ultraviolet light.

Construction of the expansion will begin by constructing the new treatment facilities. During this time flow will continue to be discharged from the existing North Kuehler WWTP and South Kuehler WWTP outfalls in accordance with their existing permit requirements. The treatment facilities include a new flow splitting structure that receives all flow currently going to both the North Kuehler WWTP and South Kuehler WWTP. Once the new treatment facilities are complete,

a portion of the influent flow will be directed to the new treatment facilities. All three outfalls will be utilized during the commissioning period. The North Kuehler WWTP outfall will then be taken out of service while work is being completed at the North Kuehler WWTP. During this period, flow will be discharged from the new outfall and the existing South Kuehler WWTP outfall. Flow being discharged from the new outfall will be filtered and disinfected with ultraviolet light. Flow being discharged from the existing South Kuehler WWTP outfall will be disinfected with gas chemical as it is currently. Once the work at the North Kuehler WWTP is complete, all flow going to North Kuehler will then permanently be discharged through the new outfall.

Then the existing South Kuehler WWTP outfall will be taken out of service while work in being completed at the South Kuehler WWTP. During this period flow will be discharged from the new outfall only. Flow being discharged from the new outfall will be filtered and disinfected with ultraviolet light. Once the work at the South Kuehler WWTP is complete, all flow going to South Kuehler will then permanently be discharged through the new outfall. At this point both of the existing outfalls will be abandoned and no longer utilized.

The exact sequencing and durations of each phase of construction will be determined by the construction contractor. Instead of the order described above, the contractor may elect to perform the work at the South Kuehler WWTP prior to the North Kuehler WWTP. Should this be the case, the process described above will remain the same, except the order will be switched. This would mean the South Kuehler outfall will be taken out of service first, followed by the North Kuehler WWTP outfall. In this case there will be a period where all three outfall are utilized as described above, followed by a period where the new outfall and existing North Kuehler WWTP outfall being utilized at the same time. During this period flow being discharged from the new outfall will be filtered and disinfected with ultraviolet light and flow being discharged from the existing North Kuehler WWTP outfall will be disinfected with gas chemical as it is currently. Then the North Kuehler WWTP outfall would be taken out of service and all flow would discharge through the new outfall.

In either sequencing scenario, only one of the two existing WWTP outfalls will be taken out of service at a time.