TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION CHECKLIST

Complete and submit this checklist with the application.

APPLICANT: <u>New Braunfels Utilities</u>

PERMIT NUMBER: WQ000010232004

Indicate if each of the following items is included in your application.

	Y	Ν
Administrative Report 1.0	\boxtimes	
Administrative Report 1.1		\boxtimes
SPIF	\boxtimes	
Core Data Form	\boxtimes	
Technical Report 1.0	\boxtimes	
Technical Report 1.1		\boxtimes
Worksheet 2.0	\boxtimes	
Worksheet 2.1		\boxtimes
Worksheet 3.0		\boxtimes
Worksheet 3.1		\boxtimes
Worksheet 3.2		\boxtimes
Worksheet 3.3		\boxtimes
Worksheet 4.0	\boxtimes	
Worksheet 5.0	\boxtimes	
Worksheet 6.0	\boxtimes	
Worksheet 7.0		\boxtimes

Original USGS Map	\boxtimes	
Affected Landowners Map		\boxtimes
Landowner Disk or Labels		\boxtimes
Buffer Zone Map		\boxtimes
Flow Diagram	\boxtimes	
Site Drawing	\boxtimes	
Original Photographs		\boxtimes
Design Calculations	\boxtimes	
Solids Management Plan		\boxtimes
Water Balance		\boxtimes

Y

Ν

For TCEQ Use Only Segment Number ______County ______ Expiration Date ______Region _____ Permit Number ______

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

APPLICATION FOR A DOMESTIC WASTEWATER PERMIT ADMINISTRATIVE REPORT 1.0

TCEQ If you have questions about completing this form please contact the Applications Review and Processing Team at 512-239-4671.

Section 1. Application Fees (Instructions Page 29)

Indicate the amount submitted for the application fee (check only one).

Flow	New/Major Ar	mend	ment Renewal
<0.05 MGD	\$350.00 🗆		\$315.00 🗆
≥0.05 but <0.10 M	IGD \$550.00 🗆		\$515.00 🗆
≥0.10 but <0.25 M	IGD \$850.00 □		\$815.00 🗆
≥0.25 but <0.50 M	\$±,=00.00 —		\$1,215.00
$\geq 0.50 \text{ but } < 1.0 \text{ MC}$	GD \$1,650.00 □		\$1,615.00
≥1.0 MGD	\$2,050.00		\$2,015.00
Minor Amendment	(for any flow) \$150.00 🗆		
Payment Informat	ion:		
Mailed	Check/Money Order Numbe	r: Clic	k here to enter text.
	Check/Money Order Amoun	it: Chie	k here to enter text.
	Name Printed on Check:		e to enter text.
EPAY	Voucher Number:		ter text.
Copy of Pay	ment Voucher enclosed?		Yes 🗆
Section 2. Typ	e of Application (Instr	uctio	ons Page 29)
□ New TPDES			New TLAP
□ Major Amendr	nent <u>with</u> Renewal		Minor Amendment <u>with</u> Renewal
Major Amendr	nent <u>without</u> Renewal		Minor Amendment <u>without</u> Renewal
⊠ Renewal with	out changes		Minor Modification of permit
For amendments o	r modifications, describe the	propo	osed changes:
For existing permi	its:		
Permit Number: W	Q00 <u>10232004</u>		
EPA I.D. (TPDES on	ly): TX0133248		
·			

Section 3. Facility Owner (Applicant) and Co-Applicant Information (Instructions Page 29)

A. The owner of the facility must apply for the permit.

What is the Legal Name of the entity (applicant) applying for this permit?

New Braunfels Utilities

(The legal name must be spelled exactly as filed with the Texas Secretary of State, County, or in the legal documents forming the entity.)

If the applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at <u>http://www15.tceq.texas.gov/crpub/</u>

CN: <u>600522957</u>

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in *30 TAC § 305.44*.

Prefix (Mr., Ms., Miss): Mr.

First and Last Name: <u>Ryan Kelso</u>

Credential (P.E, P.G., Ph.D., etc.):

Title: <u>COO, New Braunfels Utilities</u>

B. Co-applicant information. Complete this section only if another person or entity is required to apply as a co-permittee.

What is the Legal Name of the co-applicant applying for this permit?

<u>N/A</u>

(*The legal name must be spelled exactly as filed with the TX SOS, with the County, or in the legal documents forming the entity.*)

If the co-applicant is currently a customer with the TCEQ, what is the Customer Number (CN)? You may search for your CN on the TCEQ website at: <u>http://www15.tceq.texas.gov/crpub/</u>

CN: <u>N/A</u>

What is the name and title of the person signing the application? The person must be an executive official meeting signatory requirements in *30 TAC § 305.44*.

Prefix (Mr., Ms., Miss): <u>N/A</u> First and Last Name: <u>N/A</u> Credential (P.E, P.G., Ph.D., etc.): <u>N/A</u> Title: <u>N/A</u> Provide a brief description of the need for a co-permittee: <u>N/A</u>

C. Core Data Form

Complete the Core Data Form for each customer and include as an attachment. If the customer type selected on the Core Data Form is **Individual**, complete **Attachment 1** of Administrative Report 1.0.

Attachment: <u>Attachment A</u>

Section 4. Application Contact Information (Instructions Page 30)

This is the person(s) TCEQ will contact if additional information is needed about this application. Provide a contact for administrative questions and technical questions.

A.	Prefix (Mr., Ms., Miss): <u>Mr.</u>			
	First and Last Name: <u>Jonathan Nguyen</u>			
	Credential (P.E, P.G., Ph.D., etc.):	xt.		
	Title: <u>Permit Specialist</u>			
	Organization Name: JonesCarter			
	Mailing Address: <u>3100 Alvin Devane Blvd, Suite 150</u>			
	City, State, Zip Code: <u>Austin, TX 78741</u>			
	Phone No.: <u>512-685-5156</u> Ext.:	Fax No.:		here to enter text.
	E-mail Address: jnguyen@jonescarter.com			
	Check one or both: \square Administrative Contact		\boxtimes	Technical Contact
B.	Prefix (Mr., Ms., Miss): <u>Mr.</u>			
	First and Last Name: <u>Brent Lundmark</u>			
	Credential (P.E, P.G., Ph.D., etc.):	xt.		
	Title: <u>Water Treatment & Compliance Manager</u>			
	Organization Name: <u>New Braunfels Utilities</u>			
	Mailing Address: <u>P.O. Box 310289</u>			
	City, State, Zip Code: <u>New Braunfels, TX 78130</u>			
	Phone No.: <u>830-608-8900</u> Ext.:	Fax No.:		here to enter text.
	E-mail Address: <u>blundmark@nbutexas.com</u>			
	Check one or both: 🛛 Administrative Contact			Technical Contact

Section 5. Permit Contact Information (Instructions Page 30)

Provide two names of individuals that can be contacted throughout the permit term.

A. Prefix (Mr., Ms., Miss): Mr.

	First and Last Name: <u>John Harrell</u>
	Credential (P.E, P.G., Ph.D., etc.):
	Title: <u>President</u>
	Organization Name: <u>New Braunfels Utilities</u>
	Mailing Address: <u>263 Main Plaza</u>
	City, State, Zip Code: <u>New Braunfels, TX 78130</u>
	Phone No.: <u>830-608-8900</u> Ext.: Fax No.:
	E-mail Address: <u>jharrell@nbutexas.com</u>
B.	Prefix (Mr., Ms., Miss): <u>Mr.</u>
	First and Last Name: <u>Ryan Kelso</u>
	Credential (P.E, P.G., Ph.D., etc.):
	Title: <u>COO</u>
	Organization Name: <u>New Braunfels Utilities</u>
	Mailing Address: <u>263 Main Plaza</u>
	City, State, Zip Code: <u>New Braunfels, TX 78130</u>
	Phone No.: <u>830-608-8900</u> Ext.: Fax No.:
	E-mail Address: <u>rkelso@nbutexas.com</u>

Section 6. Billing Information (Instructions Page 30)

The permittee is responsible for paying the annual fee. The annual fee will be assessed to permits *in effect on September 1 of each year*. The TCEQ will send a bill to the address provided in this section. The permittee is responsible for terminating the permit when it is no longer needed (using form TCEQ-20029).

Prefix (Mr., Ms., Miss): <u>Mr.</u>
First and Last Name: <u>Brent Lundmark</u>
Credential (P.E, P.G., Ph.D., etc.):
Title: <u>Water Treatment & Compliance Manager</u>
Organization Name: New Braunfels Utilities
Mailing Address: <u>P.O. Box 310289</u>
City, State, Zip Code: <u>New Braunfels, TX 78130</u>
Phone No.: <u>830-608-8900</u> Ext.: Fax No.:
E-mail Address: blundmark@nbutexas.com

Section 7. DMR/MER Contact Information (Instructions Page 31)

Provide the name and complete mailing address of the person delegated to receive and submit Discharge Monitoring Reports (EPA 3320-1) or maintain Monthly Effluent Reports.

Prefix (Mr., Ms., Miss): <u>Mr.</u>
First and Last Name: <u>Brent Lundmark</u>
Credential (P.E, P.G., Ph.D., etc.):
Title: <u>Water Treatment & Compliance Manager</u>
Organization Name: New Braunfels Utilities
Mailing Address: <u>P.O. Box 310289</u>
City, State, Zip Code: <u>New Braunfels, TX 78130</u>
Phone No.: <u>830-608-8900</u> Ext.: Fax No.:
E-mail Address: <u>blundmark@nbutexas.com</u>

DMR data is required to be submitted electronically. Create an account at:

https://www.tceq.texas.gov/permitting/netdmr/netdmr.html.

Section 8. Public Notice Information (Instructions Page 31)

A. Individual Publishing the Notices

Prefix (Mr., Ms., Miss): <u>Ms.</u>

First and Last Name: <u>Pam Quidley</u>

Credential (P.E, P.G., Ph.D., etc.):

Title: Communications & Marketing Manager

Organization Name: <u>New Braunfels Utilities</u>

Mailing Address: <u>263 Main Plaza</u>

City, State, Zip Code: New Braunfels, TX 78130

Phone No.: <u>830-312-7940</u> Ext.:

Fax No.:

E-mail Address: pquidley@nbutexas.com

B. Method for Receiving Notice of Receipt and Intent to Obtain a Water Quality Permit Package

Indicate by a check mark the preferred method for receiving the first notice and instructions:

- ⊠ E-mail Address
- □ Fax
- □ Regular Mail

C. Contact person to be listed in the Notices

Prefix (Mr., Ms., Miss): <u>Mr.</u>

First and Last Name: Brent Lundmark

Credential (P.E, P.G., Ph.D., etc.):

Title: Water Treatment & Compliance Manager

Organization Name: New Braunfels Utilities

Phone No.: <u>830-608-8900</u> Ext.:

E-mail: <u>blundmark@nbutexas.com</u>

D. Public Viewing Information

If the facility or outfall is located in more than one county, a public viewing place for each county must be provided.

Public building name: <u>www.nbutexa</u>	as.com/planning
Location within the building:	here to enter text.
Physical Address of Building:	here to enter text.
City: Citck here to enter text	County:
Contact Name:	
Phone No.:	Ext.: Click here to enter text

E. Bilingual Notice Requirements:

This information **is required** for **new, major amendment, and renewal applications**. It is not required for minor amendment or minor modification applications.

This section of the application is only used to determine if alternative language notices will be needed. Complete instructions on publishing the alternative language notices will be in your public notice package.

Please call the bilingual/ESL coordinator at the nearest elementary and middle schools and obtain the following information to determine whether an alternative language notices are required.

1. Is a bilingual education program required by the Texas Education Code at the elementary or middle school nearest to the facility or proposed facility?

🖾 Yes 🗆 No

If **no**, publication of an alternative language notice is not required; **skip to** Section 9 below.

2. Are the students who attend either the elementary school or the middle school enrolled in a bilingual education program at that school?

🖾 Yes 🗆 No

3. Do the students at these schools attend a bilingual education program at another location?

□ Yes ⊠ No

4. Would the school be required to provide a bilingual education program but the school has waived out of this requirement under 19 TAC §89.1205(g)?

🗆 Yes 🖾 No

5. If the answer is yes to question 1, 2, 3, or 4, public notices in an alternative language are required. Which language is required by the bilingual program? <u>Spanish</u>

Section 9. Regulated Entity and Permitted Site Information (Instructions Page 33)

A. If the site is currently regulated by TCEQ, provide the Regulated Entity Number (RN) issued to this site. **RN**106228422

Search the TCEQ's Central Registry at <u>http://www15.tceq.texas.gov/crpub/</u> to determine if the site is currently regulated by TCEQ.

B. Name of project or site (the name known by the community where located):

Sam C. McKenzie, Jr. Water Reclamation Facility

C. Owner of treatment facility: <u>New Braunfels Utilities</u>

Ownership of Facility:	\boxtimes	Public		Private		Both		Federal
------------------------	-------------	--------	--	---------	--	------	--	---------

D. Owner of land where treatment facility is or will be:

Prefix (Mr., Ms., Miss):

First and Last Name: <u>New Braunfels Utilities</u>

Mailing Address: 263 Main Plaza

City, State, Zip Code: <u>New Braunfels, TX 78130</u>

Phone No.: <u>830-629-8416</u> E-mail Address: <u>rkelso@nbutexas.com</u>

If the landowner is not the same person as the facility owner or co-applicant, attach a lease agreement or deed recorded easement. See instructions.

Attachment: <u>N/A</u>

E. Owner of effluent disposal site:

Prefix (Mr., Ms., Miss): <u>N/A</u>
First and Last Name:
Mailing Address:
City, State, Zip Code:
Phone No.: E-mail Address:

If the landowner is not the same person as the facility owner or co-applicant, attach a lease agreement or deed recorded easement. See instructions.

Attachment: <u>N/A</u>

F. Owner of sewage sludge disposal site (if authorization is requested for sludge disposal on property owned or controlled by the applicant):

Prefix (Mr., Ms., Miss): <u>N/A</u>	
First and Last Name:	ter test
Mailing Address:	
City, State, Zip Code:	nter text.
Phone No.:	E-mail Address:

If the landowner is not the same person as the facility owner or co-applicant, attach a lease agreement or deed recorded easement. See instructions.

Attachment: <u>N/A</u>

Section 10. TPDES Discharge Information (Instructions Page 34)

A. Is the wastewater treatment facility location in the existing permit accurate?

 \boxtimes Yes \square No

If **no**, **or a new permit application**, please give an accurate description:

B. Are the point(s) of discharge and the discharge route(s) in the existing permit correct?

🖾 Yes 🗆 No

If **no**, **or a new or amendment permit application**, provide an accurate description of the point of discharge and the discharge route to the nearest classified segment as defined in <u>30 TAC Chapter 307</u>:

City nearest the outfall(s): <u>New Braunfels</u>

County in which the outfalls(s) is/are located: <u>Guadalupe</u>

Outfall Latitude:	(001) 29.6514, (002) 29.6506	Longitude: (001) -98.0572, (002) -98.0578

C. Is or will the treated wastewater discharge to a city, county, or state highway right-of-way, or a flood control district drainage ditch?

🗆 Yes 🖾 No

If **yes**, indicate by a check mark if:

	Authorization granted		Authorization pending
--	-----------------------	--	-----------------------

For **new and amendment** applications, provide copies of letters that show proof of contact and the approval letter upon receipt.

Attachment: <u>N/A</u>

D. For all applications involving an average daily discharge of 5 MGD or more, provide the names of all counties located within 100 statute miles downstream of the point(s) of discharge.

<u>Guadalupe, Gonzalez, Dewitt, Victoria</u>

Section 11. TLAP Disposal Information (Instructions Page 36)

A. For TLAPs, is the location of the effluent disposal site in the existing permit accurate?

	Yes	No
ш	res	INC

If **no, or a new or amendment permit application**, provide an accurate description of the disposal site location:

<u>N/A</u>

- **B.** City nearest the disposal site: N/A
- C. County in which the disposal site is located: N/A
- **D.** Disposal Site Latitude: <u>N/A</u> Longitude: <u>N/A</u>
- E. For TLAPs, describe the routing of effluent from the treatment facility to the disposal site:
- **F.** For **TLAPs**, please identify the nearest watercourse to the disposal site to which rainfall runoff might flow if not contained:

Section 12. Miscellaneous Information (Instructions Page 37)

A. Is the facility located on or does the treated effluent cross American Indian Land?

🗆 Yes 🖾 No

- **B.** If the existing permit contains an onsite sludge disposal authorization, is the location of the sewage sludge disposal site in the existing permit accurate?
 - \square Yes \square No \boxtimes Not Applicable

If No, or if a new onsite sludge disposal authorization is being requested in this permit

application, provide an accurate location description of the sewage sludge disposal site.

<u>N/A</u>

N/A

- **C.** Did any person formerly employed by the TCEQ represent your company and get paid for service regarding this application?
 - 🗆 Yes 🛛 No

If yes, list each person formerly employed by the TCEQ who represented your company and was paid for service regarding the application:

D. Do you owe any fees to

🗆 Yes 🖾 No

If **yes**, provide the following information:

Account number:

Amount past due:

- **E.** Do you owe any penalties to the TCEQ?
 - 🗆 Yes 🖾 No

If **yes**, please provide the following information:

Enforcement order number:

Amount past due:

Section 13. Attachments (Instructions Page 38)

Indicate which attachments are included with the Administrative Report. Check all that apply:

- Lease agreement or deed recorded easement, if the land where the treatment facility is located or the effluent disposal site are not owned by the applicant or co-applicant.
- Original full-size USGS Topographic Map with the following information:
 - Applicant's property boundary
 - Treatment facility boundary
 - Labeled point of discharge for each discharge point (TPDES only)
 - Highlighted discharge route for each discharge point (TPDES only)
 - Onsite sewage sludge disposal site (if applicable)
 - Effluent disposal site boundaries (TLAP only)
 - New and future construction (if applicable)
 - 1 mile radius information

- 3 miles downstream information (TPDES only)
- All ponds.
- Attachment 1 for Individuals as co-applicants
- □ Other Attachments. Please specify:

Section 14. Signature Page (Instructions Page 39)

If co-applicants are necessary, each entity must submit an original, separate signature page.

Permit Number: WQ0010232004

Applicant: New Braunfels Utilities

Certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I further certify that I am authorized under 30 Texas Administrative Code § 305.44 to sign and submit this document, and can provide documentation in proof of such authorization upon request.

Signatory name (typed or printed): <u>Ryan Kelso</u> Signatory title: <u>COO, New Braunfels Utilities</u>

Signature:		Date:	
(Use blue ink)			
Subscribed and Sworn to before 1	ne by the said		
on this	day of	, 20	•
My commission expires on the	day of	, 20	·

Notary Public

[SEAL]

County, Texas

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

SUPPLEMENTAL PERMIT INFORMATION FORM (SPIF)

FOR AGENCIES REVIEWING DOMESTIC TPDES WASTEWATER PERMIT APPLICATIONS

TCEQ USE ONLY:	
Application type:RenewalMajor An	nendmentNinor AmendmentNew
County:	_ Segment Number:
Admin Complete Date:	_
Agency Receiving SPIF:	
Texas Historical Commission	U.S. Fish and Wildlife
Texas Parks and Wildlife Department	U.S. Army Corps of Engineers

This form applies to TPDES permit applications only. (Instructions, Page 53)

The SPIF must be completed as a separate document. The TCEQ will mail a copy of the SPIF to each agency as required by the TCEQ agreement with EPA. If any of the items are not completely addressed or further information is needed, you will be contacted to provide the information before the permit is issued. Each item must be completely addressed.

Do not refer to a response of any item in the permit application form. Each attachment must be provided with this form separately from the administrative report of the application. The application will not be declared administratively complete without this form being completed in its entirety including all attachments.

The following applies to all applications:

1. Permittee: <u>New Braunfels Utilities</u>

Permit No. WQ00 10232004

EPA ID No. TX 0133248

Address of the project (or a location description that includes street/highway, city/vicinity, and county):

Approximately 4.0 miles southeast of the City of New Braunfels, 0.7 miles southwest of the intersection of State Highway 46 and Elley Lane, and 0.6 mile downstream from the Lake Dunlap Dam on the Guadalupe River, in Guadalupe County, 78130

Provide the name, address, phone and fax number of an individual that can be contacted to answer specific questions about the property.

Prefix (Mr., Ms., Miss): <u>Mr.</u>

First and Last Name: Brent Lundmark

Credential (P.E, P.G., Ph.D., etc.):

Title: <u>Water Treatment & Compliance Manager</u>

Mailing Address: P.O. Box 310289

City, State, Zip Code: <u>New Braunfels, TX 78130</u>

Phone No.: <u>830-608-8900</u> Ext.:

Fax No.:

E-mail Address: <u>blundmark@nbutexas.com</u>

- 2. List the county in which the facility is located: <u>Guadalupe</u>
- 3. If the property is publicly owned and the owner is different than the permittee/applicant, please list the owner of the property.

Property owner is permittee, New Braunfels Utilities

4. Provide a description of the effluent discharge route. The discharge route must follow the flow of effluent from the point of discharge to the nearest major watercourse (from the point of discharge to a classified segment as defined in 30 TAC Chapter 307). If known, please identify the classified segment number.

Via outfall 001 to the Lake Dunlop Hydroelectric Plant Canal, thence to the Guadalupe River Below Comal River; and via outfall 002 directly to Guadalupe River Below Comal River in Segment No. 1804 of the Guadalupe River Basin

5. Please provide a separate 7.5-minute USGS quadrangle map with the project boundaries plotted and a general location map showing the project area. Please highlight the discharge route from the point of discharge for a distance of one mile downstream. (This map is required in addition to the map in the administrative report).

Provide original photographs of any structures 50 years or older on the property.

Does your project involve any of the following? Check all that apply.

- Proposed access roads, utility lines, construction easements
- □ Visual effects that could damage or detract from a historic property's integrity
- ☑ Vibration effects during construction or as a result of project design
- Additional phases of development that are planned for the future
- Sealing caves, fractures, sinkholes, other karst features

- Disturbance of vegetation or wetlands
- 6. List proposed construction impact (surface acres to be impacted, depth of excavation, sealing of caves, or other karst features):

No caves or karst features will be impacted.

7. Describe existing disturbances, vegetation, and land use: Existing land use is for the water reclamation facility.

THE FOLLOWING ITEMS APPLY ONLY TO APPLICATIONS FOR NEW TPDES PERMITS AND MAJOR AMENDMENTS TO TPDES PERMITS

8. List construction dates of all buildings and structures on the property:

<u>N/A - Renewal</u>

9. Provide a brief history of the property, and name of the architect/builder, if known. <u>N/A - Renewal</u>

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY **DOMESTIC WASTEWATER PERMIT APPLICATION**

DOMESTIC TECHNICAL REPORT 1.0

The Following Is Required For All Applications Renewal, New, And Amendment

Section 1. Permitted or Proposed Flows (Instructions Page 51)

A. Existing/Interim I Phase

Design Flow (MGD): <u>2.5</u> 2-Hr Peak Flow (MGD): <u>10</u> Estimated construction start date: <u>Herebook (MGD)</u> Estimated waste disposal start date: <u>January 2017</u>

B. Interim II Phase

Design Flow (MGD): <u>4.9/7.5</u> 2-Hr Peak Flow (MGD): <u>19.6/30</u> Estimated construction start date: <u>2/2023; 2/2028</u> Estimated waste disposal start date: <u>1/2024; 1/2029</u>

C. Final Phase

Design Flow (MGD): <u>9.9</u> 2-Hr Peak Flow (MGD): <u>39.6</u> Estimated construction start date: <u>2/2034</u> Estimated waste disposal start date: <u>1/2035</u>

D. Current operating phase: <u>Interim I</u> Provide the startup date of the facility: <u>January 2017</u>

Section 2. Treatment Process (Instructions Page 51)

A. Treatment process description

Provide a detailed description of the treatment process. Include the type of

Page 1 of 80

treatment plant, mode of operation, and all treatment units. Start with the plant's head works and finish with the point of discharge. Include all sludge processing and drying units. **If more than one phase exists or is proposed in the permit, a description of** *each phase* **must be provided**. Process description:

See Attachment C - Supplemental	Technical Report

Port or pipe diameter at the discharge point, in inches:

B. Treatment Units

In Table 1.0(1), provide the treatment unit type, the number of units, and dimensions (length, width, depth) **of each treatment unit, accounting for** *all* **phases of operation**.

 Table 1.0(1) - Treatment Units

Treatment Unit Type	Number of Units	Dimensions (L x W x D)
See Attachment C		

C. Process flow diagrams

Provide flow diagrams for the existing facilities and **each** proposed phase of construction.

Attachment: <u>Attachment D</u>

Section 3. Site Drawing (Instructions Page 52)

Provide a site drawing for the facility that shows the following:

- The boundaries of the treatment facility;
- The boundaries of the area served by the treatment facility;
- If land disposal of effluent, the boundaries of the disposal site and all storage/holding ponds; and
- If sludge disposal is authorized in the permit, the boundaries of the land application or disposal site.

Attachment: <u>Attachment E</u>

Provide the name and a description of the area served by the treatment facility.

Eastern portions of New Braunfels.		

Section 4. Unbuilt Phases (Instructions Page 52)

Is the application for a renewal of a permit that contains an unbuilt phase or

phases?

Yes 🛛 No 🗆

If yes, does the existing permit contain a phase that has not been constructed within five years of being authorized by the TCEQ?

Yes 🛛 No 🗆

If yes, provide a detailed discussion regarding the continued need for the unbuilt phase. Failure to provide sufficient justification may result in the Executive Director recommending denial of the unbuilt phase or phases.

See Attachment F - Justification

Section 5. Closure Plans (Instructions Page 53)

Have any treatment units been taken out of service permanently, or will any units be taken out of service in the next five years?

Yes 🗆

If yes, was a closure plan submitted to the TCEQ?

No 🖂

Yes 🗆 No 🗆

If yes, provide a brief description of the closure and the date of plan approval.

<u>N/A</u>

Section 6. Permit Specific Requirements (Instructions Page 53)

For applicants with an existing permit, check the *Other Requirements* or *Special Provisions* of the permit.

A. Summary transmittal

Have plans and specifications been approved for the existing facilities and each proposed phase?

Yes 🛛 🛛 No 🗆

If yes, provide the date(s) of approval for each phase: 2/25/13

Provide information, including dates, on any actions taken to meet a requirement or provision pertaining to the submission of a summary transmittal letter. Provide a copy of an approval letter from the TCEQ, if applicable.

B. Buffer zones

Have the buffer zone requirements been met?

Yes 🖂 🛛 No 🗆

Provide information below, including dates, on any actions taken to meet the conditions of the buffer zone. If available, provide any new documentation relevant to maintaining the buffer zones.

Other Requirement No. 4 – restrictive easements submitted

C. Other actions required by the current permit

Does the *Other Requirements* or *Special Provisions* section in the existing permit require submission of any other information or other required actions? Examples include Notification of Completion, progress reports, soil monitoring data, etc.

Yes 🛛 No 🗆

If yes, provide information below on the status of any actions taken to meet the conditions of an *Other Requirement* or *Special Provision*.

Other Requirement No. 8 – Plans and Specs,	O.R. No. 10 – Notice of
Completion for future phases	

D. Grit and grease treatment

1. Acceptance of grit and grease waste

Does the facility have a grit and/or grease processing facility onsite that treats and decants or accepts transported loads of grit and grease waste that are discharged directly to the wastewater treatment plant prior to any treatment?

Yes □ No ⊠

If No, stop here and continue with Subsection E. Stormwater Management.

2. Grit and grease processing

Describe below how the grit and grease waste is treated at the facility. In your description, include how and where the grit and grease is introduced to the treatment works and how it is separated or processed. Provide a flow diagram showing how grit and grease is processed at the facility.

3. Grit disposal

Does the facility have a Municipal Solid Waste (MSW) registration or permit for grit_disposal?

Yes 🗆 🛛 No 🗆

If No, contact the TCEQ Municipal Solid Waste team at 512-239-0000. Note: A registration or permit is required for grit disposal. Grit shall not be combined with treatment plant sludge. See the instruction booklet for additional information on grit disposal requirements and restrictions.

Describe the method of grit disposal.

4. Grease and decanted liquid disposal

Note: A registration or permit is required for grease disposal. Grease shall not be combined with treatment plant sludge. For more information, contact the TCEQ Municipal Solid Waste team at 512-239-0000.

Describe how the decant and grease are treated and disposed of after grit separation.

E. Stormwater management

1. Applicability

Does the facility have a design flow of 1.0 MGD or greater in any phase?

Yes 🖂 🛛 No 🗆

Does the facility have an approved pretreatment program, under 40 CFR Part 403?

Yes 🖂 🛛 No 🗆

If no to both of the above, then skip to Subsection F, Other Wastes Received.

2. MSGP coverage

Is the stormwater runoff from the WWTP and dedicated lands for sewage disposal currently permitted under the TPDES Multi-Sector General Permit (MSGP), TXR050000?

Yes 🛛 No 🗆

If yes, please provide MSGP Authorization Number and skip to Subsection F, Other Wastes Received:

TXR05 <u>CX88</u> or TXRNE

If no, do you intend to seek coverage under TXR050000?

Yes 🗆 🛛 No 🖾

3. Conditional exclusion

Alternatively, do you intend to apply for a conditional exclusion from permitting based TXR050000 (Multi Sector General Permit) Part II B.2 or TXR050000 (Multi Sector General Permit) Part V, Sector T 3(b)?

Yes □ No ⊠

If yes, please explain below then proceed to Subsection F, Other Wastes

Received:

<u>N/A</u>

4. Existing coverage in individual permit

Is your stormwater discharge currently permitted through this individual TPDES or TLAP permit?

Yes □ No ⊠

If yes, provide a description of stormwater runoff management practices at the site that are authorized in the wastewater permit then skip to Subsection F, Other Wastes Received.

5. Zero stormwater discharge

Do you intend to have no discharge of stormwater via use of evaporation or other means?

Yes 🗆 🛛 No 🖂

If yes, explain below then skip to Subsection F. Other Wastes Received.

Note: If there is a potential to discharge any stormwater to surface water in the state as the result of any storm event, then permit coverage is required under the MSGP or an individual discharge permit. This requirement applies to all areas of facilities with treatment plants or systems that treat, store, recycle, or reclaim domestic sewage, wastewater or sewage sludge (including dedicated lands for sewage sludge disposal located within the onsite property boundaries) that meet the applicability criteria of above. You have the option of obtaining coverage under the MSGP for direct discharges, (recommended), or obtaining coverage under this individual permit.

6. Request for coverage in individual permit

Are you requesting coverage of stormwater discharges associated with your treatment plant under this individual permit?

Yes □ No ⊠

If yes, provide a description of stormwater runoff management practices at the site for which you are requesting authorization in this individual wastewater permit and describe whether you intend to comingle this discharge with your treated effluent or discharge it via a separate dedicated stormwater outfall. Please also indicate if you intend to divert stormwater to the treatment plant headworks and indirectly discharge it to water in the state. Note: Direct stormwater discharges to waters in the state authorized through this individual permit will require the development and implementation of a stormwater pollution prevention plan (SWPPP) and will be subject to additional monitoring and reporting requirements. Indirect discharges of stormwater via headworks recycling will require compliance with all individual permit requirements including 2-hour peak flow limitations. All stormwater discharge authorization requests will require additional information during the technical review of your application.

F. Discharges to the Lake Houston Watershed

Does the facility discharge in the Lake Houston watershed? Yes \square No \boxtimes

If yes, a Sewage Sludge Solids Management Plan is required. See Example 5 in the instructions.

G. Other wastes received including sludge from other WWTPs and septic waste

1. Acceptance of sludge from other WWTPs

Does the facility accept or will it accept sludge from other treatment plants at the facility site?

Yes □ No ⊠

If yes, attach sewage sludge solids management plan. See Example 5 of the instructions.

In addition, provide the date that the plant started accepting sludge or is anticipated to start accepting sludge, an estimate of monthly sludge

acceptance (gallons or millions of gallons), an estimate of the BOD_5

concentration of the sludge, and the design BOD₅ concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

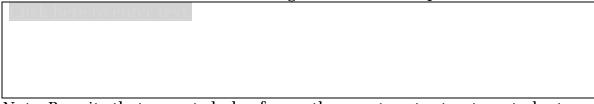
Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.

2. Acceptance of septic waste

Is the facility accepting or will it accept septic waste?

Yes □ No ⊠

If yes, does the facility have a Type V processing unit?


Yes 🗆 🛛 No 🗆

If yes, does the unit have a Municipal Solid Waste permit?

Yes □ No □

If yes to any of the above, provide a the date that the plant started accepting septic waste, or is anticipated to start accepting septic waste, an estimate of monthly septic waste acceptance (gallons or millions of gallons), an estimate of the BOD₅ concentration of the septic waste, and the design

BOD₅ concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.

3. Acceptance of other wastes (not including septic, grease, grit, or RCRA, CERCLA or as discharged by IUs listed in Worksheet 6)

Is the facility accepting or will it accept wastes that are not domestic in nature excluding the categories listed above?

Yes □ No ⊠

If yes, provide the date that the plant started accepting the waste, an estimate how much waste is accepted on a monthly basis (gallons or millions of gallons), a description of the entities generating the waste, and any distinguishing chemical or other physical characteristic of the waste. Also note if this information has or has not changed since the last permit action.

Section 7. Pollutant Analysis of Treated Effluent (Instructions Page 58)

Is the facility in operation? Yes \boxtimes No \square

If no, this section is not applicable. Proceed to Section 8.

If yes, provide effluent analysis data for the listed pollutants. *Wastewater treatment facilities* complete Table 1.0(2). W*ater treatment facilities* discharging filter backwash water, complete Table 1.0(3).

Note: The sample date must be within 1 year of application submission.

Pollutant	Average	Max	No. of	Sample	Sample
ronutant	Conc.	Conc.	Samples	Туре	Date/Time
CBOD ₅ , mg/l	2.7	4.45	10	Comp	3-1 to 3-31/0800
Total Suspended Solids, mg/l	1.49	4.0	10	Comp	3-1 to 3-31/0800
Ammonia Nitrogen, mg/l	0.0	0.0	10	Comp	3-1 to 3-31/0800
Nitrate Nitrogen, mg/l	16.7	16.7	1	Comp	3-9-21/0600
Total Kjeldahl Nitrogen, mg/l	2.0	2.0	1	Comp	3-9-21/0600
Sulfate, mg/l	91.0	91.0	1	Comp	3-9-21/0600
Chloride, mg/l	174.0	174.0	1	Comp	3-9-21/0600
Total Phosphorus, mg/l	0.38	0.60	10	Comp	3-1 to 3-31/0800
pH, standard units	8.20	8.55	9	Grab	3-1 to 3-31/1000
Dissolved Oxygen*, mg/l	8.75	9.26	6	Grab	3-5 to 3-26/0800
Chlorine Residual, mg/l	N/A	N/A	N/A	N/A	N/A
<i>E.coli</i> (CFU/100ml) freshwater	1.60	124.3	31	Grab	3-1 to 3-31/1000
Entercocci (CFU/100ml)	N/A	N/A	N/A	N/A	N/A

Table 1.0(2) - Pollutant Analysis for Wastewater Treatment Facilities

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
saltwater					
Total Dissolved Solids, mg/l	989	1000	2	Comp	3-1 to 4-8/0800
Electrical Conductivity, µmohs/cm, †	N/A	N/A	N/A	N/A	N/A
Oil & Grease, mg/l	<5.0		1	Grab	3-9-21/0720
Alkalinity (CaCO ₃)*, mg/l	174		1	Grab	3-12-21/0915

*TPDES permits only

†TLAP permits only

Table 1.0(3) - Pollutant Analysis for Water Treatment Facilities

Pollutant	Average	Max	No. of	Sample	Sample
Pollulani	Conc.	Conc.	Samples	Туре	Date/Time
Total Suspended Solids, mg/l					
Total Dissolved Solids, mg/l					
pH, standard units					
Fluoride, mg/l					
Aluminum, mg/l					
Alkalinity (CaCO ₃), mg/l					

Section 8. Facility Operator (Instructions Page 60)

Facility Operator Name: Orlando Pena

Facility Operator's License Classification and Level: \underline{A}

Facility Operator's License Number: <u>WW0004005</u>

Section 9. Sewage Sludge Management and Disposal (Instructions Page 60)

A. Sludge disposal method

Identify the current or anticipated sludge disposal method or methods from the

following list. Check all that apply.

- ☑ Permitted landfill
- Permitted or Registered land application site for beneficial use
- □ Land application for beneficial use authorized in the wastewater permit
- Permitted sludge processing facility
- □ Marketing and distribution as authorized in the wastewater permit
- Composting as authorized in the wastewater permit
- Permitted surface disposal site (sludge monofill)
- Surface disposal site (sludge monofill) authorized in the wastewater permit
- Transported to another permitted wastewater treatment plant or permitted sludge processing facility. If you selected this method, a written statement or contractual agreement from the wastewater treatment plant or permitted sludge processing facility accepting the sludge must be included with this application.
- □ Other:

B. Sludge disposal site

Disposal site name: <u>Mesquite Creek Landfill</u> TCEQ permit or registration number: <u>48029</u> County where disposal site is located: Comal

C. Sludge transportation method

Method of transportation (truck, train, pipe, other): <u>Truck</u>

Name of the hauler: <u>Residuals Transport</u>

Hauler registration number: <u>24346</u>

Sludge is transported as a:

Liquid	semi-liquid	

semi-solid	\boxtimes	
------------	-------------	--

solid 🗆

Section 10. Permit Authorization for Sewage Sludge Disposal (Instructions Page 60)

A. Beneficial use authorization

Does the existing permit include authorization for land application of sewage sludge for beneficial use?

Yes 🗆 🛛 No 🖂

If yes, are you requesting to continue this authorization to land apply sewage sludge for beneficial use?

Yes 🗆 No 🗆

If yes, is the completed **Application for Permit for Beneficial Land Use of Sewage Sludge (TCEQ Form No. 10451)** attached to this permit application (see the instructions for details)?

Yes 🗆 🛛 No 🗆

B. Sludge processing authorization

Does the existing permit include authorization for any of the following sludge processing, storage or disposal options?

Sludge Composting	Yes □	No 🖂
Marketing and Distribution of sludge	Yes 🗆	No 🖂
Sludge Surface Disposal or Sludge Monofill	Yes 🗆	No 🖂
Temporary storage in sludge lagoons	Yes □	No 🖂

If yes to any of the above sludge options and the applicant is requesting to continue this authorization, is the completed **Domestic Wastewater Permit Application: Sewage Sludge Technical Report (TCEQ Form No. 10056)** attached to this permit application?

Yes 🗆 🛛 No 🗆

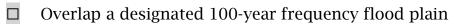
Section 11. Sewage Sludge Lagoons (Instructions Page 61)

Does this facility include sewage sludge lagoons?

Yes 🗆 🛛 No 🖾

If yes, complete the remainder of this section. If no, proceed to Section 12.

A. Location information


The following maps are required to be submitted as part of the application. For each map, provide the Attachment Number.

- Original General Highway (County) Map: Attachment:
- USDA Natural Resources Conservation Service Soil Map: Attachment:
- Federal Emergency Management Map: Attachment:
- Site map:

Attachment:

Discuss in a description if any of the following exist within the lagoon area.

Check all that apply.

- Soils with flooding classification
- Overlap an unstable area
- □ Wetlands
- □ Located less than 60 meters from a fault
- \Box None of the above

Attachment:

If a portion of the lagoon(s) is located within the 100-year frequency flood plain, provide the protective measures to be utilized including type and size of protective structures:

B. Temporary storage information

Provide the results for the pollutant screening of sludge lagoons. These results are in addition to pollutant results in Section 7 of Technical Report 1.0.

Nitrate Nitrogen, mg/kg:

Total Kjeldahl Nitrogen, mg/kg:

Total Nitrogen (=nitrate nitrogen + TKN), mg/kg:

Phosphorus, mg/kg:

Page 15 of 80

Potassium, mg/kg:
pH, standard units:
Ammonia Nitrogen mg/kg:
Arsenic: Thick here to enter text.
Cadmium: Cadmium Cadmium Cadmium
Chromium: Click here to enter text
Copper: Click here to enter text
Lead: Click here to enter text
Mercury: Click here to enter text
Molybdenum: Chick here to enter text
Nickel: Click here to enter text
Selenium: Click here to enter text
Zinc: Click bere to enter text
Total PCBs:
Provide the following information: Volume and frequency of sludge to the lagoon(s):
Total dry tons stored in the lagoons(s) per 365-day period:
enter text.
Total dry tons stored in the lagoons(s) over the life of the unit:
enter text.
C. Liner information
Does the active/proposed sludge lagoon(s) have a liner with a maximum hydraulic conductivity of 1x10 ⁻⁷ cm/sec? Yes No

If yes, describe the liner below. Please note that a liner is required.

D. Site development plan

Provide a detailed description of the methods used to deposit sludge in the

lagoon(s):

Attach the following documents to the application.

• Plan view and cross-section of the sludge lagoon(s)

Attachment:

• Copy of the closure plan

Attachment:

• Copy of deed recordation for the site

Attachment:

• Size of the sludge lagoon(s) in surface acres and capacity in cubic feet and gallons

Attachment:

• Description of the method of controlling infiltration of groundwater and surface water from entering the site

Attachment:

• Procedures to prevent the occurrence of nuisance conditions

Attachment:

E. Groundwater monitoring

Is groundwater monitoring currently conducted at this site, or are any wells available for groundwater monitoring, or are groundwater monitoring data otherwise available for the sludge lagoon(s)?

Yes 🗆 🛛 No 🗆

If groundwater monitoring data are available, provide a copy. Provide a profile of soil types encountered down to the groundwater table and the depth to the shallowest groundwater as a separate attachment.

Attachment:

Section 12. Authorizations/Compliance/Enforcement

(Instructions Page 63)

A. Additional authorizations

Does the permittee have additional authorizations for this facility, such as reuse authorization, sludge permit, etc?

Yes 🗆 🛛 No 🖂

If yes, provide the TCEQ authorization number and description of the authorization:

B. Permittee enforcement status

Is the permittee currently under enforcement for this facility?

Yes 🗆 🛛 No 🖂

Is the permittee required to meet an implementation schedule for compliance or enforcement?

Yes □ No ⊠

If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status:

Section 13. RCRA/CERCLA Wastes (Instructions Page 63)

A. RCRA hazardous wastes

Has the facility received in the past three years, does it currently receive, or will it receive RCRA hazardous waste?

Yes 🗆 🛛 No 🖾

B. Remediation activity wastewater

Has the facility received in the past three years, does it currently receive, or will it receive CERCLA wastewater, RCRA remediation/corrective action wastewater or other remediation activity wastewater?

Yes 🗆 🛛 No 🖂

C. Details about wastes received

If yes to either Subsection A or B above, provide detailed information concerning these wastes with the application.

Attachment:

Section 14. Laboratory Accreditation (Instructions Page 64)

All laboratory tests performed must meet the requirements of *30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification*, which includes the following general exemptions from National Environmental Laboratory Accreditation Program (NELAP) certification requirements:

- The laboratory is an in-house laboratory and is:
 - periodically inspected by the TCEQ; or
 - located in another state and is accredited or inspected by that state; or
 - performing work for another company with a unit located in the same site; or
 - performing pro bono work for a governmental agency or charitable organization.
- The laboratory is accredited under federal law.
- The data are needed for emergency-response activities, and a laboratory accredited under the Texas Laboratory Accreditation Program is not available.
- The laboratory supplies data for which the TCEQ does not offer accreditation.

The applicant should review *30 TAC Chapter 25* for specific requirements.

The following certification statement shall be signed and submitted with every application. See the *Signature Page* section in the Instructions, for a list of designated representatives who may sign the certification.

CERTIFICATION:

I certify that all laboratory tests submitted with this application meet the requirements of *30 TAC Chapter 25, Environmental Testing Laboratory Accreditation and Certification.*

Printed Name: <u>Ryan Kelso</u>

Title: <u>COO, New Braunfels Utilities</u>

Signature:			
Signature.	 	 	

Date: _____

DOMESTIC TECHNICAL REPORT WORKSHEET 2.0

RECEIVING WATERS

The following is required for all TPDES permit applications

Section 1. Domestic Drinking Water Supply (Instructions Page 73)

Is there a surface water intake for domestic drinking water supply located within 5 miles downstream from the point or proposed point of discharge? Yes □ No ⊠

If yes, provide the following:

Owner of the drinking water supply:

Distance and direction to the intake:

Attach a USGS map that identifies the location of the intake.

Attachment:

Section 2. Discharge into Tidally Affected Waters (Instructions Page 73)

Does the facility discharge into tidally affected waters?

Yes 🗆 🛛 No 🖾

If yes, complete the remainder of this section. If no, proceed to Section 3.

A. Receiving water outfall

Width of the receiving water at the outfall, in feet:

B. Oyster waters

Are there oyster waters in the vicinity of the discharge?

Yes 🗆 No 🗆

If yes, provide the distance and direction from outfall(s).

C. Sea grasses

Are there any sea grasses within the vicinity of the point of discharge?

Yes 🗆 🛛 No 🗆

If yes, provide the distance and direction from the outfall(s).

Section 3. Classified Segments (Instructions Page 73)

Is the discharge directly into (or within 300 feet of) a classified segment?

Yes \Box No \boxtimes 001

If yes, this Worksheet is complete.

If no, complete Sections 4 and 5 of this Worksheet.

Section 4. Description of Immediate Receiving Waters (Instructions Page 75)

Name of the immediate receiving waters: <u>001 - Lake Dunlap Hydroelectric</u>

<u>Plant Canal</u>

A. Receiving water type

Identify the appropriate description of the receiving waters.

- □ Stream
- □ Freshwater Swamp or Marsh
- □ Lake or Pond

Surface area, in acres:

Average depth of the entire water body, in feet:

Average depth of water body within a 500-foot radius of discharge point, in feet:

Man-made Channel or Ditch

Open Bay
1 /

Tidal Stream, Bayou, or Marsh

Other, specify:

B. Flow characteristics

If a stream, man-made channel or ditch was checked above, provide the following. For existing discharges, check one of the following that best characterizes the area *upstream* of the discharge. For new discharges, characterize the area *downstream* of the discharge (check one).

Intermittent - dry for at least one week during most years \boxtimes

Intermittent with Perennial Pools - enduring pools with sufficient habitat to maintain significant aquatic life uses

Perennial - normally flowing

Check the method used to characterize the area upstream (or downstream for new dischargers).

USGS flow records

Historical observation by adjacent landowners

- \boxtimes Personal observation
- Other, specify:

C. Downstream perennial confluences

List the names of all perennial streams that join the receiving water within three miles downstream of the discharge point.

Guadalupe River Below Comal River

D. Downstream characteristics

Do the receiving water characteristics change within three miles downstream of the discharge (e.g., natural or man-made dams, ponds, reservoirs, etc.)?

Yes
$$\boxtimes$$
 No \square

If yes, discuss how.

Plant is downstream of Lake Dunlap Dam

E. Normal dry weather characteristics

Provide general observations of the water body during normal dry weather <u>conditions</u>.

Normal Flowing, clear of debris

Date and time of observation: <u>4-21-21/11:30</u>

Was the water body influenced by stormwater runoff during observations?

Yes 🗆 🛛 No 🖂

Section 5. General Characteristics of the Waterbody (Instructions Page 74)

A. Upstream influences

Is the immediate receiving water upstream of the discharge or proposed discharge site influenced by any of the following? Check all that apply.

- □ Oil field activities □ Urban runoff
- $\Box \quad Upstream \ discharges \qquad \boxtimes \quad Agricultural \ runoff$
- □ Septic tanks

 \Box Other(s), specify

B. Waterbody uses

Observed or evidences of the following uses. Check all that apply.

Domestic water supply		Industrial water supply
Park activities	\boxtimes	Other(s), specify <u>Plant canal</u>

C. Waterbody aesthetics

Check one of the following that best describes the aesthetics of the receiving water and the surrounding area.

- Wilderness: outstanding natural beauty; usually wooded or unpastured area; water clarity exceptional
- Natural Area: trees and/or native vegetation; some development evident (from fields, pastures, dwellings); water clarity discolored
- Common Setting: not offensive; developed but uncluttered; water may be colored or turbid
- Offensive: stream does not enhance aesthetics; cluttered; highly developed; dumping areas; water discolored

DOMESTIC TECHNICAL REPORT WORKSHEET 2.0

RECEIVING WATERS

The following is required for all TPDES permit applications

Section 1. Domestic Drinking Water Supply (Instructions Page 73)

Is there a surface water intake for domestic drinking water supply located within 5 miles downstream from the point or proposed point of discharge? Yes □ No ⊠

If yes, provide the following:

Owner of the drinking water supply:

Distance and direction to the intake:

Attach a USGS map that identifies the location of the intake.

Attachment:

Section 2. Discharge into Tidally Affected Waters (Instructions Page 73)

Does the facility discharge into tidally affected waters?

Yes 🗆 🛛 No 🖾

If yes, complete the remainder of this section. If no, proceed to Section 3.

A. Receiving water outfall

Width of the receiving water at the outfall, in feet:

B. Oyster waters

Are there oyster waters in the vicinity of the discharge?

Yes 🗆 No 🗆

If yes, provide the distance and direction from outfall(s).

C. Sea grasses

Are there any sea grasses within the vicinity of the point of discharge?

Yes 🗆 🛛 No 🗆

If yes, provide the distance and direction from the outfall(s).

Section 3. Classified Segments (Instructions Page 73)

Is the discharge directly into (or within 300 feet of) a classified segment?

Yes 🛛 No 🗆

If yes, this Worksheet is complete.

If no, complete Sections 4 and 5 of this Worksheet.

Section 4. Description of Immediate Receiving Waters (Instructions Page 75)

Name of the immediate receiving waters:

A. Receiving water type

Identify the appropriate description of the receiving waters.

- □ Stream
- □ Freshwater Swamp or Marsh
- □ Lake or Pond

Surface area, in acres:

Average depth of the entire water body, in feet:

Average depth of water body within a 500-foot radius of discharge point, in feet:

□ Man-made Channel or Ditch

	Open Bay
_	open buy

Tidal Stream, Bayou, or Marsh

Other, specify:

B. Flow characteristics

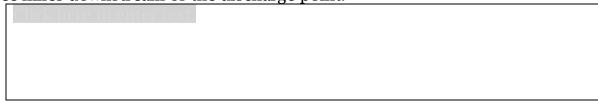
If a stream, man-made channel or ditch was checked above, provide the following. For existing discharges, check one of the following that best characterizes the area *upstream* of the discharge. For new discharges, characterize the area *downstream* of the discharge (check one).

Intermittent - dry for at least one week during most years

Intermittent with Perennial Pools - enduring pools with sufficient habitat to maintain significant aquatic life uses

Perennial - normally flowing

Check the method used to characterize the area upstream (or downstream for new dischargers).


USGS flow records

Historical observation by adjacent landowners

- Personal observation
- Other, specify:

C. Downstream perennial confluences

List the names of all perennial streams that join the receiving water within three miles downstream of the discharge point.

D. Downstream characteristics

Do the receiving water characteristics change within three miles downstream of the discharge (e.g., natural or man-made dams, ponds, reservoirs, etc.)? Ye

If yes, discuss how.

Click here to enter text.	

E. Normal dry weather characteristics

Provide general observations of the water body during normal dry weather conditions.

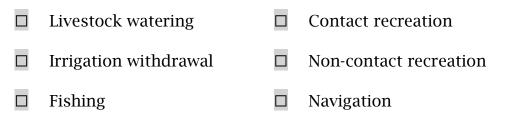
Date and time of observation:

Was the water body influenced by stormwater runoff during observations?

Yes 🗆 🛛 No 🗆

Section 5. General Characteristics of the Waterbody (Instructions Page 74)

A. Upstream influences


Is the immediate receiving water upstream of the discharge or proposed discharge site influenced by any of the following? Check all that apply.

- Oil field activities
 Urban runoff
- Upstream discharges
 Agricultural runoff
- □ Septic tanks

 \Box Other(s), specify

B. Waterbody uses

Observed or evidences of the following uses. Check all that apply.

Domestic water supply	Industrial water supply
Park activities	Other(s), specify <u>Plant canal</u>

C. Waterbody aesthetics

Check one of the following that best describes the aesthetics of the receiving water and the surrounding area.

- Wilderness: outstanding natural beauty; usually wooded or unpastured area; water clarity exceptional
- □ Natural Area: trees and/or native vegetation; some development evident (from fields, pastures, dwellings); water clarity discolored
- Common Setting: not offensive; developed but uncluttered; water may be colored or turbid
- Offensive: stream does not enhance aesthetics; cluttered; highly developed; dumping areas; water discolored

DOMESTIC WORKSHEET 4.0

POLLUTANT ANALYSES REQUIREMENTS*

The following is required for facilities with a permitted or proposed flow of 1.0 MGD or greater, facilities with an approved pretreatment program, or facilities classified as a major facility. See instructions for further details.

This worksheet is not required for minor amendments without renewal

Section 1. Toxic Pollutants (Instructions Page 87)

For pollutants identified in Table 4.0(1), indicate the type of sample.

Grab \boxtimes Composite \boxtimes

Date and time sample(s) collected: <u>3-8-21/0935 - Grab, 3-8-21/0935 - Comp</u>

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Acrylonitrile	<50		1	50
Aldrin	<0.01		1	0.01
Aluminum	160		1	2.5
Anthracene	<10		1	10
Antimony	<5		1	5
Arsenic	<0.5		1	0.5
Barium	17		1	3
Benzene	<10		1	10
Benzidine	<50		1	50
Benzo(a)anthracene	<5		1	5

Table 4.0(1) - Toxics Analysis

Page 53 of 80

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Benzo(a)pyrene	<5		1	5
Bis(2-chloroethyl)ether	<10		1	10
Bis(2-ethylhexyl)phthalate	<10		1	10
Bromodichloromethane	<10		1	10
Bromoform	<10		1	10
Cadmium	<1		1	1
Carbon Tetrachloride	<2		1	2
Carbaryl	<5		1	5
Chlordane*	<0.2		1	0.2
Chlorobenzene	<10		1	10
Chlorodibromomethane	<10		1	10
Chloroform	<10		1	10
Chlorpyrifos	<0.05		1	0.05
Chromium (Total)	<3		1	3
Chromium (Tri) (*1)	<3		1	N/A
Chromium (Hex)	<3		1	3
Copper	7		1	2
Chrysene	<5		1	5
p-Chloro-m-Cresol	<10		1	10
4,6-Dinitro-o-Cresol	<50		1	50
p-Cresol	<10		1	10

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Cyanide (*2)	<10	<10	4	10
4,4'- DDD	<0.1		1	0.1
4,4'- DDE	<0.1		1	0.1
4,4'- DDT	< 0.02		1	0.02
2,4-D	<0.7		1	0.7
Demeton (O and S)	<0.20		1	0.20
Diazinon	<0.5		1	0.5/0.1
1,2-Dibromoethane	<10		1	10
m-Dichlorobenzene	<10		1	10
o-Dichlorobenzene	<10		1	10
p-Dichlorobenzene	<10		1	10
3,3'-Dichlorobenzidine	<5		1	5
1,2-Dichloroethane	<10		1	10
1,1-Dichloroethylene	<10		1	10
Dichloromethane	<20		1	20
1,2-Dichloropropane	<10		1	10
1,3-Dichloropropene	<10		1	10
Dicofol	<1		1	1
Dieldrin	<0.02		1	0.02
2,4-Dimethylphenol	<10		1	10
Di-n-Butyl Phthalate	<10		1	10

	AVG Effluent	MAX Effluent	Number	MAL
Pollutant	Conc.	Conc.	of	(μg/l)
	(µg/l)	(µg/l)	Samples	
Diuron	<0.09		1	0.09
Endosulfan I (alpha)	< 0.01		1	0.01
Endosulfan II (beta)	<0.02		1	0.02
Endosulfan Sulfate	<0.1		1	0.1
Endrin	< 0.02		1	0.02
Ethylbenzene	<10		1	10
Fluoride	260		1	500
Guthion	<0.1		1	0.1
Heptachlor	< 0.01		1	0.01
Heptachlor Epoxide	< 0.01		1	0.01
Hexachlorobenzene	<5		1	5
Hexachlorobutadiene	<10		1	10
Hexachlorocyclohexane (alpha)	< 0.05		1	0.05
Hexachlorocyclohexane (beta)	< 0.05		1	0.05
gamma-Hexachlorocyclohexane	< 0.05		1	0.05
(Lindane)				
Hexachlorocyclopentadiene	<10		1	10
Hexachloroethane	<20		1	20
Hexachlorophene	<10		1	10
Lead	<0.5		1	0.5
Malathion	<0.1		1	0.1

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Mercury	< 0.005		1	0.005
Methoxychlor	<2		1	2
Methyl Ethyl Ketone	<50		1	50
Mirex	<0.02		1	0.02
Nickel	<2		1	2
Nitrate-Nitrogen	16,700		1	100
Nitrobenzene	<10		1	10
N-Nitrosodiethylamine	<20		1	20
N-Nitroso-di-n-Butylamine	<20		1	20
Nonylphenol	<333		1	333
Parathion (ethyl)	<0.1		1	0.1
Pentachlorobenzene	<20		1	20
Pentachlorophenol	<5		1	5
Phenanthrene	<10		1	10
Polychlorinated Biphenyls (PCB's) (*3)	<0.2		1	0.2
Pyridine	<20		1	20
Selenium	<5		1	5
Silver	<0.5		1	0.5
1,2,4,5-Tetrachlorobenzene	<20		1	20
1,1,2,2-Tetrachloroethane	<10		1	10

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Tetrachloroethylene	<10		1	10
Thallium	<0.5		1	0.5
Toluene	<10		1	10
Toxaphene	<0.3		1	0.3
2,4,5-TP (Silvex)	<0.3		1	0.3
Tributyltin (see instructions for explanation)	N/A		1	0.01
1,1,1-Trichloroethane	<10		1	10
1,1,2-Trichloroethane	<10		1	10
Trichloroethylene	<10		1	10
2,4,5-Trichlorophenol	<50		1	50
TTHM (Total Trihalomethanes)	<10		1	10
Vinyl Chloride	<10		1	10
Zinc	47		1	5

(*1) Determined by subtracting hexavalent Cr from total Cr.

(*2) Cyanide, amenable to chlorination or weak-acid dissociable.

(*3) The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248,

1260, and 1016.

Section 2. Priority Pollutants

For pollutants identified in Tables 4.0(2)A-E, indicate type of sample.

Grab \boxtimes Composite \boxtimes

Date and time sample(s) collected: <u>3-8-21/0935 - Grab, 3-8-21/0935 - Comp</u>

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Antimony	<5		1	5
Arsenic	<0.5		1	0.5
Beryllium	< 0.5		1	0.5
Cadmium	<1		1	1
Chromium (Total)	<3		1	3
Chromium (Hex)	<3		1	3
Chromium (Tri) (*1)	<3		1	N/A
Copper	7		1	2
Lead	<0.5		1	0.5
Mercury	< 0.005		1	0.005
Nickel	<2		1	2
Selenium	<5		1	5
Silver	<0.5		1	0.5
Thallium	<0.5		1	0.5
Zinc	47		1	5
Cyanide (*2)	<10	<10	4	10
Phenols, Total	<10	17.8	4	10

Table 4.0(2)A – Metals,	Cyanide, Phenols
-------------------------	------------------

(*1) Determined by subtracting hexavalent Cr from total Cr.

(*2) Cyanide, amenable to chlorination or weak-acid dissociable

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Acrolein	<50		1	50
Acrylonitrile	<50		1	50
Benzene	<10		1	10
Bromoform	<10		1	10
Carbon Tetrachloride	<2		1	2
Chlorobenzene	<10		1	10
Chlorodibromomethane	<10		1	10
Chloroethane	<50		1	50
2-Chloroethylvinyl Ether	<10		1	10
Chloroform	<10		1	10
Dichlorobromomethane				
[Bromodichloromethane]	<10		1	10
1,1-Dichloroethane	<10		1	10
1,2-Dichloroethane	<10		1	10
1,1-Dichloroethylene	<10		1	10
1,2-Dichloropropane	<10		1	10
1,3-Dichloropropylene				
[1,3-Dichloropropene]	<10		1	10
1,2-Trans-Dichloroethylene	<10		1	10
Ethylbenzene	<10		1	10
Methyl Bromide	<50		1	50
Methyl Chloride	<50		1	50
Methylene Chloride	<20		1	20
1,1,2,2-Tetrachloroethane	<10		1	10
Tetrachloroethylene	<10		1	10

Table 4.0(2)B - Volatile Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Toluene	<10		1	10
1,1,1-Trichloroethane	<10		1	10
1,1,2-Trichloroethane	<10		1	10
Trichloroethylene	<10		1	10
Vinyl Chloride	<10		1	10

Table 4.0(2)C - Acid Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
2-Chlorophenol	<10		1	10
2,4-Dichlorophenol	<10		1	10
2,4-Dimethylphenol	<10		1	10
4,6-Dinitro-o-Cresol	<50		1	50
2,4-Dinitrophenol	<50		1	50
2-Nitrophenol	<20		1	20
4-Nitrophenol	<50		1	50
P-Chloro-m-Cresol	<10		1	10
Pentalchlorophenol	<5		1	5
Phenol	<10		1	10
2,4,6-Trichlorophenol	<10		1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Acenaphthene	<10		1	10
Acenaphthylene	<10		1	10
Anthracene	<10		1	10
Benzidine	<50		1	50
Benzo(a)Anthracene	<5		1	5
Benzo(a)Pyrene	<5		1	5
3,4-Benzofluoranthene	<10		1	10
Benzo(ghi)Perylene	<20		1	20
Benzo(k)Fluoranthene	<5		1	5
Bis(2-Chloroethoxy)Methane	<10		1	10
Bis(2-Chloroethyl)Ether	<10		1	10
Bis(2-Chloroisopropyl)Ether	<10		1	10
Bis(2-Ethylhexyl)Phthalate	<10		1	10
4-Bromophenyl Phenyl Ether	<10		1	10
Butyl benzyl Phthalate	<10		1	10
2-Chloronaphthalene	<10		1	10
4-Chlorophenyl phenyl ether	<10		1	10
Chrysene	<5		1	5
Dibenzo(a,h)Anthracene	<5		1	5
1,2-(o)Dichlorobenzene	<10		1	10
1,3-(m)Dichlorobenzene	<10		1	10
1,4-(p)Dichlorobenzene	<10		1	10
3,3-Dichlorobenzidine	<5		1	5
Diethyl Phthalate	<10		1	10
Dimethyl Phthalate	<10		1	10

Table 4.0(2)D - Base/Neutral Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Di-n-Butyl Phthalate	<10		1	10
2,4-Dinitrotoluene	<10		1	10
2,6-Dinitrotoluene	<10		1	10
Di-n-Octyl Phthalate	<10		1	10
1,2-Diphenylhydrazine (as Azo-				
benzene)	<20		1	20
Fluoranthene	<10		1	10
Fluorene	<10		1	10
Hexachlorobenzene	<5		1	5
Hexachlorobutadiene	<10		1	10
Hexachlorocyclo-pentadiene	<10		1	10
Hexachloroethane	<20		1	20
Indeno(1,2,3-cd)pyrene	<5		1	5
Isophorone	<10		1	10
Naphthalene	<10		1	10
Nitrobenzene	<10		1	10
N-Nitrosodimethylamine	<50		1	50
N-Nitrosodi-n-Propylamine	<20		1	20
N-Nitrosodiphenylamine	<20		1	20
Phenanthrene	<10		1	10
Pyrene	<10		1	10
1,2,4-Trichlorobenzene	<10		1	10

	AVG	MAX		
	Effluent	Effluent	Number	MAL
Pollutant	Conc.	Conc.	of	(µg/l)
	(µg/l)	(µg/l)	Samples	
Aldrin	<0.01		1	0.01
alpha-BHC				
(Hexachlorocyclohexane)	< 0.05		1	0.05
beta-BHC				
(Hexachlorocyclohexane)	< 0.05		1	0.05
gamma-BHC				
(Hexachlorocyclohexane)	< 0.05		1	0.05
delta-BHC				
(Hexachlorocyclohexane)	< 0.05		1	0.05
Chlordane	<0.2		1	0.2
4,4-DDT	<0.02		1	0.02
4,4-DDE	<0.1		1	0.1
4,4,-DDD	<0.1		1	0.1
Dieldrin	<0.02		1	0.02
Endosulfan I (alpha)	< 0.01		1	0.01
Endosulfan II (beta)	<0.02		1	0.02
Endosulfan Sulfate	<0.1		1	0.1
Endrin	<0.02		1	0.02
Endrin Aldehyde	<0.1		1	0.1
Heptachlor	< 0.01		1	0.01
Heptachlor Epoxide	< 0.01		1	0.01
PCB-1242	<0.2		1	0.2
PCB-1254	<0.2		1	0.2
PCB-1221	<0.2		1	0.2
PCB-1232	<0.2		1	0.2

Table 4.0(2)E - Pesticides

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
PCB-1248	<0.2		1	0.2
PCB-1260	<0.2		1	0.2
PCB-1016	<0.2		1	0.2
Toxaphene	<0.3		1	0.3

* For PCBS, if all are non-detects, enter the highest non-detect preceded by a "<".

Section 3. Dioxin/Furan Compounds

- **A.** Indicate which of the following compounds from may be present in the influent from a contributing industrial user or significant industrial user. Check all that apply.
- 2,4,5-trichlorophenoxy acetic acid Common Name 2,4,5-T, CASRN 93-76-5 2-(2,4,5-trichlorophenoxy) propanoic acid Common Name Silvex or 2,4,5-TP, CASRN 93-72-1 2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate Common Name Erbon, CASRN 136-25-4 0.0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate Common Name Ronnel, CASRN 299-84-3 2,4,5-trichlorophenol Common Name TCP, CASRN 95-95-4 hexachlorophene Common Name HCP, CASRN 70-30-4 For each compound identified, provide a brief description of the conditions of its/their presence at the facility.

B. Do you know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin (TCDD) or any congeners of TCDD may be present in your effluent?

Yes 🗆 No 🗆

If **yes**, provide a brief description of the conditions for its presence.

If any of the compounds in Subsection A **or** B are present, complete Table 4.0(2)F.

For pollutants identified in Table 4.0(2)F, indicate the type of sample.

Grab 🗆 Composite 🗆

Date and time sample(s) collected:

Compound	Toxic Equivalency Factors	Wastewater Concentration (ppq)	Wastewater Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Equivalents (ppt)	MAL (ppq)
2,3,7,8 TCDD	1					10
1,2,3,7,8	0.5					50
2,3,7,8 HxCDDs	0.1					50
1,2,3,4,6,7,8 HpCDD	0.01					50
2,3,7,8 TCDF	0.1					10
1,2,3,7,8 PeCDF	0.05					50
2,3,4,7,8 PeCDF	0.5					50
2,3,7,8 HxCDFs	0.1					50
2,3,4,7,8	0.01					50
OCDD	0.0003					100
OCDF	0.0003					100
PCB 77	0.0001					0.5
PCB 81	0.0003					0.5

TABLE 4.0(2)F - DIOXIN/FURAN COMPOUNDS

Page 66 of 80

Compound	Toxic Equivalency Factors	Wastewater Concentration (ppq)	Wastewater Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Equivalents (ppt)	MAL (ppq)
PCB 126	0.1					0.5
PCB 169	0.03					0.5
Total						

DOMESTIC WORKSHEET 5.0

TOXICITY TESTING REQUIREMENTS

The following is required for facilities with a currently-operating design flow greater than or equal to 1.0 MGD, with an EPA-approved pretreatment program (or those that are required to have one under 40 CFR Part 403), or are required by the TCEQ to perform Whole Effluent Toxicity testing. This worksheet is not required for minor amendments without renewal.

Section 1. Required Tests (Instructions Page 97)

Indicate the number of 7-day chronic or 48-hour acute Whole Effluent Toxicity (WET) tests performed in the four and one-half years prior to submission of the application.

7-day Chronic: <u>12</u>

48-hour Acute:

Section 2. Toxicity Reduction Evaluations (TREs)

Has this facility completed a TRE in the past four and a half years? Or is the facility currently performing a TRE?

Yes □ No ⊠

If yes, describe the progress to date, if applicable, in identifying and confirming the toxicant.

<u>N/A</u>

Section 3. Summary of WET Tests

If the required biomonitoring test information has not been previously submitted via both the Discharge Monitoring Reports (DMRs) and the Table 1 (as found in the permit), provide a summary of the testing results for all valid and invalid tests performed over the past four and one-half years. Make additional copies of this table as needed.

Test Date	Test Species	NOEC Survival	NOEC Sub- lethal
Submitted			
via DMR			

Table 5.0(1) -	Summary of	WET Tests
----------------	------------	-----------

DOMESTIC WORKSHEET 6.0

INDUSTRIAL WASTE CONTRIBUTION

The following is required for all publicly owned treatment works (POTWs)

Section 1. All POTWs (Instructions Page 99)

A. Industrial users

Provide the number of each of the following types of industrial users (IUs) that discharge to your POTW and the daily flows from each user. See the Instructions for definitions of Categorical IUs, Significant IUs – non-categorical, and Other IUs.

If there are no users, enter 0 (zero).

Categorical IUs:

Number of IUs: <u>1</u>

Average Daily Flows, in MGD: <u>0.003</u>

Significant IUs - non-categorical:

Number of IUs: <u>0</u>

Average Daily Flows, in MGD: 0

Other IUs:

Number of IUs: <u>0</u>

Average Daily Flows, in MGD: 0

B. Treatment plant interference

In the past three years, has your POTW experienced treatment plant interference (see instructions)?

Yes 🗆 No 🖂

If yes, identify the dates, duration, description of interference, and probable cause(s) and possible source(s) of each interference event. Include the names of the IUs that may have caused the interference.

N/A

C. Treatment plant pass through

In the past three years, has your POTW experienced pass through (see instructions)?

Yes 🗆 🛛 No 🖂

If yes, identify the dates, duration, a description of the pollutants passing through the treatment plant, and probable cause(s) and possible source(s) of each pass through event. Include the names of the IUs that may have caused pass through.

<u>N/A</u>

D. Pretreatment program

Does your POTW have an approved pretreatment program?

Yes 🖂 🛛 No 🗆

If yes, complete Section 2 only of this Worksheet.

Is your POTW required to develop an approved pretreatment program? Yes No

If yes, complete Section 2.c. and 2.d. only, and skip Section 3.

If no to either question above, skip Section 2 and complete Section 3 for each significant industrial user and categorical industrial user.

Section 2. POTWs with Approved Programs or Those Required to Develop a Program (Instructions Page 100)

A. Substantial modifications

Have there been any **substantial modifications** to the approved pretreatment program that have not been submitted to the TCEQ for approval according to *40 CFR §403.18*?

Yes □ No ⊠

If yes, identify the modifications that have not been submitted to TCEQ, including the purpose of the modification.

N/A

B. Non-substantial modifications

Have there been any **non-substantial modifications** to the approved pretreatment program that have not been submitted to TCEQ for review and acceptance?

Yes □ No ⊠

If yes, identify all non-substantial modifications that have not been submitted to TCEQ, including the purpose of the modification.

<u>N/A</u>

C. Effluent parameters above the MAL

In Table 6.0(1), list all parameters measured above the MAL in the POTW's effluent monitoring during the last three years. Submit an attachment if necessary.

Pollutant	Concentration	MAL	Units	Date
See attached				
table				

Table 6.0(1) - Parameters Above the MAL

Pollutant	Concentration	MAL	Units	Date

D. Industrial user interruptions

Has any SIU, CIU, or other IU caused or contributed to any problems (excluding interferences or pass throughs) at your POTW in the past three years?

Yes 🗆 🛛 No 🖂

If yes, identify the industry, describe each episode, including dates, duration, description of the problems, and probable pollutants.

<u>N/A</u>

Section 3. Significant Industrial User (SIU) Information and Categorical Industrial User (CIU) (Instructions Page 100)

A. General information

Company Name: <u>Senior Flexonics Pathway</u>

SIC Code: <u>3443</u>

Telephone number: <u>830-629-8080</u> Fax number:

Contact name: <u>Craig Banning</u>

Address: 2400 Longhorn Industrial Dr.

City, State, and Zip Code: <u>New Braunfels, TX 78130</u>

B. Process information

Describe the industrial processes or other activities that affect or contribute to the SIU(s) or CIU(s) discharge (i.e., process and non-process wastewater).

Senior Flexonics is a fabricator of metal hardware products that has the potential to discharge process wastewater subject to 40 CFR 420.106(b)(2) Iron and Steel Manufacturing Point Source Category, Subpart J-Cold Worked Pipe and Tube Mills using oil Solution.

C. Product and service information

Provide a description of the principal product(s) or services performed.
Fabricator of metal hardware products, expansion joints
D. Flow rate information
See the Instructions for definitions of "process" and "non-process wastewater."
Process Wastewater:
Discharge, in gallons/day: <u>570</u>
Discharge Type: 🛛 Continuous 🗆 Batch 🛛 Intermittent
Non-Process Wastewater:
Discharge, in gallons/day: <u>2,586</u>
Discharge Type: 🛛 Continuous 🗆 Batch 🔲 Intermittent
E. Pretreatment standards
Is the SIU or CIU subject to technically based local limits as defined in the instructions?
Yes 🖂 No 🗆
Is the SIU or CIU subject to categorical pretreatment standards found in 40 CFR Parts 405-471?
Yes 🖂 No 🗆
If subject to categorical pretreatment standards , indicate the applicable category and subcategory for each categorical process.

	420.106(b)(categories:		
Category:	Click here t	to enter text.	
Sub	categories:		
Category:			
Sub	categories:		
	-		
Category:			
Sub	categories:		

Category: Subcategories:

F. Industrial user interruptions

Has the SIU or CIU caused or contributed to any problems (e.g., interferences, pass through, odors, corrosion, blockages) at your POTW in the past three years?

Yes □ No ⊠

If yes, identify the SIU, describe each episode, including dates, duration, description of problems, and probable pollutants.

A. Effluent parameters above the MAL

In Table 6.0(1), list all parameters measured above the MAL in the POTW's effluent monitoring during the last three years. Submit an attachment if necessary.

Pollutant	Concentration	MAL	Units	Date
Aluminum	160	2.5	Ug/l	3-8-21
Barium	17	3.0	Ug/l	3-8-21
Copper	7	2.0	Ug/l	3-8-21
Nitrate-Nitrogen	16,700	100	Ug/l	3-8-21
Zinc	47	5.0	Ug/l	3-8-21
Arsenic	0.60	0.5	Ug/l	4-14-20
Aluminum	85.0	2.5	Ug/l	4-14-20
Barium	11.0	3.0	Ug/l	4-14-20
Copper	5	2.0	Ug/l	4-14-20
Zinc	34	5.0	Ug/l	4-14-20
Phenols, Total	50.05	10.0	Ug/l	4-14-20
Arsenic	0.50	0.5	Ug/l	7-28-20
Aluminum	170.0	2.5	Ug/l	7-28-20
Barium	14.0	3.0	Ug/l	7-28-20
Copper	14.0	2.0	Ug/l	7-28-20
Nickel, Total	2.0	2.0	Ug/l	7-28-20
Zinc	34.0	5.0	Ug/l	7-28-20
Arsenic	0.5	0.5	Ug/l	5-14-19
Aluminum	780.0	2.5	Ug/l	5-14-19
Arsenic	0.5	0.5	Ug/l	5-14-19

Table 6.0(1) – Parameters Above the MAL

Barium	8.0	3.0	Ug/l	5-14-19
Copper	12.0	2.0	Ug/l	5-14-19
Nitrate-Nitrogen	16300.0	100	Ug/l	5-14-19
Zinc	30.0	5.0	Ug/l	5-14-19
Phenols, Total	11.60	10.0	Ug/l	5-14-19
Fluoride	670.0	100	Ug/l	5-14-19
Aluminum	140.0	2.5	Ug/l	10-22-19
Barium	13.0	3.0	Ug/l	10-22-19
Copper	8.0	2.0	Ug/l	10-22-19
Nickel	2.0	2	Ug/l	10-22-19
Zinc	38.0	5	Ug/l	10-22-19

LIST OF ATTACHMENTS NEW BRAUNFELS UTILITIES SAM C. MCKENZIE, JR. WATER RECLAMATION FACILITY

- Attachment A Core Data Form (Admin Report 1.0, Section 3.C)
- Attachment B USGS Map (Admin. Report 1.0, Section 13)
- Attachment C Supplemental Technical Reports (Tech Report 1.0, Section 2.A and B)
- Attachment D Flow Schematics (Tech Report 1.0, Section 2.C)
- Attachment E Site Drawing (Tech Report 1.0, Section 3)
- Attachment F Justification for Plant Construction (Tech Report 1.0, Section 4)
- Attachment G Summary Submittal Letters and TCEQ Approval Letters (Tech. Report 1.0, Section 6.A)
- Attachment H Final Effluent Analysis (Tech Report 1.0, Section 7, worksheet 4.0)

ATTACHMENT A

CORE DATA FORM

NEW BRAUNFELS UTILITIES SAM C. MCKENZIE, JR. WATER RECLAMATION FACILITY

May 2021

TCEQ Core Data Form

For detailed instructions regarding completion of this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

	1. 001		nation									
1. Reason fo	or Submis	sion (If other is	checked pleas	e descri	ibe in s	space p	orovide	ed.)				
New Per	New Permit, Registration or Authorization (Core Data Form should be submitted with the program application.)											
🛛 Renewa	I (Core Da	ata Form should	be submitted v	vith the	renewa	al form,)		Other			
2. Customer	Referenc	e Number (if is	sued)			ik to sea		3. Re	gulat	ed Entity Referenc	e Number (if issued)
CN 6005	CN 600522957			for CN or RN numbers Central Registry**								
SECTION	II: Cu	stomer Inf	ormation									
4. General C	ustomer I	nformation	5. Effective	e Date fo	or Cus	stomer	Infor	matio	ר Upd	dates (mm/dd/yyyy)		
New Cust		me (Verifiable wi		Update Secretar					troller	Change in Change in of Public Accounts)	0	Entity Ownership
The Custo	mer Nar		here may	be upo	dated	auto	matio	cally	base	ed on what is cu		active with the
6. Customer	Legal Na	me (If an individua	al, print last narr	ne first: e	g: Doe,	John)		<u> </u>	new (Customer, enter prev	ious Custom	er below:
New Brau	New Braunfels Utilities											
7. TX SOS/CI	PA Filing	Number	8. TX State	e Tax ID	D (11 digits) 9. Federal Tax ID (9 digits) 10. DUNS Num			S Number (if applicable)				
11. Type of C	Customer	: Corpora	tion			Individ	ual		F	Partnership: 🗖 Gene	ral 🔲 Limited	
Government:	🛛 City 🗖	County 🔲 Federal (🗌 State 🔲 Othe	r		Sole P	roprie	torship		Other:		
12. Number (of Employ 21-100	/ees	251-500		501 ar	nd high	er	1 [3. Inc	dependently Owned s 🛛 No	and Opera	ited?
14. Custome	r Role (Pr	oposed or Actual)	– as it relates to	the Reg	gulated	Entity li	sted or	n this fo	rm. Pl	lease check one of the	following	
Owner Occupatio	nal Licens	ee Resp	ator onsible Party			wner & oluntary			oplica	int Other:		
	263 M	lain Plaza										
15. Mailing Address:		1		ľ		I					I	
	City	New Braun	nfels	St	tate	TX		ZIP	78	3131	ZIP + 4	
16. Country I	Mailing In	formation (if outs	side USA)				17. E	E-Mail	Addre	ess (if applicable)		
							blu	ndma	ırk@	nbutexas.com		
18. Telephor	ne Numbe	r		19. E>	ktensio	on or (Code			20. Fax Numbe	er <i>(if applical</i>	ble)
(830) 608-8900									()	-		

SECTION III: Regulated Entity Information

21. General Regulated Entity Information (<i>If 'New Regulated Entity" is</i> selected below this form should be accompanied by a permit application)					
New Regulated Entity	Update to Regulated Entity Name 🔲 Update to Regulated Entity Information				

The Regulated Entity Name submitted may be updated in order to meet TCEQ Agency Data Standards (removal of organizational endings such as Inc, LP, or LLC).

22. Regulated Entity Name (Enter name of the site where the regulated action is taking place.)

Sam C. McKenzie, Jr. Water Reclamation Facility WWTP

State ZIP ZIP + 4					
adalupe					
Enter Physical Location Description if no street address is provided.					
25. Description to Physical Location: approximately 4.0 miles southeast of the City of New Braunfels and 0.6 mile downstream from the Lake Dunlap Dam on the Guadalupe River					
26. Nearest City State Nearest ZIP Code					
TX 78130					
29.653456 28. Longitude (W) In Decimal: -98.058648					
es Seconds Degrees Minutes Seconds					
39 12.4 -98 3 31.1					
30. Secondary SIC Code (4 digits) (5 or 6 digits) 31. Primary NAICS Code (5 or 6 digits) 32. Secondary NAICS Code (5 or 6 digits)					
ess of this entity? (Do not repeat the SIC or NAICS description.)					
r from domestic and commercial sources					
263 Main Plaza					
ty New Braunfels State TX 7IP 78131 7IP + 4					
00 () -					
39 12.4 -98 3 31.1 30. Secondary SIC Code (4 digits) 31. Primary NAICS Code (5 or 6 digits) 32. Secondary NAICS Code (5 or 6 digits) ess of this entity? (Do not repeat the SIC or NAICS description.) r from domestic and commercial sources					

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance.

Dam Safety	Districts	Edwards Aquifer	Emissions Inventory Air	🔲 Industrial Hazardous Waste
Municipal Solid Waste	New Source Review Air	OSSF 0	Petroleum Storage Tank	PWS
Sludge	Storm Water	🔲 Title V Air	Tires	Used Oil
Uvoluntary Cleanup	🛛 Waste Water	UWastewater Agriculture	UWater Rights	Other:

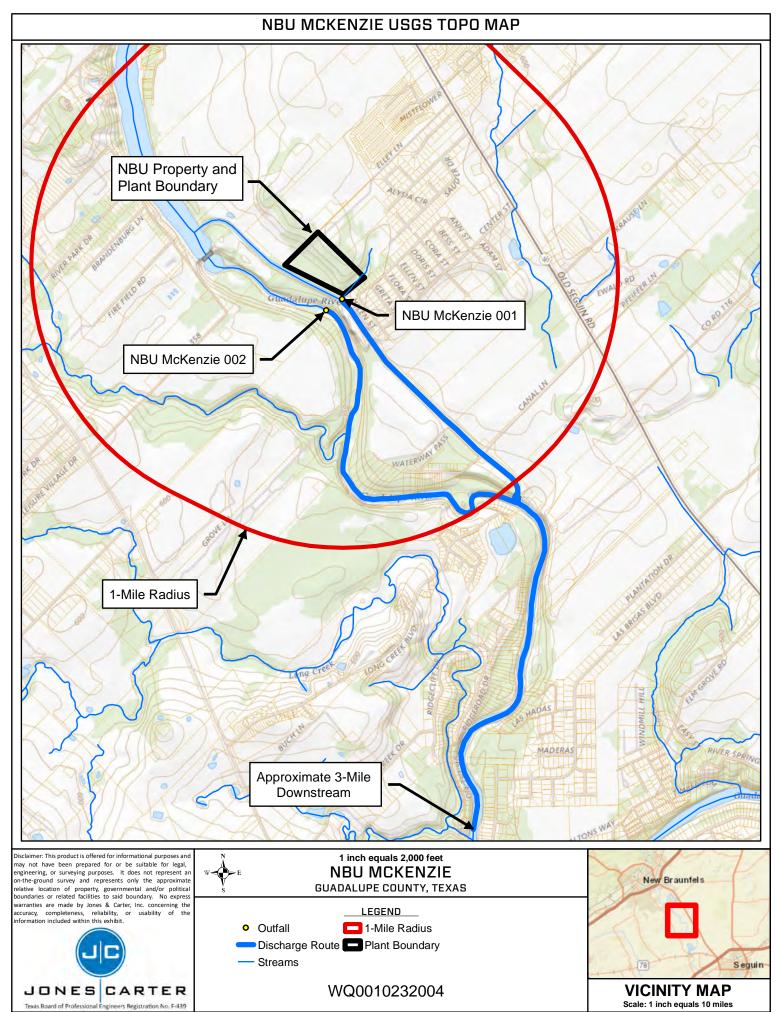
SECTION IV: Preparer Information

40. Name:	Jonathan Nguyen		41. Title:	Permit Specialist
42. Telep	ohone Number 43. Ext./Co	le 44. Fax Number	45. E-Mail	Address
(512)	685-5156	() -	jnguyen	@jonescarter.com

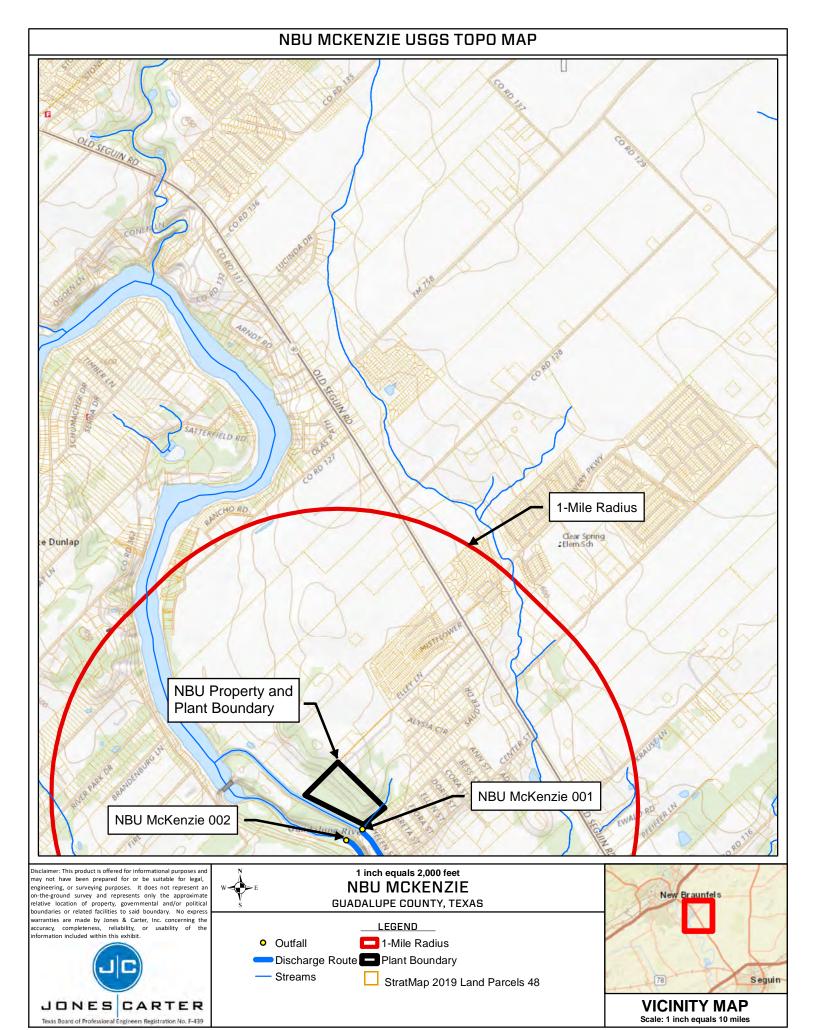
SECTION V: Authorized Signature

46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39.

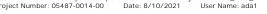
Company:	New Braunfels Utilities	C00			
Name (In Print):	Ryan Kelso	Phone:	(830) 608- 8900		
Signature:				Date:	


ATTACHMENT B

USGS MAP


NEW BRAUNFELS UTILITIES SAM C. MCKENZIE, JR. WATER RECLAMATION FACILITY

May 2021



Path: V:\Practice Workspace\Corporate Services\GIS\Projects\05487_NBU_McKenzie\Projects\NBU_McKenzie_USGS_Topo_Map_8.5X11.mxd Project Number: 05487-0014-00 Date: 5/11/2021 User Name: ada1

Path: V:\Practice Workspace\Corporate Services\GIS\Projects\05487_NBU_McKenzie\Projects\NBU_McKenzie_North_Exhibit_8.5X11.mxd Date: 8/10/2021 Project Number: 05487-0014-00 User Name: ada1

ATTACHMENT C

SUPPLEMENTAL TECHNICAL REPORT

NEW BRAUNFELS UTILITIES SAM C. MCKENZIE, JR. WATER RECLAMATION FACILITY

MAY 2021

SUPPLEMENTAL TECHNICAL REPORT

DOMESTIC WASTEWATER PERMIT RENEWAL

for

NEW BRAUNFELS UTILITIES SAM C. McKENZIE JR. WATER RECLAMATION FACILITY GUADALUPE COUNTY, TEXAS

MAY 2021 JC Job No. 05487-0014-00

I. INTRODUCTION

The purpose of this report is to provide additional information pertaining to items in the Domestic Administrative Report and the Domestic Technical Report for the permit renewal application to the Sam C. McKenzie Jr. Water Reclamation Facility (WRF). The permit includes the existing operational Interim I - 2.5 MGD Phase and the future phases: Interim II – 4.9 MGD, Interim III – 7.5 MGD, and Final Phase – 9.9 MGD.

The WRF facilities are located approximately 4.0 miles southeast of the City of New Braunfels, 0.7 mile southwest of the intersection of State Highway 46 and Elley Lane, and 0.6 mile downstream from Lake Dunlap Dam on the Guadalupe River in Guadalupe County, Texas 78130.

II. LOCATION INFORMATION

Please see Item 7 of the Domestic Administrative Report 1.0 for specific location information. A USGS Map with the required site information in the Attachments section of this application.

III. TREATMENT UNITS

(For Item 3 of Technical Report 1.0)

The current facility is sized to treat 2.5 MGD. Future facilities will be constructed in three operational phases with total design flows as described in Section I. A detailed description of the treatment process for each phase is presented below:

A. Existing Interim I Phase – 2.5 MGD

The existing phase of the facility is a permanent concrete plant designed and constructed to treat the plant capacity of 2.5 MGD. The treatment processes consist of preliminary treatment, secondary treatment, tertiary treatment, and sludge handling. The preliminary treatment process includes a headworks structure with mechanical screening and grit removal upstream of the main facility lift station. The headworks also includes septage receiving station. The secondary treatment consists of an enhanced biological phosphorus removal (EBPR) process where 80% of the screened influent flows through an anaerobic-oxic (AO) process scheme. The remaining 20% of screened influent is mixed with the return activated sludge (RAS) and is sent through anoxic selector basins (one per treatment train) to reduce the dissolved oxygen (DO) and nitrate content of the RAS prior to introducing it to the anaerobic basins. The main process unit (MPU) has a single influent channel and rapid mix basin ahead of two parallel treatment trains. Each treatment train consists of one anaerobic basin, one aeration basin, one clarifier loading basin, one secondary clarifier, and one anoxic selector basin. An alum dosing system is provided as a backup to the biological phosphorous removal process. Each treatment train also includes a secondary clarifier with a hydraulic differential sludge removal mechanism. The tertiary treatment process consists of a single multi-compartmented, low-head, automatically backwashing tertiary filter; two ultraviolet (UV) disinfection channels; flow measurement; and post aeration. The sludge handling process consists of two mechanical fine screens, a two-stage membrane thickener, two aerobic digesters, and one belt filter press. Additional facilities include a non-potable water system, a sodium hypochlorite chemical disinfection system for the non-potable water system, a clean-in-place chemical system for the membrane thickeners, positive displacement blowers that provide process air for secondary treatment and for the digesters, and sludge and permeate pumps.

In this phase, raw sewage enters the screening structure from the gravity collection system. Screened influent flows to the aerated grit chamber where fine grit is separated and removed. The screened influent flows to the onsite lift station where it is pumped to the MPU influent channel. Flow is

distributed proportionally to the rapid mix basin and to the two parallel treatment trains as described above. Return activated sludge (RAS) is air lifted to the rapid mix basin from the secondary clarifiers. Clarified effluent from the MPU flows to the tertiary filter. Filtered effluent then flows through ultraviolet (UV) disinfection channels for pathogen inactivation. The final effluent from the UV disinfection basin then flows through a Parshall flume for flow measurement, through a post aeration basin for oxygen addition, and to an outfall selection box. The WRF is permitted to discharge in two different manners: Outfall 001 located on the Lake Dunlap Hydroelectric Plant Canal and Outfall 002 located on the Guadalupe River below Comal River in segment No. 1804.

Waste activated sludge (WAS) flows by gravity from the secondary clarifiers to the two aerobic digesters where volatile organics are reduced to stabilize the sludge. Scum is collected from the clarifiers and is pumped to the aerobic digesters. The WAS and scum pass through mechanical screens prior to discharging into the aerobic digesters. WAS is transferred by air lift from the aerobic digesters to the membrane thickeners. Permeate from the membrane thickeners is pumped to the non-potable water wet well. Thickened sludge is returned to the aerobic digesters. This belt press system for dewatering and then sludge cake is collected and hauled to a permitted landfill and filtrate is returned to the onsite lift station.

B. Proposed Interim II Phase – 4.9 MGD

The proposed Interim II Phase WRF will include all portions of the Interim Phase I WRF. The headworks will have mechanical and manual screens sized for the Interim II Phase. The lift station will be expanded and additional pump capacity will be provided for the Interim II Phase. A flow splitting structure will be constructed to receive flow from the lift station and distribute flow proportionally to the existing main process unit (Plant No. 1) and the proposed main process unit (Plant No. 2). The proposed Plant No. 2 will include two treatment trains and will operate in the same manner as Plant No. 1. Two additional tertiary filters will be constructed. Additional UV disinfection modules will be installed at the existing UV disinfection basin. A second alum polishing system dedicated to Plant No. 2 will be constructed. A WAS pump station will be constructed to pump WAS from the clarifiers to the aerobic digesters. Three aerobic digesters will be constructed, and the mechanical fine screens and membrane thickeners will be replaced.

C. Proposed Interim III Phase – 7.5MGD

The proposed Interim III Phase WRF will include all portions of the Interim II Phase WRF. The headworks will have mechanical and manual screens sized for the Interim III Phase. A second aerated grit chamber will be constructed. The lift station pumps will be replaced and sized for the Interim III Phase. A new main process unit (Plant No. 3) with one treatment train will be constructed and will operate in the same manner as the existing Plant Nos. 1 and 2, including a third alum polishing system. One additional tertiary filter will be constructed. Additional UV modules will be installed at the existing UV disinfection basin. A second WAS pump station will be constructed that is dedicated to Plant No. 3. A new solids treatment train will be constructed and will consist of two aerobic digesters, two mechanical screens and one membrane thickening unit. One new belt filter press will be installed in this phase.

D. Proposed Final Phase – 9.9 MGD

The Final Phase WRF will include all portions of the Interim III Phase WRF. The headworks will have mechanical and manual screens sized for the Final Phase. The lift station pumps will be replaced and additional pump capacity will be provided for the Final Phase. A second treatment train will be constructed at Plant No. 3 and will operate in the same manner as the existing Plant No. 3 treatment train. The existing alum polishing system dedicated to Plant No. 3 will be expanded in capacity. One new

tertiary filter will be constructed. Additional UV disinfection modules will be installed at the existing basin. Two new aerobic digesters, and one new mechanical fine screen, and one new membrane thickening unit will be constructed in this phase.

IV. DESIGN CALCULATIONS AND FEATURES

(For Item 3b of Technical Report 1.0 & Item 4 of Technical Report 1.1)

Design calculations are provided as part of this report on the following pages for Interim Phase II - 4.9 MGD, Interim Phase III - 7.5 MGD, and Final Phase - 9.9 MGD.

The current facilities and all future expansions will be equipped with design features to prevent overflows or bypassing of untreated wastewater. These features include the following:

- Electrical power is supplied by the utility company overhead power lines or by onsite standby power generation equipment. Additional standby generators in parallel will be installed with each facility expansion as necessary to meet power requirements.
- All process and equipment alarms for items such as equipment failures, high levels, etc. will be automatically sent to NBU's SCADA system where it will notify the Operator 24/7.
- Standby equipment will be provided at all major treatment units and pump stations to ensure operation in the event of equipment being out of service for repair or maintenance (i.e. standby pump in the lift station, standby blower at each blower bank, backup manual bar screen at the headworks, spare UV modules for disinfection, etc.) to prevent overflows and/or bypass of untreated wastewater.
- High level alarms are included in the lift station, UV disinfection basin, and aerobic digesters to notify the Operator to prevent overflows.
- A standpipe is installed at the aerobic digesters to allow overflow to drain to the lift station.

I. SCOPE

The existing Interim I – 2.5 MGD facility is a permanent concrete plant operating as an enhanced biological phosphorus removal anaerobic-oxic (A-O) process with an anoxic selector. Preliminary treatment units include the existing headworks with mechanical screens, an existing grit removal system, and a submersible lift station. The existing secondary treatment unit (Plant No. 1) consists of two treatment trains, a common influent channel and a rapid mix basin. Each treatment train consists of one anaerobic basin, one anoxic basin, one aeration basin, and one secondary clarifier operating as an enhanced biological phosphorus removal (EBPR) process. The tertiary treatment unit includes one multi-compartmented, low-head, automatically backwashing filter. The solids treatment units include two aerobic digesters with two-stage membrane thickening units, and one belt filter press. The disinfection unit includes a two-channel basin with in-channel UV disinfection equipment. Final effluent from the plant is measured by a Parshall flume, and is aerated to increase the dissolved oxygen concentration prior to release at the permitted discharge locations. Additional treatment equipment includes positive displacement blowers, a non-potable water system with chemical disinfection, and an alum chemical dosing system.

I. SCOPE

The proposed Interim II – 4.9 MGD facility will be a permanent concrete plant operating as an enhanced biological phosphorus removal anaerobic-oxic (A-O) process with an anoxic selector. The existing 2.5 MGD main process unit (Plant No. 1) will still be sized for 2.5 MGD but will only receive 2.45 MGD of flow at average daily flow (ADF) in this phase. The Interim II facility will include the existing 2.45 MGD Plant No. 1, existing facilities, and a proposed 2.45 MGD main process unit (Plant No. 2). Preliminary treatment units include the existing headworks, an existing grit removal system, and an expanded submersible lift station. The existing tertiary dual-media filters and aerobic digesters will also be expanded. The existing UV disinfection channels will be utilized and additional UV treatment modules will be installed. New process units include a flow splitting structure; anaerobic basins; anoxic basins; rapid mix basin; aeration basins; secondary clarifiers; dual media, multi-compartmented, low-head, automatically backwashed filter; aerobic digesters; membrane thickeners, and positive displacement blowers. No changes are proposed for the existing belt filter press facility.

II. WASTEWATER TREATMENT PLANT DESIGN

A. DESIGN CRITERIA

1. Daily Effluent Limits

a.	BOD ₅	 10 mg/L
u.	0005	10 1116/ 6

- b. TSS = 15 mg/L
- a. $NH_3-N = 3 mg/L$
- b. Total Phosphorus = 1 mg/L
- c. DO = 4 mg/L
- f. E Coli = 126 number colonies/100 mL

2. Process Criteria

The criteria used for the constructed aeration basins was based on TCEQ Chapter 217.

a.	Minimum Hydraulic Detention Time for Aerated Grit Chamber (minutes)	=	3.0
b.	Minimum Detention Time for Anaerobic Basins (hours)	=	1.5*
c.	Maximum Aeration Basin Organic Loading (lbs BOD₅/day/1,000 ft³)	=	35

d.	Maximum Clarifier Surface Loading at Peak Flow (gal/day/ft²)	=	1,200
e.	Minimum Clarifier Detention Time (hours)	-	1.8
f.	Maximum Clarifier Weir Loading at Peak Flow (gal/day/ft)	=	30,000
g.	Maximum Filter Flux Rate at Peak Flow for Dual Media, Multi-Compartmented, Low-Head, Automatically Backwashed Filter at Peak Flow (gal/min/ft ²)	=	4
h.	Minimum Backwash Flux Rate for Dual Media, Multi- Compartmented, Low-Head, Automatically Backwashed Filter (gpm/ft²)	=	20
i.	Minimum Solids Retention Time in Aerobic Digester* (days)	=	28**
j.	Minimum Air Required for Digester (scfm/1,000 ft³)	=	30
k.	Minimum Oxygen Required for Aeration Basins (lbs O2/1 lb BOD5)	=	2.2

*WEF MOP 8, fifth edition, 14-58

**28-day SRT utilized instead of a 40-day SRT for use of a multi-stage digester per EPA publication "Control of Pathogens and Vector Attraction in Sewage Sludge."

B. TREATMENT FACILITIES

1. <u>Flow</u>

a.	Average (Design)	=	1.0Q	=	4,900,000 gpd	-	3,403 gpm
b.	Peak (2-hour)	=	4.0Q	=	19,600,000 gpd	=	13,611 gpm

2. Influent Composition

The following influent wastewater compositions are based on multi-part grab samples and composite samples collected at the existing headworks throughout 2019 and 2020 as the design basis for the Interim II facilities. The design values for BOD₅, TSS, NH₃-N, TP were calculated by adding one (1) standard deviation to the average.

a.	BOD ₅	=	340 mg/L
b.	TSS	=	300 mg/L
c.	NH3-N	Η	50 mg/L
d.	ΤΚΝ	=	60 mg/L
e.	TP	=	8 mg/L

3. Organic Loadings

a.	BOD ₅		(4.9 MGD)(8.34)(340 mg/L)	=	13,894 lbs BOD ₅ /day
b.	TSS	=	(4.9 MGD)(8.34)(300 mg/L)	=	12,260 lbs TSS/day
c.	NH₃-N	=	(4.9 MGD)(8.34)(50 mg/L)	=	2,043 lbs NH₃-N/day
d.	Total P	=	(4.9 MGD)(8.34)(8 mg/L)	=	327 lbs P/day

4. Process Basins and Equipment

- a. <u>Screening</u>. The headworks has two mechanical screens, each with a minimum hydraulic capacity of 19.60 MGD, the design peak flow of the Interim II facility. The existing manual screen provides redundancy and has a minimum hydraulic capacity of 19.60 MGD. A conveyor collects and moves screenings from the mechanical screens to a dumpster to be hauled offsite to a permitted landfill.
- b. <u>Grit Removal System</u>. One existing grit basin and cyclonic degritter with classifier removes grit from screened influent. A bypass will route flow from the screening area to the wet well in the event that the grit removal equipment is out of service.
- c. <u>Lift Station</u>. The submersible lift station consists of one wet well. A second wet well will be constructed and will be hydraulically linked to the existing wet well. Six pumps across both wet wells, five duty and one standby, will be installed to provide a firm hydraulic pumping capacity of 13,611 gpm at the design peak flow of the facility.

- d. <u>Flow Splitter</u>. All flow will be pumped from the lift station to a new flow splitter. The flow splitter will use weirs to distribute flow proportionately to two main process units (Plant Nos. 1 & 2) based on the following splits.
 - i. Plant No. 1 2.45 MGD
 - ii. Plant No. 2 2.45 MGD

e. Secondary Treatment.

<u>Plant No. 1 – 2.45 MGD.</u> The existing secondary treatment plant consists of a common influent channel, rapid mix basin and two treatment trains. Each treatment train consists of one anoxic selector basin, one anaerobic basin, one aeration basin, one aerated clarifier loading basin, and one secondary clarifier operating as an enhanced biological phosphorus removal anaerobic-oxic (A-O) process with an anoxic selector. Phosphorous is removed through the A-O process with alum addition as a secondary treatment method. Nitrogen removal is limited to treatment of the return activated sludge side stream. The intent of the partial nitrogen removal is only to help promote the biological phosphorous removal process by reducing the amount of nitrates in the process.

Anaerobic Basins

i.	Required Volume at Average Daily Flow (2,450,000 gal/day)(1.5 hr)/(24 hr/day)/(7.48gal/ft³)	=	20,471 ft ³
ii.	Existing Volume 2(16 ft)(46 ft)(16 ft)	=	23,552 ft ³
iii.	Actual Hydraulic Retention Time at Average Daily Flow (23,552 ft³)(7.48gal/ft³)(24 hr/day)/(2,450,000 gal/day)	=	1.7 hrs
<u>Aeratio</u>	n Volume		
i.	Required Volume Using Traditional Design Method (2.45 MGD)(8.34)(340 mg/L)/(35 lb BOD _s /1000 ft ³)	=	198,492 ft ³
ii.	Existing Volume (Irregular Polygon w/ Aerated Loading Basins) 2(16 ft)(6,262.5 ft²) + 2(14.56 ft)(130 ft²)	=	204,186 ft ³
iii.	Actual Organic Loading Treated (2.45 MGD)(8.34)(340 mg/L)/(204,186 ft ³)	=	34.0 lb BOD₅/1000 ft ³

Anoxic Selector Basins for RAS Side Stream

i.	Design Flow to Anoxic Basins (20% Influent Flow to Plant No. 1) + (Minimum RAS Flow) (0.2)(2,450,000 gpd) + (614 gpm)(2)(1,440 min/day)	=	2,258,320 gpd
ii.	Required Volume at Average Daily Flow (2,258,320 gpd)(0.5 hr)/(24 hr/day)/(7.48gal/ft ³)	=	6,290 ft ³
iii.	Existing Volume 2(17.19 ft)(16 ft)(16 ft)	=	8,801 ft ³
iv.	Actual Hydraulic Retention Time (8,801 ft³)(7.48gal/ft³)(24 hr/day)/(2,258,320 gal/day)	=	0.70 hrs
<u>Second</u>	ary Clarifiers		
i.	Required Surface Area At Peak Flow (2.45 MGD)(4)(10 ⁶ gal/MG)/1200 gal/day/ft²		8,167 ft²
ii.	Existing Surface Area (Octagonal Sides) 2{(75 ft)² − [(75 ft)/((1/√2) +(1/√2) + 1)]²}	=	9,320 ft²
iii.	Existing Surface Loading at Peak Flow (2.45 MGD)(4)(10 ⁶ gal/MG)/(9,320 ft ²)	=	1,052 gpd/ft ²
iv.	Existing Clarifier Side Water Depth	=	14.5 ft
v.	Existing Hydraulic Detention Time at Peak Flow (9,320 ft²)(14.5 ft)(7.48 gal/ft³)(24 hr/day)/ (10 ⁶ gallons/MG)(2.45 MGD)(4)	=	2.47 hours
vi.	Existing Clarifier Weir Length (2)(430 ft)	=	860 ft
vii.	Existing Weir Loading at Peak Flow (2.45 MGD)(10 ⁶ gpd)(4)/(860 ft)	=	11,395 gpd/ft

<u>Plant No. 2 – 2.45 MGD.</u> The proposed secondary treatment plant consists of a common influent channel, rapid mix basin, and two treatment trains. Each treatment train consists of one anoxic selector basin, one anaerobic basin, one aeration basin, one aerated clarifier loading basin, one aerated clarifier effluent basin, and one secondary clarifier operating as an enhanced biological phosphorus removal anaerobic-oxic (A-O) process with an anoxic selector. Phosphorous is removed through the A-O process with alum addition as a secondary treatment method. Nitrogen removal is limited to treatment of the return activated sludge side stream. The intent of the partial nitrogen removal is only to help promote the biological phosphorous removal process by reducing the amount of nitrates in the process.

<u>Anaerobic Basins</u>

i.	Required Volume at Average Daily Flow (2,450,000 gal/day)(1.5 hr)/(24 hr/day)/(7.48gal/ft³)	=	20,471 ft ³
ii.	Proposed Volume 2(16 ft)(46 ft)(16 ft)	=	23,552 ft ³
iii.	Proposed Hydraulic Retention Time at Average Daily Flow (23,552 ft³)(7.48gal/ft³)(24 hr/day)/(2,450,000 gal/day)		1.7 hrs
<u>Aeratio</u>	n Volume		
i.	Required Volume Using Traditional Design Method (2.45 MGD)(8.34)(340 mg/L)/(35 lb BOD₅/1000 ft ³)	=	198,492 ft ³
ii.	Proposed Volume (Irregular Polygon w/ Aerated Loading Basins) 2(16 ft)(6,300 ft²) + 2(14.56 ft)(193 ft²)	=	207,220 ft ³
iii.	Actual Organic Loading Treated (2.45 MGD)(8.34)(340 mg/L)/(207,220 ft³)	=	33.5 lb BOD₅/1000 ft³
<u>Anoxic</u>	Selector Basins for RAS Side Stream		
<u>Anoxic</u> i.	<u>Selector Basins for RAS Side Stream</u> Design Flow to Anoxic Basins (20% Influent Flow to Plant No. 1) + (Minimum RAS Flow) (0.2)(2.45 MGD)(10 ⁶ gal/MG) + (614 gpm)(2)(1,440 min/da	y)=	2,258,320 gal/day
	Design Flow to Anoxic Basins (20% Influent Flow to Plant No. 1) + (Minimum RAS Flow)	y)= =	2,258,320 gal/day 6,824 ft ³
i.	Design Flow to Anoxic Basins (20% Influent Flow to Plant No. 1) + (Minimum RAS Flow) (0.2)(2.45 MGD)(10 ⁶ gal/MG) + (614 gpm)(2)(1,440 min/da Required Volume at Average Daily Flow		
i. ii.	Design Flow to Anoxic Basins (20% Influent Flow to Plant No. 1) + (Minimum RAS Flow) (0.2)(2.45 MGD)(10 ⁶ gal/MG) + (614 gpm)(2)(1,440 min/da Required Volume at Average Daily Flow (2,450,000 gal/day)(0.5 hr)/(24 hr/day)/(7.48gal/ft ³) Proposed Volume	=	6,824 ft ³
i. ii. iii. iv.	Design Flow to Anoxic Basins (20% Influent Flow to Plant No. 1) + (Minimum RAS Flow) (0.2)(2.45 MGD)(10 ⁶ gal/MG) + (614 gpm)(2)(1,440 min/da Required Volume at Average Daily Flow (2,450,000 gal/day)(0.5 hr)/(24 hr/day)/(7.48gal/ft ³) Proposed Volume 2(17.19 ft)(16 ft)(16 ft) Actual Hydraulic Retention Time	=	6,824 ft ³ 8,801 ft ³
i. ii. iii. iv.	Design Flow to Anoxic Basins (20% Influent Flow to Plant No. 1) + (Minimum RAS Flow) (0.2)(2.45 MGD)(10 ⁶ gal/MG) + (614 gpm)(2)(1,440 min/da Required Volume at Average Daily Flow (2,450,000 gal/day)(0.5 hr)/(24 hr/day)/(7.48gal/ft ³) Proposed Volume 2(17.19 ft)(16 ft)(16 ft) Actual Hydraulic Retention Time (8,801 ft ³)(7.48 gal/ft ³)(24 hr/day)/(2,258,320 gal/day)	=	6,824 ft ³ 8,801 ft ³

iii.	Proposed Surface Loading at Peak Flow (2.45 MGD)(4)(10 ⁶ gal/MG)/(8,835 ft ²)	=	1,109 gpd/ft ²
iv.	Proposed Clarifier Side Water Depth	=	14.5 ft
v.	Proposed Hydraulic Detention Time at Peak Flow (8,835 ft²)(14.5 ft)(7.48 gal/ft³)(24 hr/day)/ (10 ⁶ gallons/MG)(4)(2.45 MGD)	=	2.35 hours
vi.	Proposed Clarifier Weir Length (2)[π(75 ft – 2ft) + π(75 ft – 4ft)]}	=	904 ft
vii.	Proposed Weir Loading at Peak Flow (2.45 MGD)(10 ⁶ gal/MG)(4)/(904 ft)	=	10,840 gpd/ft

f. <u>Tertiary Multi-Compartmented, Low-Head, Automatically Backwashed Dual Media Filters – Filtration.</u> Clarified effluent from the parallel secondary treatment plants flows to the filters. One existing and two proposed parallel filter beds will consist of dual media.

i.	Required Surface Area at Peak Flow (13,611 gpm)/(4 gpm/ ft ²)	=	3,402 ft ²
ii.	Existing Surface Area (1)(16 ft)(86 ft)	=	1,376 ft²
iii.	Proposed Surface Area (2)(16 ft)(86 ft)	=	2,752ft ²
iv.	Total Surface Area (1,376 ft²) + (2,752ft²)	=	4,128 ft ²
v.	Actual Filtration Flux Rate at Peak Flow (13,611 gpm)/(4,128 ft ²)	=	3.3 gpm/ft ²
vi.	Actual Filtration Flux Rate at Peak Flow with One Filter Out of Service (13,611 gpm)/[(2)(16 ft)(86 ft)]	=	4.9 gpm/ft ²

g. <u>Tertiary Multi-Compartmented, Low-Head, Automatically Backwashed Dual Media Filters – Backwash.</u> Each filter basin is comprised of 86 cells where each cell has an area of 16 ft². Backwash pumps will be provided to meet or exceed the minimum backwash flow rate. Backwash cycles per cell will be at least 20 seconds per compartment (approximately 30 minutes of backwash per cycle per filter).

i.	Surface Area per backwash cell	=	16 ft ²
ii.	Minimum Backwash Flow Rate (per filter) (20 gpm/ft²)(16 ft²)	_	320 gpm
		—	220 Bbill

- h. <u>Ultraviolet Disinfection</u>. Filtered effluent passes through three existing parallel channels containing ultraviolet (UV) disinfection modules. The UV modules are low-pressure high intensity type and utilize 254 nm wavelength light with an assumed 65% minimum transmittance and 20 mJ/cm² UV dose rate. Each disinfection channel will include at least two banks positioned in series.
- i. <u>Post Aeration</u>. Disinfected effluent passes through a post aeration basin that includes coarse bubble aeration to provide oxygen to the disinfected effluent to increase the dissolved oxygen (DO) concentrations to meet the minimum required DO for the final effluent. The air demand is included in the Air Requirements section of this report.
- j. <u>Aerobic Digesters</u>. The Interim II facility will have two existing and three proposed digester basins. Two pairs of digesters will operate in conjunction with one membrane thickening unit per pair of digesters. The fifth digester will serve as a transfer basin from which the sludge pumps will pull thickened sludge to pump to the belter filter press. The digester sizing assumes 0.75 pound of solids produced per pound of BOD₅ applied, solids are 85% volatile organics, 38% of the volatiles are destroyed during digestion, and the average MLSS concentration in the digesters is 30,000 mg/l.

i.	Solids Production (13,894 lbs BOD5 /day)(0.75 lb solids/1 lb BOD5)*	= 10,420 lbs solids/d			
ii.	Digested Solids Production (10,420 lbs solids/day)(1-(0.38)(0.85))	=	7,054 lbs solids/day		
iii.	Average Digested Solids Production (10,420 lbs solids/day + 7,054 lbs solids/day)/2	Π	8,737 lbs solids/day		
iv.	Total Solids in Digester for 28-day SRT (8,737 lbs solids/day)(28 days)	=	244,636 lbs solids		
v.	Required Volume (244,636 lbs solids)(10 ⁶)/(8.34)/(30,000 mg/l MLSS)/(7.48)	=	130,716 ft ³		
vi.	Existing Volume (Aerobic Digester Volume) – (Membrane Thickener Volume (2)(16 ft)(25 ft)(76.25 ft) – ((2)(16 ft)(13 ft)(27 ft)		49,768 ft ³		
vii.	Proposed Volume (2)(16 ft)(25 ft)(76.25 ft) + (1)(16 ft)(20 ft)(76.25 ft)	Ξ	85,400 ft ³		
viii.	Total Volume (49,768 ft³) + (85,400 ft³)	=	135,168 ft ³		
ix.	Actual Solids Residence Time (135,168 ft³)(7.48)(8.34)(30,000 mg/l)/(10 ⁶)/(8,738 lbs/day	') =	28.9 days		
*WEF N	WEF MOP 8, Fifth Edition, Figure 20.5				

*WEF MOP 8, Fifth Edition, Figure 20.5

- k. <u>Sludge Thickening</u>. The existing aerobic digesters also utilize submerged membranes to thicken sludge. Additional submerged membranes will be added to the proposed digester volume to maintain an average MLSS concentration in the digesters of 30,000 mg/L. Mechanical fine screens screen all sludge entering the submerged membrane basins.
- I. <u>Sludge Dewatering</u>. Digested and thickened sludge is pumped from the aerobic digesters to the existing belt press dewatering facility. The existing 2-meter belt press will be utilized and assumes operation 8 hours per day and 5 days per week, a maximum feed rate of 250 gpm/press at a sludge thickness of 70,000 mg/l, and 2,000 lbs of dry solids per hour per press. In the event that the belt press is out of service, digested sludge can be wet hauled for disposal at a permitted landfill.
 - i. Hydraulic Loading (lbs solid per day)/(SG_{solids})(% solids)(γ_{water}) [(10,420 lbs solid per day)/(1.03)(0.03)(62.4 lb/ft³)](7.48) = 40,422 gal/day
 - ii. Total Belt Filter Press Units Required Based on Hydraulic Capacity (40,422 gal/d)(7/5)/(480 min/d)/(250 gal/min/press) = 0.47 belt filter press unit
 - iii. Total Belt Filter Press Units Required Based on Solids Capacity (10,420 lbs solids/d)(7/5)/(8 op hr/d)/(2,000 lbs solids/hr/press)

= 0.91 belt filter press unit

- iv. Existing Belt Filter Press Unit = 1 belt filter press unit
- m. <u>Air Requirements</u>. The Interim II facilities will be served by two blower banks: one bifurcated bank with blowers serving both process air requirements and digester air requirements, and one bank for membrane thickener air requirements. The process/digester blower bank will consist of eight blowers: five blowers dedicated to process air demands, two dedicated to digester air demands and a common spare blower. The membrane blower bank will consist of three blowers with one blower being a spare unit.

Process Blowers Demand:

Grit Removal System Process Air

i. Grit Removal System Air Requirement (Mixing) $[(27 \text{ ft})^2(7.71 \text{ ft})+((27 \text{ ft})^2(14.5 \text{ ft})/3)-((2 \text{ ft})^2(1 \text{ ft})/3)] = 132 \text{ scfm}$ (30 scfm/1,000 ft³)

Interim II – 4.9 MGD

Plant No. 1 and Plant No. 2 Process Air

i. Aeration Basins

1. Air Required for Treatment

$$\frac{(1.2)(340 \text{ mg/L BOD}_5) + (4.6)(70 \text{ mg/L TKN})}{(340 \text{ mg/L BOD}_5)} = 2.1 \text{ lb } O_2/\text{ lb BOD}_5^*$$

*TCEQ Chapter 217.155(a)(3) requires using a minimum of 2.2 lb O_2 /lb BOD₅ if the system is intended to nitrify, which is used below for calculations.

2. Fine Bubble Requirements

<u>(340 mg/L BOD₅)(8.34)(4.9 MGD)(2.2 lb O₂/lb BOD₅)</u>		
(10.7%*)(0.075)(0.23)(1,440)	=	11,500 scfm

* Wastewater Oxygen Transfer Efficiency is based on the actual efficiency for the installed aeration systems based on the manufacturer provided data

Miscellaneous Air Demands

i.	Plant No. 1 Return Activated Sludge Air Lifts (2) 8″ Airlifts @ 80 scfm/Airlift (2) 12″ Airlifts @ 180 scfm/Airlift	=	160 scfm 360 scfm
	(2) 12 Airmits @ 180 scim/Airmit	-	SOO SCIIII
ii.	Plant No. 2 Return Activated Sludge Air Lifts		
	(2) 8″ Airlifts @ 80 scfm/Airlift	=	160 scfm
	(2) 12″ Airlifts @ 180 scfm/Airlift	=	360 scfm
iii.	Total Return Activated Sludge Air Demand		
	(2)(160 scfm) + (2)(360 scfm)	=	1,040 scfm
iv.	Plant No. 1 Clarifier Loading Basins		
	(2)(14.56 ft)(130 ft ²) (30 scfm/1000 ft ³)	=	114 scfm
v.	Plant No. 2 Clarifier Loading Basins and Effluent Basins		
	(4)(14.56 ft)(193 ft ²) (30 scfm/1000 ft ³)	=	338 scfm
vi.	Total Miscellaneous Air Demands		
	(1,040 scfm) + (114 scfm) + (338 scfm)	=	1,492 scfm
U	V Disinfection Air Scour		
i.	Post-Aeration Air Requirement		
	Manufacturer Specified Requirement	Ξ	225 scfm
	manager of spanning redenents		

Post-Aeration Process Air

ii.	Post-Aeration Air Requirement (6,466 ft3)(30 scfm/1000 ft ³)	=	194 scfm
	<u>Total Process Air Requirement</u> (Grit Removal System) + (Fine Bubble Req.) + (Misc. Air Demands) + (UV Scour) + (Post-Aeration) (132 scfm)+(11,500 scfm) +(1,492 scfm)+(225 scfm)+(194 scfm)	=	13,543 scfm
	Digester Blowers Demand:		
	<u>Aerobic Digester Air Requirement</u> (135,168 ft ³)(30 scfm/1000 ft ³)	=	4,055 scfm
	<u>Waste Activated Sludge & Sludge Transfer Air Lifts</u> (2)(55 scfm) + (6)(15 scfm)	=	200 scfm
	<u>Total Solids Air Requirement</u> (Aerobic Digesters) + (Sludge Transfer Air Lifts) (4,055 scfm) + (200 scfm)	=	4,255 scfm
	Membrane Blower Bank Demand:		
	<u>Membrane Thickeners Air Requirement</u> (2)(500 scfm/MBT)	=	1,000 scfm
	<u>Total Membrane Blowers Air Requirement</u> (Membrane Thickeners) (1,000 scfm)	=	1,000 scfm
Blo	wer Capacities		
<u>Pro</u>	cess Blowers		
i.	Total Process Air Requirement	=	13,543 scfm
ii.	Firm Blower Capacity with Largest Unit out of Service (5)(3,000 scfm)	=	15,000 scfm
Dig	ester Blowers		
i.	Total Solids Air Requirement	• =	4,255 scfm
ii.	Firm Blower Capacity with Largest Unit out of Service (2)(3,000 scfm)	=	6,000 scfm

n.

Membrane Thickener Air

i.	Total Membrane Air Requirement	=	1,000 scfm
ii.	Firm Blower Capacity with Largest Unit out of Service (2)(510 scfm)	=	1,020 scfm

I. SCOPE

The proposed Interim III – 7.5 MGD facility will be a permanent concrete plant operating as an enhanced biological phosphorus removal anaerobic-oxic (A-O) process with an anoxic selector. The two existing 2.45 MGD main process units (Plant No. 1 & 2) were designed with a treatment capacity of 2.5 MGD. Plant Nos. 1 & 2 will each receive 2.5 MGD of flow at average daily flow (ADF) in this phase. The Interim III facility will include the construction of a proposed 2.5 MGD main process unit (Plant No. 3) which will operate in parallel with the two existing main process units (Plant Nos 1 & 2). The headworks will have mechanical and manual screens sized for the Interim III Phase and the structure will be modified if necessary. The grit removal system will be expanded. The lift station pumps will be replaced. The existing dual-media filters will be expanded. A proposed solids treatment train with aerobic digesters will be constructed. No modifications will be made to the existing solids treatment train. The existing UV disinfection channels will be utilized and additional UV treatment modules will be installed. New process units include: one grit removal system; one secondary treatment plant that consists of one influent channel, one anaerobic basin, one aeration basin, one anoxic basin, one secondary clarifier with one aerated loading basin and one aerated effluent basin; dual media, multi-compartmented, low-head, automatically backwashed filters; aerobic digesters; and positive displacement blowers.

II. WASTEWATER TREATMENT PLANT DESIGN

A. DESIGN CRITERIA

1. Daily Effluent Limits

a.	BOD ₅	=	10 mg/L
b.	TSS	=	15 mg/L
d.	NH₃-N	=	3 mg/L
e.	Total Phosphorus	=	0.75 mg/L
f.	DO	=	4 mg/L
g.	E Coli	=	126 number colonies/100 mL

2. Process Criteria

The criteria used for the constructed aeration basins was based on TCEQ Chapter 217.

a.	Minimum Hydraulic Detention Time for Aerated Grit Chamber (minutes)		3.0
b.	Minimum Detention Time for Anaerobic Basins (hours)	=	1.5*

C.	Maximum Aeration Basin Organic Loading (Ibs BOD₅/day/1,000 ft³)	=	35
d.	Maximum Clarifier Surface Loading at Peak Flow (gal/day/ft²)	=	1,200
e.	Minimum Clarifier Detention Time (hours)	=	1.8
f.	Maximum Clarifier Weir Loading at Peak Flow (gal/day/ft)	=	30,000
g.	Maximum Filter Flux Rate at Peak Flow for Dual Media, Multi-Compartmented, Low-Head, Automatically Backwashed Filter at Peak Flow (gal/min/ft²)	=	4
h.	Minimum Backwash Flux Rate for Dual Media, Multi- Compartmented, Low-Head, Automatically Backwashed Filter (gpm/ft²)	=	20
i.	Minimum Solids Retention Time in Aerobic Digester* (days)	=	28**
j.	Minimum Air Required for Digester (scfm/1,000 ft³)	=	30
k.	Minimum Oxygen Required for Aeration Basins (Ibs O₂/1 Ib BOD₅)	=	2.2

*WEF MOP 8, fifth edition, 14-58

**28-day SRT utilized instead of a 40-day SRT for use of a multi-stage digester per EPA publication "Control of Pathogens and Vector Attraction in Sewage Sludge."

B. TREATMENT FACILITIES

1. <u>Flow</u>

a.	Average (Design)	=	1.0Q	=	7,500,000 gpd	=	5,208 gpm
b.	Peak (2-hour)	=	4.0Q	=	30,000,000 gpd	=	20,833 gpm

2. Influent Composition

The following influent wastewater compositions are based on multi-part grab samples and composite samples collected at the existing headworks throughout 2019 and 2020 as the design basis for Interim II

facility expansion. The design values for BOD₅, TSS, NH₃-N, TP were calculated by adding one (1) standard deviation to the average.

a.	BOD ₅	=	340 mg/L	
----	------------------	---	----------	--

- b. TSS = 300 mg/L
- c. $NH_3-N = 50 \text{ mg/L}$
- d. TKN = 60 mg/L
- e. TP = 8 mg/L

3. Organic Loadings

a.	BOD ₅	=	(7.5 MGD)(8.34)(340 mg/L)	=	21,647 lbs BOD ₅ /day
b.	TSS	=	(7.5 MGD)(8.34)(300 mg/L)	=	18,765 lbs TSS/day
c.	NH ₃ -N	=	(7.5 MGD)(8.34)(50 mg/L)	=	3,128 lbs NH ₃ -N/day
d.	Total P	=	(7.5 MGD)(8.34)(8 mg/L)	=	500 lbs P/day

4. Process Basins and Equipment

- a. <u>Screening</u>. The headworks will have mechanical and manual screens sized for the Interim III Phase. A conveyor will collect and move screenings from the mechanical screens to a dumpster to be hauled offsite to a permitted landfill.
- b. <u>Grit Removal System</u>. The grit removal system will be comprised of two grit basins and two cyclonic degritters with classifiers. The system will be sized for the Interim III Phase. If one system is out of service, the remaining system and/or the bypass may be utilized to ensure the headworks remains in service.

- c. <u>Lift Station</u>. The submersible lift station consists of two wet wells that are hydraulically linked. Six pumps across both wet wells will be replaced. Five duty pumps and one standby will provide a firm hydraulic pumping capacity of 20,833 gpm at the design peak flow of the Interim III facility.
- d. <u>Flow Splitter</u>. All flow is pumped from the lift station to a flow splitter that uses weirs to distribute flow proportionately to the two existing main process units (Plant Nos. 1 & 2) and the one proposed main process unit (Plant No. 3) based on the following splits.
 - i. Plant No. 1 2.5 MGD
 - ii. Plant No. 2 2.5 MGD
 - iii. Plant No. 3 2.5 MGD

e. <u>Secondary Treatment.</u>

<u>Plant No. 1 – 2.5 MGD.</u> The existing Plant No. 1 will return to receiving 2.5 MGD. See the Interim II phase section for a description of the secondary process. No changes other than increasing the average daily flow (ADF) from 2.45 MGD to 2.5 MGD are proposed.

Anaerobic Basins

i.	Required Volume at Average Daily Flow (2,500,000 gal/day)(1.5 hr)/(24 hr/day)/(7.48gal/ft ³)	=	20,889 ft ³
ii.	Existing Volume 2(16 ft)(46 ft)(16 ft)	=	23,552 ft ³
iii.	Actual Hydraulic Retention Time at Average Daily Flow		
	(23,552 ft³)(7.48gal/ft³)(24 hr/day)/(2,500,000 gal/day)	=	1.7 hrs
<u>Aeratio</u>	n Volume		
i.	Required Volume Using Traditional Design Method (2.5 MGD)(8.34)(340 mg/L)/(35 lb BOD _s /1000 ft ³)		
		=	202,543 ft ³
ii.	Existing Volume		
	(Irregular Polygon w/ Aerated Loading Basins) 2(16 ft)(6,262.5 ft²) + 2(14.56 ft)(130 ft²)	=	204,186 ft ³
iii.	Actual Organic Loading Treated		
	(2.5 MGD)(8.34)(340 mg/L)/(204,186 ft ³)	=	34.7 lb BOD₅/1000 f

ft³

Anoxic Selector Basins for RAS Side Stream

i.	Design Flow to Anoxic Basins (20% Influent Flow to Plant No. 1) + (Minimum RAS Flow) (0.2)(2,500,000 gpd) + (614 gpm)(2)(1,440 min/day)	=	2,268,320 gpd
ii.	Required Volume at Average Daily Flow (2,268,320 gpd)(0.5 hr)/(24 hr/day)/(7.48gal/ft ³)	=	6,318 ft ³
iii.	Existing Volume 2(17.19 ft)(16 ft)(16 ft)	=	8,801 ft ³
iv.	Actual Hydraulic Retention Time (8,801 ft³)(7.48gal/ft³)(24 hr/day)/(2,268,320 gal/day)	=	0.70 hrs
Second	ary Clarifiers		
i.	Required Surface Area At Peak Flow (2.50 MGD)(4)(10 ⁶ gal/MG)/1200 gal/day/ft²	=	8,333 ft²
ii.	Existing Surface Area (Octagonal Sides) 2{(75 ft) ² – [(75 ft)/((1/v2) +(1/v2) + 1))] ² }	=	9,320 ft ²
iii.	Proposed Surface Loading at Peak Flow (2.50 MGD)(4)(10 ⁶ gal/MG)/(9,320 ft ²)	=	1,072 gpd/ft ²
iv.	Existing Clarifier Side Water Depth	=	14.5 ft
v.	Proposed Hydraulic Detention Time at Peak Flow (9,320 ft²)(14.5 ft)(7.48 gal/ft³)(24 hr/day)/ (10 ⁶ gallons/MG)(2.50 MGD)(4)	=	2.43 hours
vi.	Existing Clarifier Weir Length (2)(430 ft)		860 ft
vii.	Proposed Weir Loading at Peak Flow (2.50 MGD)(10 ⁶ gpd/MGD)(4)/(860 ft)	=	11,628 gpd/ft

<u>Plant No. 2 – 2.5 MGD.</u> No changes are proposed to Plant No. 2 other than increasing the average daily flow (ADF) from 2.45 MGD to 2.5 MGD. See the Interim II phase section for a description of the secondary process.

Anaerobic Basins

i.	Required Volume at Average Daily Flow		
	(2,500,000 gal/day)(1.5 hr)/(24 hr/day)/(7.48 gal/ft³)	=	20,899 ft ³

ii.	Existing Volume 2(16 ft)(46 ft)(16 ft)	=	23,552 ft ³
iii.	Actual Hydraulic Retention Time at Average Daily Flow (23,552 ft³)(7.48gal/ft³)(24 hr/day)/(2,500,000 gal/day)	=	1.69 hrs
<u>Aeratio</u>	n Volume		
i.	Required Volume Using Traditional Design Method (2.50 MGD)(8.34)(340 mg/L)/(35 lb BOD _s /1000 ft ³)	=	202,542 ft ³
ii.	Existing Volume (Irregular Polygon w/ Aerated Loading Basins) 2(16 ft)(6,300 ft²) + 2(14.56 ft)(193 ft²)	=	207,220 ft ³
iii.	Actual Organic Loading Treated (2.50 MGD)(8.34)(340 mg/L)/(207,220 ft³)	=	34.2 lb BOD ₅ /1000 ft ³
<u>Anoxic</u>	Selector Basins for RAS Side Stream		
i.	Design Flow to Anoxic Basins (20% Influent Flow to Plant No. 1) + (Minimum RAS Flow) (0.2)(2.50 MGD)(10 ⁶ gal/MG) + (614 gpm)(2)(1,440 min/da	y)=	2,268,320 gal/day
ii.	Required Volume at Average Daily Flow (2,500,000 gal/day)(0.5 hr)/(24 hr/day)/(7.48gal/ft³)	=	6,963 ft³
iii.	Existing Volume 2(17.19 ft)(16 ft)(16 ft)	=	8,801 ft³
iv.	Actual Hydraulic Retention Time (8,801 ft³)(7.48 gal/ft³)(24 hr/day)/(2,268,320 gal/day)	=	0.70 hrs
<u>Second</u>	ary Clarifiers	÷	
i.	Required Surface Area At Peak Flow (2.50 MGD)(4)(10 ⁶ gal/MG)/1200 gal/day/ft ²	=	8,333 ft²
ii.	Existing Surface Area (Circular Sides) 2(π/4)(75 ft)²	=	8,835 ft²
iii.	Proposed Surface Loading at Peak Flow (2.50 MGD)(4)(10 ⁶ gal/MG)/(8,835 ft ²)	=	1,132 gpd/ft ²

iv.	Exist Clarifier Side Water Depth	=	14.5 ft
v.	Proposed Hydraulic Detention Time at Peak Flow (8,835 ft²)(14.5 ft)(7.48 gal/ft³)(24 hr/day)/ (10 ⁶ gallons/MG)(4)(2.50 MGD)	=	2.30 hours
vi.	Exist Clarifier Weir Length (2)[π(75 ft – 2ft) + π(75 ft – 4ft)]	=	904 ft
vii.	Proposed Weir Loading at Peak Flow (2.5 MGD)(10 ⁶ gal/MG)(4)/(904 ft)	=	11,062 gpd/ft

<u>Plant No. 3, Train No. 1 – 2.5 MGD.</u> The proposed secondary treatment plant consists of an influent channel, rapid mix basin, and one treatment train. The treatment train consists of one anoxic selector basin, one anaerobic basin, one aeration basin, and one secondary clarifier operating as an enhanced biological phosphorus removal anaerobic-oxic (A-O) process with an anoxic selector. Phosphorous is removed through the A-O process with alum addition as a secondary treatment method. Nitrogen removal is limited to treatment of the return activated sludge side stream. The intent of the partial nitrogen removal is only to help promote the biological phosphorous removal process by reducing the amount of nitrates in the process.

Anaerobic Basin

i.	Required Volume at Average Daily Flow (2,500,000 gal/day)(1.5 hr)/(24 hr/day)/(7.48gal/ft ³)	=	20,889 ft ³
ii.	Proposed Volume 1(24 ft)(64 ft)(16 ft)	=	24,576 ft ³
iii.	Actual Hydraulic Retention Time at Average Daily Flow (24,576 ft³)(7.48gal/ft³)(24 hr/day)/(2,500,000 gal/day)	=	1.7 hrs
<u>Aeratio</u>	n Basin		
i.	Required Volume Using Traditional Design:Method (2.50 MGD)(8.34)(340 mg/L)/(35 lb BOD _s /1000 ft ³)		
		=	202,542 ft ³
ii.	Proposed Volume (Irregular Polygon)		
	1(105 ft)(125 ft)(16 ft)	=	210,000 ft ³
iii.	Actual Organic Loading Treated (2.5 MGD)(8.34)(340 mg/L)/(210,000 ft³)		
	(2.5 MGD)(6.54)(540 Mg/L)/(210,000 M)	=	33.7 lb BOD ₅ /1000 ft ³

Anoxic Selector Basin for RAS Side Stream

·

i.	Design Flow to Anoxic Basin (20% Influent Flow to Plant No. 3) + (Minimum RAS Flow) (0.2)(2.50 MGD)(10 ⁶ gal/MG) + (1320 gpm)(1,440 min/day)	=	2,400,800 gal/day
11.	Required Volume at Average Daily Flow (2,400,800 gal/day)(0.5 hr)/(24 hr/day)/(7.48gal/ft³)	<u></u>	6,686 ft ³
iii.	Proposed Volume 1(30 ft)(16 ft)(16 ft)	=	7,680 ft ³
iv.	Actual Hydraulic Retention Time (7,680 ft³)(7.48gal/ft³)(24 hr/day)/(2,400,800 gal/day)	=	0.57 hrs
<u>Seconda</u>	ry Clarifier		
i.	Required Surface Area At Peak Flow (2.5 MGD)(4)(10 ⁶ gal/MG)/(1,200 gal/day/ft ²)	=	8,333 ft²
ii.	Proposed Surface Area (Circular) $(\pi/4)(105 \text{ ft})^2$	=	8,659 ft²
iii.	Proposed Surface Loading at Peak Flow (2.5 MGD)(4)(10 ⁶ gal/MG)/(8,659 ft ²)	-	1,155 gpd/ft ²
iv.	Proposed Clarifier Side Water Depth	=	14.5 ft
٧.	Proposed Hydraulic Detention Time at Peak Flow (8,659 ft ²)(14.5 ft)(7.48 gal/ft ³)(24 hr/day)/		2.25 h aura
	(2.5 MGD)(4)(10 ⁶ gal/MG)	=	2.25 hours
vi.	Proposed Clarifier Weir Length π(105 ft – 4ft) + π(105 ft – 8ft)	=	622 ft
vii.	Proposed Weir Loading at Peak Flow (2.5 MGD)(10 ⁶ gal/MG)(4)/(622 ft)	=	16,077 gpd/ft

f. <u>Tertiary Multi-Compartmented, Low-Head, Automatically Backwashed Dual Media Filters – Filtration.</u> Clarified effluent flows from the parallel main process units (Plant Nos. 1, 2, & 3) to the tertiary filters. Three existing filter beds consist of dual media and one proposed filter bed will consist of dual media.

i.	Required Surface Area at Peak Flow		
	(20,833 gpm)/(4 gpm/ft ²)	=	5,209 ft ²

ii.	Existing Surface Area (3)(16 ft)(86 ft)	=	4,128 ft ²
iii.	Proposed Surface Area (1)(16 ft)(86 ft)	= .	1,376 ft²
iv.	Total Surface Area 4,128 ft ² + 1,376 ft ²	=	5,504 ft ²
v.	Actual Filtration Flux Rate at Peak Flow (20,833 gpm)/(5,504 ft²)	=	3.8 gpm/ft ²
vi.	Actual Filtration Flux Rate at Peak Flow with One Filter Out of Service (2,0833 gpm)/[(3)(16 ft)(86 ft)]	=	5.0 gpm/ft ²

g. <u>Tertiary Multi-Compartmented, Low-Head, Automatically Backwashed Dual Media Filters – Backwash.</u> Each filter basin is comprised of 86 cells where each cell has an area of 16 ft². Backwash pumps will be provided to meet or exceed the minimum backwash flow rate Backwash cycles per cell will be at least 20 seconds per compartment (approximately 30 minutes of backwash per cycle per filter).

i.	Surface Area per backwash cell	=	16 ft²
ii.	Minimum Backwash Flow Rate (per filter) (20 gpm/ft²)(16 ft²)	=	320 gpm

- h. <u>Ultraviolet Disinfection</u>. Filtered effluent passes through three existing parallel channels containing ultraviolet (UV) disinfection modules. Additional UV modules will be installed, if needed, to inactivate pathogens. The existing structure will be modified, if needed, to install additional UV modules. The UV modules are low-pressure high intensity type and utilize 254 nm wavelength light with an assumed 65% minimum transmittance and 20 mJ/cm² UV dose rate. Each disinfection channel will include at least two banks positioned in series.
- i. <u>Post Aeration</u>. Disinfected effluent passes through a post aeration basin that includes coarse bubble aeration to provide oxygen to the disinfected effluent to increase the dissolved oxygen (DO) concentrations to meet the minimum required DO for the final effluent. The air demand is included in the Air Requirements section of this report.
- j. <u>Aerobic Digesters</u>.

Solids Treatment Train No. 1 (5.0 MGD)

No modifications or changes to the existing Solids Treatment Train No. 1 are proposed. The average daily flow (ADF) to both Plant Nos. 1 and 2 will increase from 2.45 MGD to 2.5 MGD, each. Calculations for the revised organic loading and solids retention time are shown below. Refer to the Interim II section for a written description of the solids treatment train no. 1.

i.	Plant No. 1 and Plant No. 2 Organic Loading (2.5 MGD + 2.5 MGD)(8.34)(340 mg/L)	= 14,178 lbs solids/day
ii.	Solids Production (14,178 lbs BOD5/day)(0.75 lb solids/1 lb BOD5)*	= 10,634 lbs solids/day
iii.	Digested Solids Production (10,634 lbs solids/day)(1-(0.38)(0.85))	= 7,200 lbs solids/day
iv.	Average Digested Solids Production (10,634 lbs solids/day + 7,200 lbs solids/day)/2	= 8,917 lbs solids/day
ν.	Total Solids in Digester for 28-day SRT (8,917 lbs solids/day)(28 days)	= 249,676 lbs solids
vi.	Required Volume (249,676 lbs solids)(10 ⁶)/(8.34)/(30,000 mg/l MLSS)/(7.48)	= 133,409 ft ³
vii.	Existing Volume (Aerobic Digester Volume) – (Membrane Thickener Volume [(4)(16 ft)(25 ft)(76.25 ft) + (1)(16 ft)(20 ft)(76.25 ft)] – ((2)	
viii.	Actual Solids Residence Time (135,168 ft ³)(7.48)(8.34)(30,000 mg/l)/(10 ⁶)/(8,917 lbs/day) = 28.4 days

*WEF MOP 8. Fifth Edition, Figure 20.5

Solids Treatment Train No. 2 (2.5 MGD)

All waste activated sludge (WAS) from the proposed Plant No. 3 will be pumped to the proposed Solids Treatment Train No. 2. The proposed Solids Treatment Train No. 2 will consist of one pair of digesters that will operate in conjunction with one membrane thickening unit. Sludge pumps will pull thickened sludge from the second digester to pump to the belt filter press. The digester sizing assumes 0.75 pound of solids produced per pound of BOD₅ applied, solids are 85% volatile organics, 38% of the volatiles are destroyed during digestion, and the average MLSS concentration in the digesters is 30,000 mg/l.

i.	Plant No. 3 Organic Loading (2.5 MGD)(8.34)(340 mg/L)	= 7,089 lbs so	ids/day
i.	Solids Production (7,089 lbs BOD5/day)(0.75 lb solids/1 lb BOD5)*	= 5,317 lbs so	ids/day
ii.	Digested Solids Production (5,317 lbs solids/day)(1-(0.38)(0.85))	= 3,599 lbs sc	lids/day

iii.	Average Digested Solids Production (5,317 lbs solids/day + 3,599 lbs solids/day)/2	=	4,458 lbs solids/day
iv.	Total Solids in Digester for 28-day SRT (4,458 lbs solids/day)(28 days)	=	124,824 lbs solids
v.	Required Volume (124,824 lbs solids)(10 ⁶)/(8.34)/(30,000 mg/l MLSS)/(7.48)	П	66,698 ft ³
vi.	Proposed Volume (Aerobic Digester Volume) – (Membrane Thickener Volume) (2)(16 ft)(27 ft)(85 ft) – (1)(16 ft)(13 ft)(27 ft)		67,392 ft ³
vii. *WEF M	Actual Solids Residence Time (67,392 ft³)(7.48)(8.34)(30,000 mg/l)/(10 ⁶)/(4,458 lbs/day) OP 8, Fifth Edition, Figure 20.5	=	28.3 days

k. <u>Sludge Thickening</u>. The existing Solids Treatment Train No. 1 aerobic digesters utilize submerged membranes to thicken sludge. No modifications or changes will be made to the existing Solids Treatment Train No. 1 from those described in the Interim II – 4.9 MGD report.

The proposed Solids Treatment Train No. 2 will also utilize submerged membranes to maintain an average MLSS concentration in the digesters of 30,000 mg/L. Proposed mechanical screens will screen all sludge entering the submerged membrane basins of this solids treatment train.

I. <u>Sludge Dewatering</u>. Digested and thickened sludge will be pumped from the existing Solids Treatment Train No. 1 and the from the proposed Solids Treatment Train No. 2 to the existing 2-meter belt filter press dewatering facility. One existing and one proposed belt press will be utilized and assumes operation 8 hours per day and 5 days per week, a maximum feed rate of 250 gpm/press at a sludge thickness of 70,000 mg/l, and 2,000 lbs of dry solids per hour per press. In the event that a belt press is out of service, digested sludge can be wet hauled for disposal at a permitted landfill.

i.	Solids Production (Plant Nos. 1, 2, & 3) (7.5 MGD)(8.34)(340 mg/L)	= 2	1,267 lbs solids/day
ii.	Hydraulic Loading (Ibs solid per day)/(SG _{solids})(% solids)(γ _{water}) [(21,267 lbs solid per day)/(1.03)(0.03)(62.4 lb/ft ³)](7.48)	= 8	2,502 gal/day
iii.	Total Belt Filter Press Units Required Based on Hydraulic Capacity (82,502 gal/d)(7/5)/(480 min/d)/(250 gal/min/press)	= (0.96 belt filter press
iv.	Total Belt Filter Press Units Required Based on Solids Capa (21,267 lbs solids/d)(7/5)/(8 op hr/d)/(2,000 lbs solids/hr/	press) 1.86 belt filter press

v.	Existing Belt Filter Press Units (1 belt filter press unit)	= 1 belt filter press unit
vi.	Proposed Belt Filter Press Units (1 belt filter press unit)	= 1 belt filter press unit
vii.	Total Belt Filter Press Units (1 belt filter press unit) + (1 belt filter press unit)	= 2 belt filter press units

m. <u>Air Requirements</u>. The Interim III facilities will be served by two blower banks: one bifurcated bank with blowers serving both process air requirements and digester air requirements, and one bank for membrane thickener air requirements. The process/digester blower bank will consist of twelve blowers: eight blowers dedicated to process air demands, three dedicated to digester air demands and a common spare blower. The membrane blower bank will consist of four blowers with one blower being a spare unit.

Process Blowers Demand:

Grit Removal System Nos. 1 & 2 Process Air

i. Grit Removal System Air Requirement (Mixing) (2)[(27 ft)²(7.71 ft)+((27 ft)²(14.5 ft)/3)-((2 ft)²(1 ft)/3)] = 264 scfm (30 scfm/1,000 ft³)

Plant No. 1 and Plant No. 2 Process Air

- ii. Aeration Basins
 - 1. Air Required for Treatment

$$\frac{(1.2)(340 \text{ mg/L BOD}_5) + (4.6)(70 \text{ mg/L TKN})}{(340 \text{ mg/L BOD}_5)} = 2.1 \text{ lb } O_2/\text{ lb BOD}_5^*$$

*TCEQ Chapter 217.155(a)(3) requires using a minimum of 2.2 lb O_2 /lb BOD₅ if the system is intended to nitrify, which is used below for calculations.

2. Fine Bubble Requirements

$$\frac{(340 \text{ mg/L BOD}_5)(8.34)(5.0 \text{ MGD})(2.2 \text{ lb } O_2/\text{lb BOD}_5)}{(10.7\%^*)(0.075)(0.23)(1,440)} = 11,736 \text{ scfm}$$

* Wastewater Oxygen Transfer Efficiency is based on the actual efficiency for the installed aeration systems based on the manufacturer provided data

Plant No. 3 Process Air

iii. Aeration Basins

1. Air Required for Treatment

<u>(1.2)(340 mg/L BOD₅) + (4.6)(70 mg/L TKN)</u>		
(340 mg/L BOD ₅)	=	2.1 lb O ₂ / lb BOD ₅ *

*TCEQ Chapter 217.155(a)(3) requires using a minimum of 2.2 lb O_2 /lb BOD₅ if the system is intended to nitrify, which is used below for calculations.

2. Fine Bubble Requirements

<u>(340 mg/L BOD₅)(8.34)(2.5 MGD)(2.2 lb O₂/lb BOD₅)</u>		
(10.7%*)(0.075)(0.23)(1,440)	=	5,868 scfm

* Wastewater Oxygen Transfer Efficiency is based on the actual efficiency for the installed aeration systems based on the manufacturer provided data

Miscellaneous Air Demands

iv.	Plant No. 1 Return Sludge Air Lifts (2) 8″ Airlifts @ 80 scfm/Airlift (2) 12″ Airlifts @ 180 scfm/Airlift	=	160 scfm 360 scfm
v.	Plant No. 2 Return Sludge Air Lifts (2) 8″ Airlifts @ 80 scfm/Airlift (2) 12″ Airlifts @ 180 scfm/Airlift	=	160 scfm 360 scfm
vi.	Plant No. 3 Return Sludge Air Lifts (6) 12″ Airlifts @ 220 scfm/Airlift	=	1320 scfm
vii.	Total Return Sludge Air Demand (2)(160 scfm) + (2)(360 scfm) + (1320 scfm)		2,360 scfm
viii.	Plant No. 1 Clarifier Loading Basins (2)(14.56 ft)(130 ft²) (30 scfm/1000 ft³)	=	114 scfm
ix.	Plant No. 2 Clarifier Loading Basins and Effluent Basins (4)(14.56 ft)(193 ft²) (30 scfm/1000 ft³)	=	338 scfm
x.	Plant No. 3 Clarifier Loading Basin and Effluent Basin (2)(14.56 ft)(386 ft²) (30 scfm/1000 ft³)	=	338 scfm
xi.	Total Miscellaneous Air Demands (2,360 scfm) + (114 scfm) + (338 scfm) + (338 scfm)	=	3,150 scfm

4

ì

<u>U</u>	V Disinfection Air Scour		
xii.	Post-Aeration Air Requirement	=	225 scfm
<u>P</u>	ost-Aeration Process Air		
xiii.	Post-Aeration Air Requirement		
	(6,466 ft ³)(30 scfm/1000 ft ³)	=	194 scfm
<u>T</u>	otal Process Blowers Air Requirement		
	(Grit Removal System) + (Fine Bubble Req.) + (Misc. Air D	emands)	
	+ (UV Scour) + (Post-Aeration)		
	(264 scfm)+(11,736 scfm)+(5,867 scfm)+(3,150 scfm)		
	+(225 scfm)+(194 scfm)	=	21,436 scfm
Diges	ter Blowers Demand:		
Sc	olids Treatment Train No. 1		
<u>A</u>	erobic Digester Air Requirement		
	(135,168 ft ³)(30 scfm/1000 ft ³)	-	4,055 scfm
<u>N</u>	<u>aste Sludge & Sludge Transfer Air Lifts</u>		
	(2)(55 scfm) + (6)(15 scfm)	=	200 scfm
Sc	olids Treatment Train No. 2		
A	erobic Digester Air Requirement		
	(67,392 ft³)(30 scfm/1000 ft³)	=	2,022 scfm
И	aste Sludge & Sludge Transfer Air Lifts		
	(2)(55 scfm) + (3)(15 scfm)	=	155 scfm
<u>T</u>	otal Solids Air Requirement		
	(Aerobic Digesters) + (Sludge Transfer Air Lifts)		
	(4,055 scfm) + (2,022 scfm) + (200 scfm) + (155 scfm)		6,432 scfm
Memb	rane Blowers Demand		
Sa	olids Treatment Train No. 1		
N	<u>Iembrane Thickeners Air Requirement</u>		
(2)(500 scfm/MBT)	=	1,000 scfm
Se	olids Treatment Train No. 2		
N	<u>Iembrane Thickeners Air Requirement</u>		
(1	.)(500 scfm/MBT)	=	500 scfm
<u></u>	otal Membrane Blowers Air Requirement		
٩)	Aembrane Thickeners)		
(1	.,000 scfm) + (500 scfm)	=	1,500 scfm

n. <u>Blower Capacities</u>

Process Blowers

i.	Total Process Air Requirement	=	21,436 scfm
ii.	Firm Blower Capacity with Largest Unit out of Service (8)(3,000 scfm)	=	24,000 scfm
Digest	er Blowers		
i.	Total Solids Air Requirement	=	6,432 scfm
ii.	Firm Blower Capacity with Largest Unit out of Service (3)(3,000 scfm)	=	9,000 scfm
Memb	prane Blowers		
i.	Total Membrane Air Requirement	=	1,500 scfm
iii.	Firm Blower Capacity with Largest Unit out of Service (3)(510 scfm)	=	1,530 scfm

I. SCOPE

The proposed Final Phase – 9.9 MGD will be a permanent concrete plant operating as an enhanced biological phosphorus removal anaerobic-oxic (A-O) process with an anoxic selector. The existing 2.5 MGD main process units, Plant Nos. 1 and 2, will still be sized to treat 2.5 MGD (each) but will only receive 2.45 MGD (each) of flow at average daily flow (ADF) in this phase. The existing Plant No. 3 will be expanded from 2.5 MGD to 5.0 MGD by constructing a second treatment train. The headworks will have mechanical and manual screens sized for the Final Phase and the structure will be modified if necessary. The two existing grit removal systems will remain in service. The lift station pumps will be replaced. The Solids Treatment Train No. 2 will be expanded. No modifications will be made to the existing Solids Treatment Train No. 1. The existing UV disinfection structure will be modified to accommodate the required number of UV disinfection modules. New treatment units include the proposed Plant No. 3 treatment train; dual media, multi-compartmented, low-head, automatically backwashed filters; aerobic digesters; and positive displacement blowers. The proposed Plant No. 3 treatment train includes one anaerobic basin, one aeration basin, one anoxic basin, one clarifier with one aerated loading basin and aerated effluent basin.

II. WASTEWATER TREATMENT PLANT DESIGN

A. DESIGN CRITERIA

1. Daily Effluent Limits

a.	BOD₅	=	10 mg/L
----	------	---	---------

- b. TSS = 15 mg/L
- c. $NH_3-N = 3 mg/L$
- d. Total Phosphorus = 0.5 mg/L
- e. DO = 4 mg/L
- h. E Coli = 126 number colonies/100 mL

2. Process Criteria

The criteria used for the constructed aeration basins was based on TCEQ Chapter 217.

a.	Minimum Hydraulic Detention Time for Aerated Grit Chamber (minutes)		3.0
b.	Minimum Detention Time for Anaerobic Basins (hours)	=	1.5*
c.	Maximum Aeration Basin Organic Loading (lbs BOD ₅ /day/1,000 ft ³)	=	35

d.	Maximum Clarifier Surface Loading at Peak Flow (gal/day/ft²)	=	1,200
e.	Minimum Clarifier Detention Time (hours)	=	1.8
f.	Maximum Clarifier Weir Loading at Peak Flow (gal/day/ft)	=	30,000
g.	Maximum Filter Flux Rate at Peak Flow for Dual Media, Multi-Compartmented, Low-Head, Automatically Backwashed Filter at Peak Flow (gal/min/ft²)	=	4
h.	Minimum Backwash Flux Rate for Dual Media, Multi- Compartmented, Low-Head, Automatically Backwashed Filter (gpm/ft²)	=	20
i.	Minimum Solids Retention Time in Aerobic Digester* (days)	=	28**
j.	Minimum Air Required for Digester (scfm/1,000 ft³)	=	30
k.	Minimum Oxygen Required for Aeration Basins (lbs O₂/1 lb BOD₅)	=	2.2

*WEF MOP 8, fifth edition, 14-58

**28-day SRT utilized instead of a 40-day SRT for use of a multi-stage digester per EPA publication "Control of Pathogens and Vector Attraction in Sewage Sludge."

B. TREATMENT FACILITIES

1.	<u>Flow</u>
----	-------------

a.	Average (Design)	=	1.0Q	=	9,900,000 gpd	<u></u>	6,875 gpm
b.	Peak (2-hour)	=	4.0Q	Ξ	39,600,000 gpd	-	27,500 gpm

2. Influent Composition

The following influent wastewater compositions are based on multi-part grab samples and composite samples collected at the existing headworks throughout 2019 and 2020 as the design basis for the Interim II facilities. The design values for BOD₅, TSS, NH₃-N, TP were calculated by adding one (1) standard deviation to the average.

a. $BOD_5 = 340$	mg/L
------------------	------

- b. TSS = 300 mg/L
- c. $NH_3-N = 50 \text{ mg/L}$
- d. TKN = 60 mg/L
- e. TP = 8 mg/L

3. Organic Loadings

a.	BOD₅	=	(9.9 MGD)(8.34)(340 mg/L)	=	28,073 lbs BOD ₅ /day
b.	TSS	=	(9.9 MGD)(8.34)(300 mg/L)	=	24,770 lbs TSS/day
c.	NH ₃ -N	=	(9.9 MGD)(8.34)(50 mg/L)	=	4,129 lbs NH₃-N/day
d.	Total P	=	(9.9 MGD)(8.34)(8 mg/L)	=	661 lbs P/day

4. Process Basins and Equipment

- a. <u>Screening</u>. The headworks will have mechanical and manual screens sized for the Final Phase. A conveyor will collect and move screenings from the mechanical screens to a dumpster to be hauled offsite to a permitted landfill.
- b. <u>Grit Removal System</u>. The grit removal system will be comprised of the two existing grit basins and two cyclonic degritters with classifiers. No changes are proposed for the grit removal system. If one system is out of service, the remaining system and/or the bypass may be utilized to ensure the headworks remains in service.
- c. <u>Lift Station</u>. The submersible lift station consists of two wet wells that are hydraulically linked. Six pumps across both wet wells will be replaced. Five duty pumps and one standby will provide a firm hydraulic pumping capacity of 27,500 gpm at the design peak flow of the Final Phase facility.
- d. <u>Flow Splitter</u>. All flow is pumped from the lift station to a flow splitter that uses weirs to distribute flow proportionately to the three existing main process units (Plant Nos. 1, 2, & 3) based on the following splits. The existing weirs will be modified to distribute flow proportionately to the existing three secondary treatment plants. The flow split for each respective secondary treatment plant is defined below.

- i. Plant No. 1 2.45 MGD
- ii. Plant No. 2 2.45 MGD
- iii. Plant No. 3 5.0 MGD

e. <u>Secondary Treatment.</u>

<u>Plant No. 1 – 2.45 MGD.</u> The existing Plant No. 1 will remain sized to treat 2.5 MGD at average daily flow (ADF) but will only receive 2.45 MGD of flow at ADF in this phase. See the Interim II phase section for a description of the secondary process and for calculations. No changes other than decreasing the ADF from 2.50 MGD to 2.45 MGD are proposed.

<u>Plant No. 2 – 2.45 MGD.</u> The existing Plant No. 2 will remain sized to treat 2.5 MGD at average daily flow (ADF) but will only receive 2.45 MGD of flow at ADF in this phase. See the Interim II phase section for a description of the secondary process and for calculations. No changes other than decreasing the ADF from 2.50 MGD to 2.45 MGD are proposed.

<u>Plant No. 3 – 5.0 MGD.</u> The existing Plant No. 3 will be expanded in this phase. One proposed treatment train will be constructed to operate in parallel with the existing Plant No. 3 treatment train. The proposed treatment train will consist of one anoxic selector basin, one anaerobic basin, one aeration basin, one aerated clarifier loading basin, one secondary clarifier operating as an enhanced biological phosphorus removal anaerobic-oxic (A-O) process with an anoxic selector, and one aerated clarifier effluent basin. The influent channel will be modified to accommodate the proposed treatment train. Phosphorous is removed through the A-O process with alum addition as a secondary treatment method. Phosphorous is removed with the biological nutrient removal process and alum addition as a secondary treatment method. Nitrogen removal is limited to treatment of the return activated sludge side stream. The intent of the partial nitrogen removal is only to help promote the biological phosphorous removal process by reducing the amount of nitrates in the process.

Anaerobic Basins

i.	Required Volume at Average Daily Flow (5,000,000 gal/day)(1.5 hr)/(24 hr/day)/(7.48gal/ft ³)	=	41,778 ft ³
.	Existing Volume 1(24 ft)(64 ft)(16 ft)	=	24,576 ft ³
iii.	Proposed Volume 1(24 ft)(64 ft)(16 ft)	=	24,576 ft ³
iv.	Total Volume (24,576 ft³) + (24,576 ft³)	=	49,152 ft ³
v.	Actual Hydraulic Retention Time at Average Daily Flow (49,152 ft³)(7.48gal/ft³)(24 hr/day)/(5,000,000 gal/day)	=	1.8 hrs

Aeration Basins

i.	Required Volume Using Traditional Design Method (5.0 MGD)(8.34)(340 mg/L)/(35 lb BOD ₃ /1000 ft ³)	=	405,086 ft ³
			405,000 11
ii.	Existing Volume 1(105 ft)(125 ft)(16 ft)	=	210,000 ft ³
iii.	Proposed Volume 1(105 ft)(125 ft)(16 ft)	=	210,000 ft ³
iv.	Total Volume (210,000 ft³) + (210,000 ft³)	=	420,000 ft ³
v.	Actual Organic Loading Treated (5.0 MGD)(8.34)(340 mg/L)/(420,000 ft³)	=	33.8 lb BOD₅/1000 ft³
<u>Anoxic</u>	Selector Basins for RAS Side Stream		
i.	Design Flow to Anoxic Basins (20% Influent Flow to Plant No. 3) + (Minimum RAS Flow) (0.2)(5.0 MGD)(10 ⁶ gal/MG) + (2)(1320 gpm)(1,440 min/d		4,801,600 gal/day
ii.	Required Volume at Average Daily Flow (4,801,600 gal/day)(0.5 hr)/(24 hr/day)/(7.48gal/ft³)	=	13,373 ft ³
iii.	Existing Volume 1(30 ft)(16 ft)(16 ft)	=	7,680 ft ³
iv.	Proposed Volume 1(30 ft)(16 ft)(16 ft)	=	7,680 ft ³
v.	Total Volume (7,680 ft³) + (7,680 ft³)	=	15,360 ft ³
vi.	Actual Hydraulic Retention Time (15,360 ft³)(7.48 gal/ft³)(24 hr/day)/(4,801,600 gal/day)	=	0.57 hrs
Second	ary Clarifiers		
i.	Required Surface Area At Peak Flow (5.0 MGD)(4)(10 ⁶ gal/MG)/1,200 gal/day/ft ²	=	16,667 ft²
ii.	Existing Surface Area (Circular) (π/4)(105 ft) ²	=	8,659 ft²

iii.	Proposed Surface Area (Circular Sides) (π/4)(105 ft)²	=	8,659 ft²
iv.	Total Surface Area (8,659 ft²) + (8,659 ft²)	=	17,318 ft ²
v.	Proposed Surface Loading at Peak Flow (4)(5,000,000 gpd)/(17,318 ft²)	=	1,155 gpd/ft ²
vi.	Proposed Clarifier Side Water Depth	=	14.5 ft
vii.	Proposed Hydraulic Detention Time at Peak Flow (17,318 ft²)(14.5 ft)(7.48 gal/ft³)(24 hr/day)/ (10 ⁶ gallons/MG)(4)(5.0 MGD)	=	2.25 hours
viii.	Exist Clarifier Weir Length π(105 ft – 4ft) + π(105 ft – 8ft)	=	622 ft
ix.	Proposed Clarifier Weir Length π(105 ft – 4ft) + π(105 ft – 8ft)	=	622 ft
х.	Total Weir Length (2)(622 ft)	=	1,244 ft
xi.	Proposed Weir Loading at Peak Flow (5.0 MGD)(10 ⁶ gal/MG)(4)/(1,244 ft)	=	16,077 gpd/ft
Tertiar	y Multi-Compartmented, Low-Head, Automatically Backwas	shed Dua	l Media Filters - Fil

f. Tertiary Multi-Compartmented, Low-Head, Automatically Backwashed Dual Media Filters - Filtration. Clarified effluent flows from the parallel main process units (Plant Nos. 1, 2, & 3) to the tertiary filters. Four existing filter beds consist of dual media and one proposed filter bed will consist of dual media

i.	Required Surface Area at Peak Flow (27,500 gpm)/(4 gpm/ ft ²)	=	6,875 ft²
ii.	Existing Surface Area (4)(16 ft)(86 ft)	=	5,504 ft²
iii.	Proposed Surface Area (1)(16 ft)(86 ft)	=	1,376 ft²
iv.	Total Surface Area (5,504 ft²) + (1,376 ft²)	=	6,880 ft²
iii.	Actual Filtration Flux Rate at Peak Flow (27,500 gpm)/(6,880 ft ²)	=	4.0 gpm/ft ²
iv.	Actual Filtration Flux Rate at Peak Flow with One Filter Out (27,500 gpm)/[(4)(16 ft)(86 ft)]	t of Servi =	ice 5.0 gpm/ft²

g. <u>Tertiary Multi-Compartmented, Low-Head, Automatically Backwashed Dual Media Filters – Backwash.</u> Each filter basin is comprised of 86 cells where each cell has an area of 16 ft². Backwash pumps will be provided to meet or exceed the minimum backwash flow rate Backwash cycles per cell will be at least 20 seconds per compartment (approximately 30 minutes of backwash per cycle per filter).

i.	Surface Area per backwash cell	=	16 ft ²
ii.	Minimum Backwash Flow Rate (per filter) (20 gpm/ft²)(16 ft²)	=	320 gpm

- h. <u>Ultraviolet Disinfection</u>. Filtered effluent passes through three existing parallel channels containing ultraviolet (UV) disinfection modules. Additional UV modules will be installed, if needed, to inactivate pathogens. The existing structure will be modified, if needed, to install additional UV modules. The UV modules are low-pressure high intensity type and utilize 254 nm wavelength light with an assumed 65% minimum transmittance and 20 mJ/cm² UV dose rate. Each disinfection channel will include at least two banks positioned in series.
- i. <u>Post Aeration</u>. Disinfected effluent passes through the existing post aeration basin that includes coarse bubble aeration to provide oxygen to the disinfected effluent to increase the dissolved oxygen (DO) concentrations to meet the minimum required DO for the final effluent. The air demand is included in the Air Requirements section of this report.
- j. <u>Aerobic Digesters</u>.

Solids Treatment Train No. 1 (4.9 MGD)

No modifications or changes to the existing Solids Treatment Train No. 1 are proposed. The average daily flow (ADF) to both Plant Nos. 1 and 2 will be decreased from 2.5 MGD to 2.45 MGD, each. The organic loading and solids retention time will be the same as those described in the Interim II – 4.9 MGD report. Refer to that report for all sizing calculations.

Solids Treatment Train No. 2 (5.0 MGD)

All waste activated sludge (WAS) from expanded Plant No. 3 will be pumped to the existing solids treatment train No. 2. The existing Solids Treatment Train No. 2 will be expanded and will consist of two pairs of digesters that will operate in conjunction with one membrane thickening unit per pair of digesters. Sludge pumps will pull thickened sludge from one digester of each pair to pump to the belt filter press. The digester sizing assumes 0.75 pound of solids produced per pound of BOD₅ applied, solids are 85% volatile organics, 38% of the volatiles are destroyed during digestion, and the average MLSS concentration in the digesters is 30,000 mg/l.

i.	Plant No. 3 Organic Loading (5.0 MGD)(8.34)(340 mg/L)	= 14,178 lbs solids/day
ii.	Solids Production (14,178 lbs BOD₅ /day)(0.75 lb solids/1 lb BOD₅)*	= 10,634 lbs solids/day

iii.	Digested Solids Production (10,634 lbs solids/day)(1-(0.38)(0.85))	= 7,200 lbs solids/day
iv.	Average Digested Solids Production (10,634 lbs solids/day + 7,200 lbs solids/day)/2	= 8,917 lbs solids/day
v.	Total Solids in Digester for 28-day SRT (8,917 lbs solids/day)(28 days)	= 249,676 lbs solids
vi.	Required Volume (249,676 lbs solids)(10 ⁶)/(8.34)/(30,000 mg/l MLSS)/(7.48)	= 133,410 ft ³
vii.	Existing Volume (Exist Digester Volume) – (Exist Membrane Thickener Volu (2)(16 ft)(27 ft)(85 ft) – (1)(16 ft)(13 ft)(27 ft)	me) = 67,824 ft ³
viii.	Proposed Volume (Exist Digester Volume) – (Exist Membrane Thickener Volu (2)(16 ft)(27 ft)(85 ft) – (1)(16 ft)(13 ft)(27 ft)	me) = 67,824 ft ³
ix.	Total Volume (67,824 ft³) + (67,824 ft³)	= 135,648 ft^3
x.	Actual Solids Residence Time (134,784 ft ³)(7.48)(8.34)(30,000 mg/l)/(10 ⁶)/(8,917 lbs/day	') = 28.3 days

*WEF MOP 8, Fifth Edition, Figure 20.5

k. <u>Sludge Thickening</u>. The existing Solids Treatment Train No. 1 aerobic digesters utilize submerged membranes to thicken sludge. No modifications or changes will be made to the existing Solids Treatment Train No. 1 from those described in the Interim II – 4.9 MGD report.

The expanded Solids Treatment Train No. 2 also utilizes submerged membranes to maintain an average MLSS concentration in the digesters of 30,000 mg/L. Additional mechanical screens will screen all sludge entering the submerged membrane basins of this solids treatment train.

I. <u>Sludge Dewatering</u>. Digested and thickened sludge will be pumped from the existing Solids Treatment Train No. 1 and the from the proposed Solids Treatment Train No. 2 to the existing belt filter press dewatering facility. Two existing 2-meter belt presses will be utilized and assumes operation 8 hours per day and 7 days per week, a maximum feed rate of 250 gpm/press at a sludge thickness of 70,000 mg/l, and 2,000 lbs of dry sohlids per hour per press. In the event that a belt press is out of service, digested sludge can be wet hauled for disposal at a permitted landfill.

i.	Solids Production (Plant Nos. 1, 2, & 3) (9.9 MGD)(8.34)(340 mg/L) =	28,073 lbs solids/day
ii.	Hydraulic Loading (Ibs solid per day)/(SG _{solids})(% solids)(γ _{water}) [(28,073 lbs solid per day)/(1.03)(0.03)(62.4 lb/ft ³)](7.48)	= 108,905 gal/day
iii.	Total Belt Filter Press Units Required Based on Hydraulic Capacity (108,905 gal/d)(7/7)/(480 min/d)/(250 gal/min/press)	= 0.91 belt filter press
iv.	Total Belt Filter Press Units Required Based on Solids Cap (28,073 lbs solids/d)(7/7)/(8 op hr/d)/(2,000 lbs solids/hr	-
v.	Existing Belt Filter Press Units (2 belt filter press units)	= 2 belt filter press units
vi.	Total Belt Filter Press Units (2 belt filter press unit)	= 2 belt filter press units

m. <u>Air Requirements</u>. Final Phase facilities will be served by two blower banks: one bifurcated bank with blowers serving both process air requirements and digester air requirements, and one bank for membrane thickener air requirements. The process/digester blower bank will consist of thirteen blowers: nine blowers dedicated to process air demands, three dedicated to digester air demands and a common spare blower. The membrane blower bank will consist of five blowers with one blower being a spare unit.

Process Blowers Demand:

Grit Removal System Nos. 1 & 2 Process Air

i. Grit Removal System Air Requirement (Mixing) (2)[$(27 \text{ ft})^2(7.71 \text{ ft})+((27 \text{ ft})^2(14.5 \text{ ft})/3)-((2 \text{ ft})^2(1 \text{ ft})/3)] = 264 \text{ scfm}$ (30 scfm/1,000 ft³)

Plant No. 1 and Plant No. 2 Process Air

- ii. Aeration Basins
 - 1. Air Required for Treatment

$$\frac{(1.2)(340 \text{ mg/L BOD}_5) + (4.6)(70 \text{ mg/L TKN})}{(340 \text{ mg/L BOD}_5)} = 2.1 \text{ lb } O_2/\text{ lb BOD}_5^*$$

*TCEQ Chapter 217.155(a)(3) requires using a minimum of 2.2 lb O_2 /lb BOD₅ if the system is intended to nitrify, which is used below for calculations.

2. Fine Bubble Requirements

<u>(340 mg/L BOD₅)(8.34)(4.9 MGD)(2.2 lb O₂/lb BOD₅)</u>		
(10.7%*)(0.075)(0.23)(1,440)	=	11,500 scfm

* Wastewater Oxygen Transfer Efficiency is based on the actual efficiency for the installed aeration systems based on the manufacturer provided data

Plant No. 3 Process Air

- iii. Aeration Basins
 - 1. Air Required for Treatment

 $\frac{(1.2)(340 \text{ mg/L BOD}_5) + (4.6)(70 \text{ mg/L TKN})}{(340 \text{ mg/L BOD}_5)} = 2.1 \text{ lb } O_2/\text{ lb BOD}_5^*$

*TCEQ Chapter 217.155(a)(3) requires using a minimum of 2.2 lb O_2 /lb BOD₅ if the system is intended to nitrify, which is used below for calculations.

2. Fine Bubble Requirements

<u>(340 mg/L BOD₅)(8.34)(5.0 MGD)(2.2 lb O₂/lb BOD₅)</u>		
(10.7%*)(0.075)(0.23)(1,440)	=	11,736 scfm

* Wastewater Oxygen Transfer Efficiency is based on the actual efficiency for the installed aeration systems based on the manufacturer provided data

Miscellaneous Air Demands

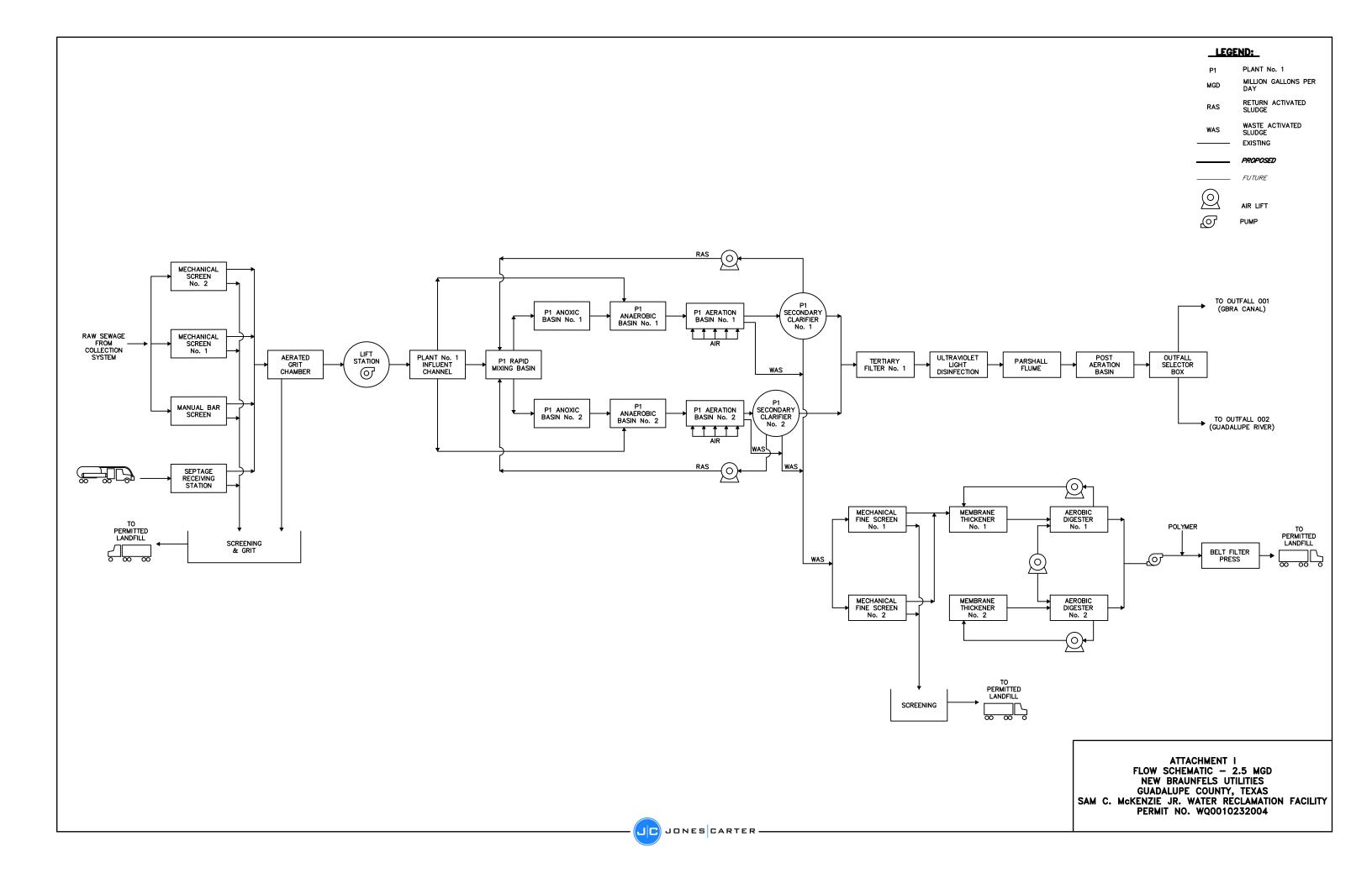
iv.	Plant No. 1 Return Sludge Air Lifts (2) 8″ Airlifts @ 80 scfm/Airlift	=	160 scfm
	(2) 12" Airlifts @ 180 scfm/Airlift	=	360 scfm
٧.	Plant No. 2 Return Sludge Air Lifts		
	(2) 8″ Airlifts @ 80 scfm/Airlift		160 scfm
	(2) 12" Airlifts @ 180 scfm/Airlift	-	360 scfm
vi.	Plant No. 3 Return Sludge Air Lifts		
	(12) 12" Airlifts @ 220 scfm/Airlift	=	2,640 scfm
vii.	Total Return Sludge Air Demand		
	(2)(160 scfm) + (2)(360 scfm) + (2,640 scfm)	=	3,680 scfm
viii.	Plant No. 1 Clarifier Loading Basins		
	(2)(14.56 ft)(130 ft ²) (30 scfm/1000 ft ³)	<u></u>	114 scfm

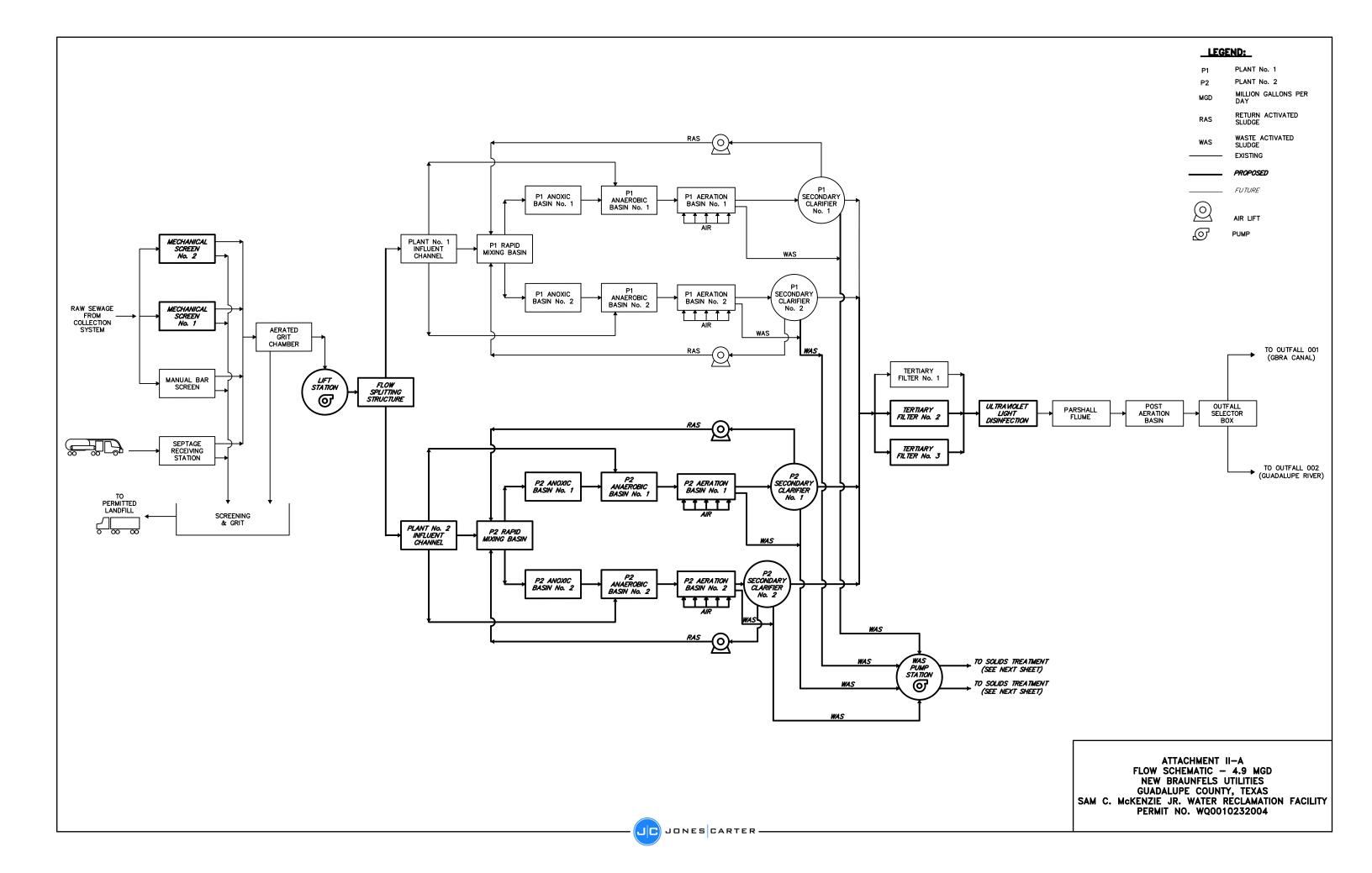
ix.	Plant No. 2 Clarifier Loading Basins and Effluent Basins (4)(14.56 ft)(193 ft ²) (30 scfm/1000 ft ³)	=	338 scfm
x.	Plant No. 3 Clarifier Loading Basins and Effluent Basins (4)(14.56 ft)(386 ft²)(30 scfm/1000 ft³)	=	675 scfm
xi.	Total Miscellaneous Air Demands (3,680 scfm) + (114 scfm) + (338 scfm) + (675 scfm)	=	4,807 scfm
<u>U</u>	V Disinfection Air Scour		
xii.	Post-Aeration Air Requirement	=	225 scfm
<u>Pc</u>	ost-Aeration Process Air		
xiii.	Post-Aeration Air Requirement (6,466 ft³)(30 scfm/1000 ft³)	=	194 scfm
<u>Tc</u>	<u>otal Process Blowers Air Requirement</u> (Grit Removal System) + (Fine Bubble Req.) + (Misc. Air De + (UV Scour) + (Post-Aeration) (264 scfm)+(11,500 scfm + 11,736 scfm)+(1,452 scfm)		25.000 (
Digest	+(152 scfm)+(194 scfm) ter Blowers Demand	=	25,298 scfm
Sc	olids Treatment Train No. 1		
	erobic Digester Air Requirement		
	(135,168 ft ³)(30 scfm/1,000 ft ³)	=	4,055 scfm
W	aste Sludge & Sludge Transfer Air Lifts		
	(2)(55 scfm) + (6)(15 scfm)	=	200 scfm
Sc	olids Treatment Train No. 2		
	erobic Digester Air Requirement		
<u>/ (</u>	(135,648 ft ³)(30 scfm/1000 ft ³)	=	4,070 scfm
и	aste Sludge & Sludge Transfer Air Lifts		
	(2)(55 scfm) + (4)(15 scfm)	=	170 scfm
Та	otal Solids Air Requirement		
	(Aerobic Digesters) + (Sludge Transfer Air Lifts)		
	(4,055 scfm + 4,070 scfm) + (200 scfm + 170 scfm)	=	8,495 scfm

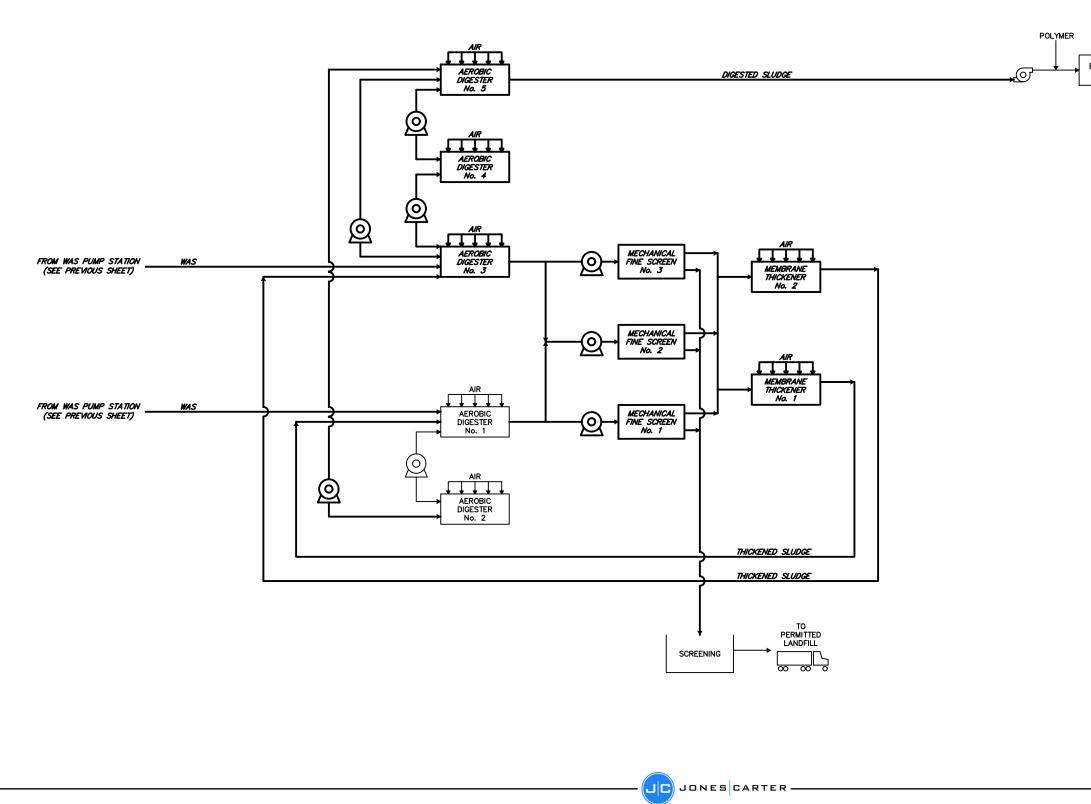
Membrane Blowers Demand:

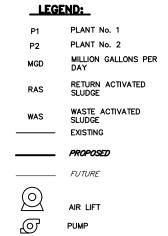
<u> </u>	f olids Treatment Train No. 1 <u>Membrane Thickeners Air Requirement</u> 2)(500 scfm/MBT)	=	1,000 scfm				
<u>/</u>	f olids Treatment Train No. 2 <u>Membrane Thickeners Air Requirement</u> 2)(500 scfm/MBT)	=	1,000 scfm				
(Total Membrane Blowers Air Requirement Membrane Thickeners) 1,000 scfm) + (1,000 scfm)	=	2,000 scfm				
<u>Blow</u>	er Capacities						
Proc	ess Blowers						
i.	Total Process Air Requirement	=	25,298 scfm				
ii.	Firm Blower Capacity with Largest Unit out of Service (9)(3,000 scfm)	=	27,000 scfm				
Digester Blowers							
i.	Total Solids Air Requirement	=	8,495 scfm				
ii.	Firm Blower Capacity with Largest Unit out of Service (3)(3,000 scfm)	=	9,000 scfm				
Membrane Blowers							
i.	Total Membrane Air Requirement	=	2,000 scfm				
ii.	Firm Blower Capacity with Largest Unit out of Service (4)(510 scfm)	=	2,040 scfm				

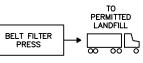
n.

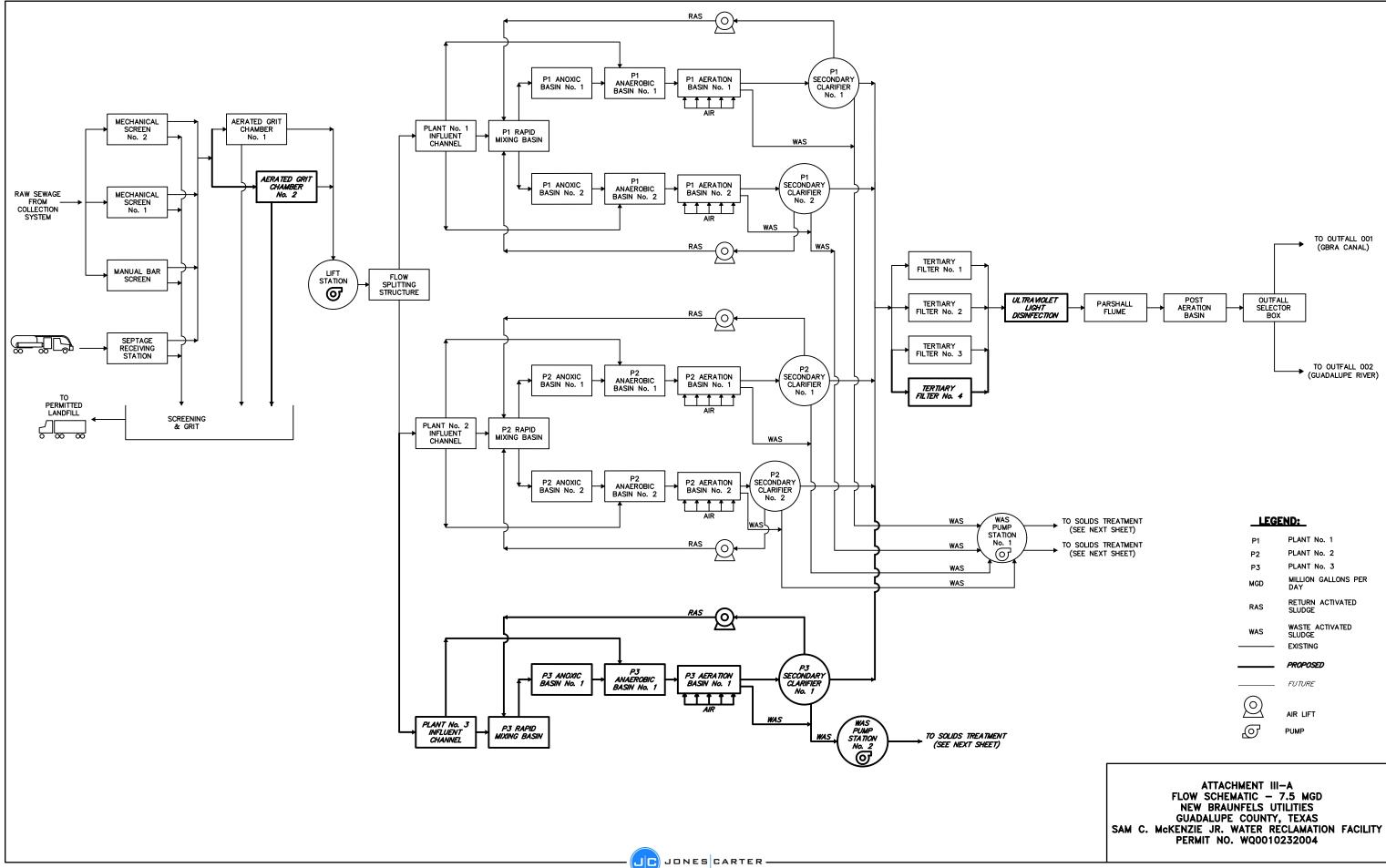

ATTACHMENT D

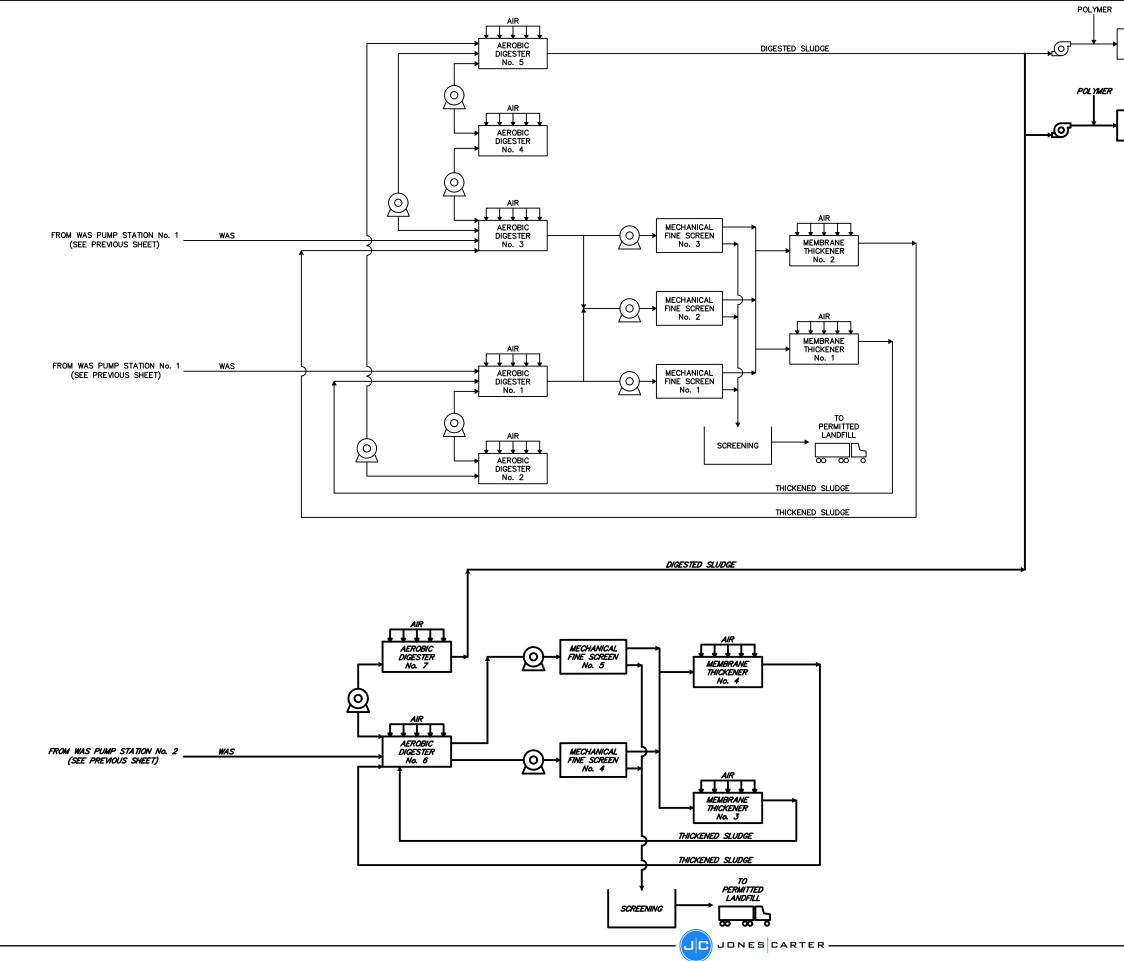

FLOW SCHEMATICS


NEW BRAUNFELS UTILITIES SAM C. MCKENZIE, JR. WATER RECLAMATION FACILITY


MAY 2021



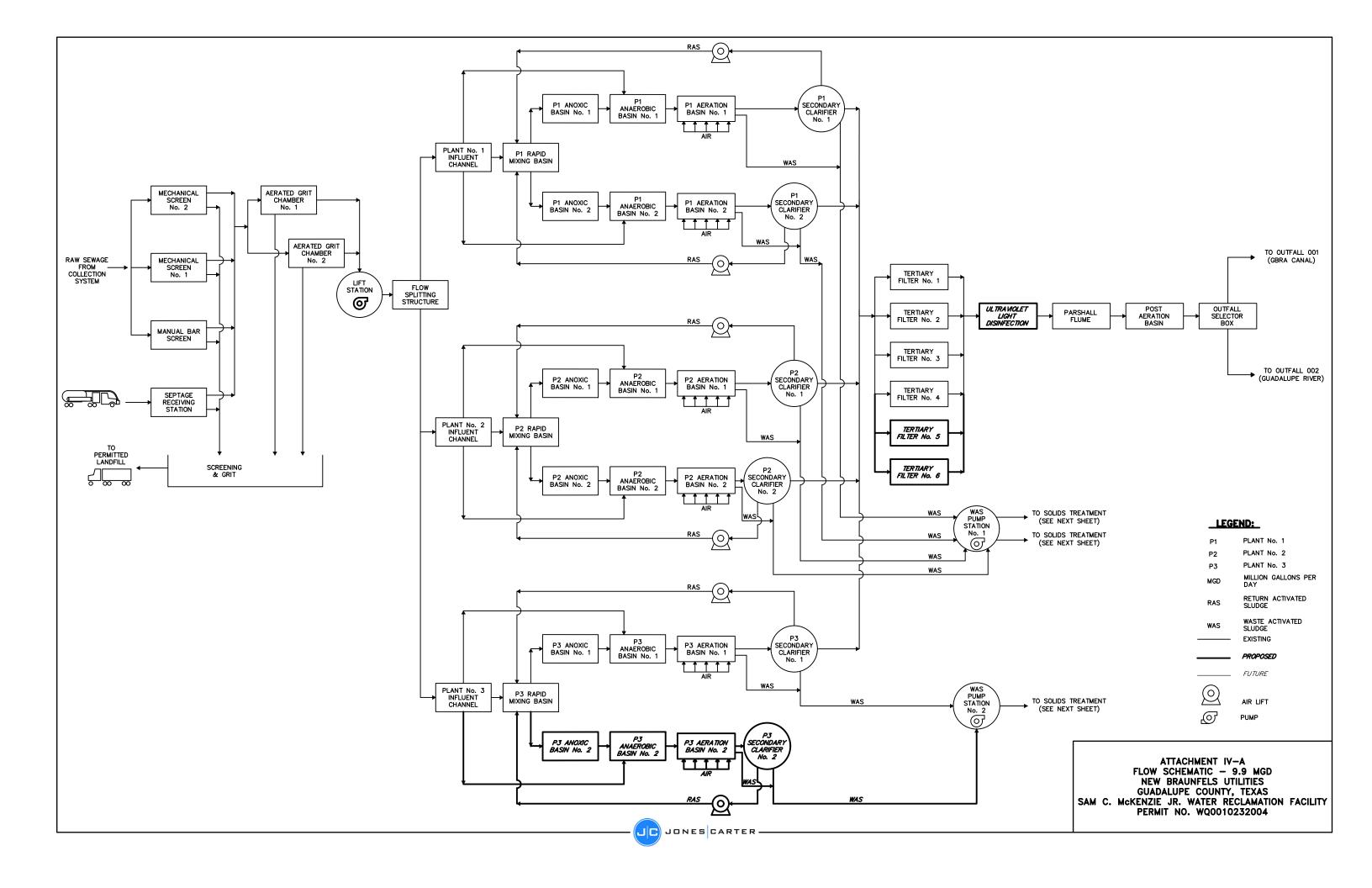


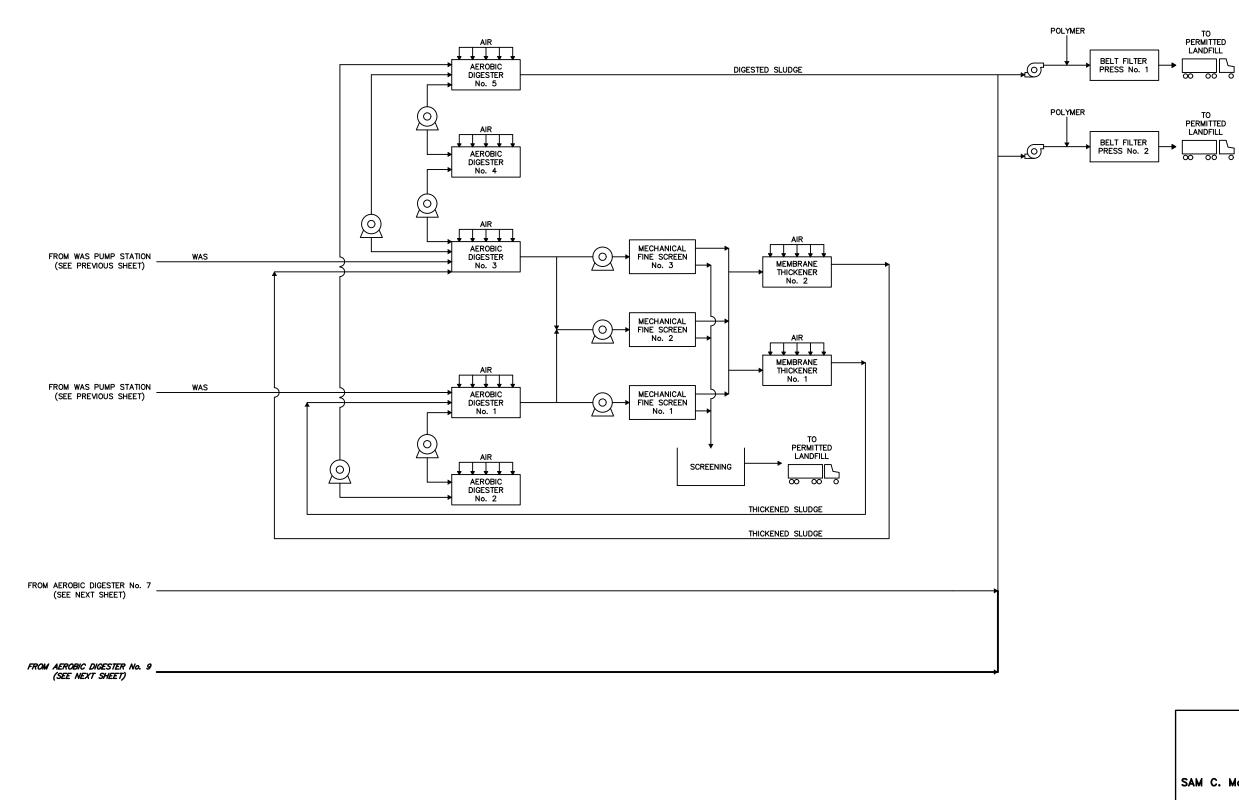


ATTACHMENT II-B FLOW SCHEMATIC - 4.9 MGD NEW BRAUNFELS UTILITIES GUADALUPE COUNTY, TEXAS SAM C. MCKENZIE JR. WATER RECLAMATION FACILITY PERMIT NO. WQ0010232004

→	TO SOLIDS TREATMENT (SEE NEXT SHEET)
→	TO SOLIDS TREATMENT

END:							
PLANT No. 1							
PLANT No. 2							
PLANT No. 3							
MILLION GALLONS PER DAY							
RETURN ACTIVATED SLUDGE							
WASTE ACTIVATED SLUDGE							
EXISTING							
PROPOSED							
FUTURE							
AIR LIFT							
PUMP							
ATTACHMENT III-A FLOW SCHEMATIC - 7.5 MGD NEW BRAUNFELS UTILITIES							

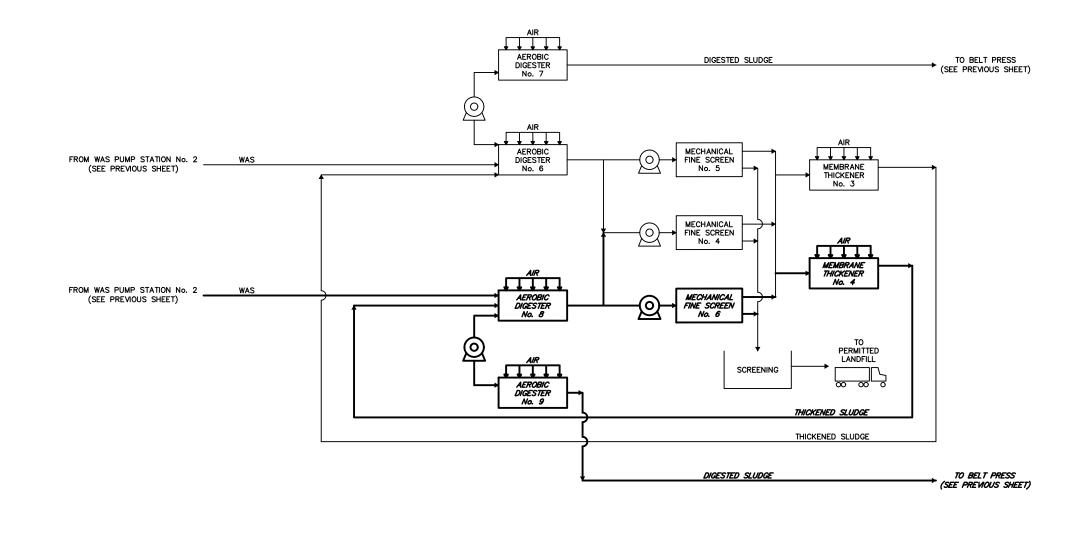

LEGEND:


P1	PLANT No. 1
P2	PLANT No. 2
Р3	PLANT No. 3
MGD	MILLION GALLONS PER DAY
RAS	RETURN ACTIVATED SLUDGE
WAS	WASTE ACTIVATED SLUDGE
	EXISTING
	PROPOSED
	FUTURE
~	

 \bigcirc Ø

AIR LIFT PUMP

ATTACHMENT III-B FLOW SCHEMATIC - 7.5 MGD NEW BRAUNFELS UTILITIES GUADALUPE COUNTY, TEXAS SAM C. McKENZIE JR. WATER RECLAMATION FACILITY PERMIT NO. WQ0010232004



JC JONES CARTER

LEGEND:				
P1	PLANT No. 1			
P2	PLANT No. 2			
P3	PLANT No. 3			
MGD	MILLION GALLONS PER DAY			
RAS	RETURN ACTIVATED SLUDGE			
WAS	WASTE ACTIVATED SLUDGE EXISTING			
	EXISTING			
	PROPOSED			
	FUTURE			
Q Ø	AIR LIFT PUMP			

I FOEND.

ATTACHMENT IV-B FLOW SCHEMATIC - 9.9 MGD NEW BRAUNFELS UTILITIES GUADALUPE COUNTY, TEXAS SAM C. McKENZIE JR. WATER RECLAMATION FACILITY PERMIT NO. WQ0010232004

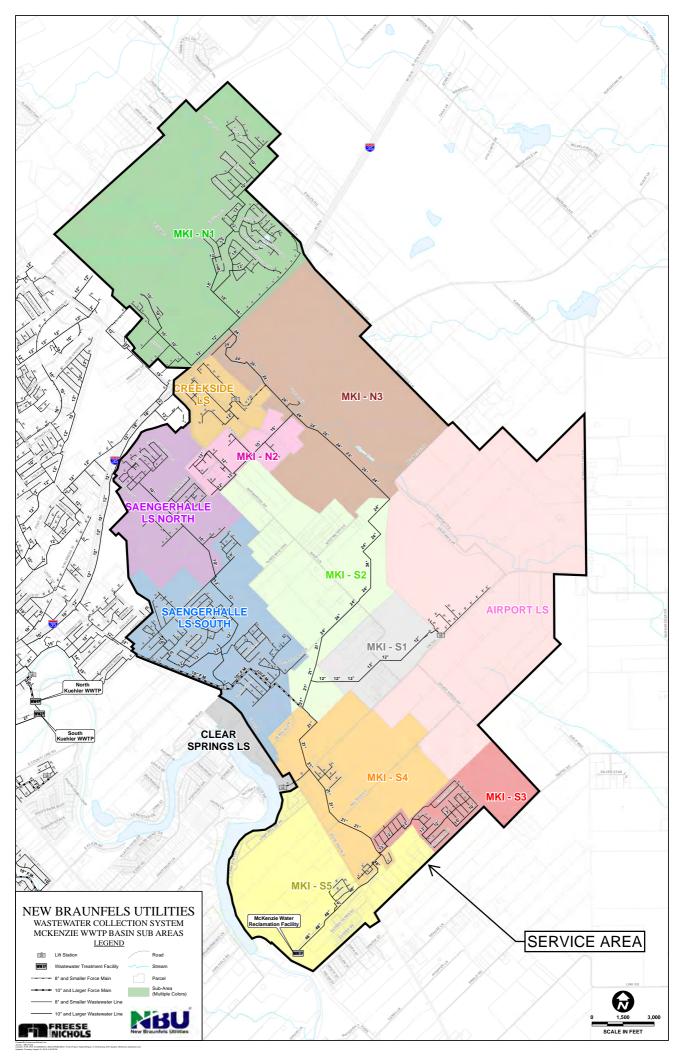
LEGEND:

P1	PLANT No. 1
P2	PLANT No. 2
Р3	PLANT No. 3
MGD	MILLION GALLONS PER DAY
RAS	RETURN ACTIVATED SLUDGE
WAS	WASTE ACTIVATED SLUDGE EXISTING
	EXISTING
	PROPOSED
	FUTURE
0	AIR LIFT

PUMP

Ø

ATTACHMENT IV-C FLOW SCHEMATIC - 9.9 MGD NEW BRAUNFELS UTILITIES GUADALUPE COUNTY, TEXAS SAM C. MCKENZIE JR. WATER RECLAMATION FACILITY PERMIT NO. WQ0010232004


ATTACHMENT E

SITE DRAWING

NEW BRAUNFELS UTILITIES SAM C. MCKENZIE, JR. WATER RECLAMATION FACILITY

May 2021

ATTACHMENT F

JUSTIFICATION

NEW BRAUNFELS UTILITIES SAM C. MCKENZIE, JR. WATER RECLAMATION FACILITY

May 2021

JUSTIFICATION FOR PLANT EXPANSION NEW BRAUNFELS UTILITIES

The New Braunfels Utilities ("NBU") Sam C. McKenzie, Jr. Water Reclamation Facility Wastewater Treatment Plant serves the eastern portions of the City of New Braunfels.

At build out, there will be 35,500 residential connections, 4,200 apartment unit connections, 500 commercial connections, and 50 other connections. For design purposes, the wastewater flow for residential connections is 240 gallons per day per connection (gpd/conn.), 150 gpd/conn. for apartment units, 1,000 gpd/conn. for commercial units, and 5,000 gpd/conn. for other connections.

Following is the connection and flow projection for NBU to complete build out:

Month / yr	Vr Single family residential		Apartment Units		Commercial		Other		Total	
	connections	flow (gpd)	connections	flow (gpd)	connections	flow (gpd)	connections	flow (gpd)	connections	flow (gpd)
Jan-21	4,800	1,152,000	600	90,000	120	120,000	0	0	5520	1,362,000
Jan-22	5,800	1,392,000	640	96,000	170	170,000	2	10,000	6,612	1,668,000
Jan-23	6,400	1,536,000	700	105,000	220	220,000	4	20,000	7,324	1,881,000
Jan-24	7,000	1,680,000	1,000	150,000	320	320,000	19	95,000	8,339	2,245,000
Jan-25	8,500	2,040,000	1,100	165,000	340	340,000	22	110,000	9,962	2,655,000
Jan-26	10,000	2,400,000	1,500	225,000	400	400,000	30	150,000	11,930	3,175,000
Jan-27	12,000	2,880,000	1,600	240,000	400	400,000	30	150,000	14,030	3,670,000
Jan-28	13,500	3,240,000	1,700	255,000	420	420,000	35	175,000	15,655	4,090,000
Jan-29	14,800	3,552,000	1,720	258,000	421	421,000	35	175,000	16,976	4,406,000
Jan-30	16,000	3,840,000	1,800	270,000	430	430,000	40	200,000	18,270	4,740,000
Jan-31	17,000	4,080,000	1,900	285,000	450	450,000	42	210,000	19,392	5,025,000
Jan-32	19,000	4,560,000	2,500	375,000	470	470,000	44	220,000	22,014	5,625,000
Jan-33	20,500	4,920,000	2,600	390,000	470	470,000	44	220,000	23,614	6,000,000
Jan-34	22,000	5,280,000	2,650	397,500	475	475,000	44	220,000	25,169	6,372,500
Jan-35	23,500	5,640,000	2,750	412,500	480	480,000	45	225,000	26,775	6,757,500
Jan-36	24,500	5,880,000	2,900	435,000	480	480,000	45	225,000	27,925	7,020,000
Jan-37	25,500	6,120,000	3,200	480,000	480	480,000	48	240,000	29,228	7,320,000
Jan-38	26,500	6,360,000	3,300	495,000	485	485,000	48	240,000	30,333	7,580,000
Jan-39	28,000	6,720,000	3,400	510,000	490	490,000	50	250,000	31,940	7,970,000
Jan-40	29,500	7,080,000	3,500	525,000	495	495,000	50	250,000	33,545	8,350,000
Jan-41	30,500	7,320,000	3,600	540,000	497	497,000	50	250,000	34,647	8,607,000
Jan-42	32,000	7,680,000	3,700	555,000	500	500,000	50	250,000	36,250	8,985,000
Jan-43	33,000	7,920,000	3,800	570,000	500	500,000	50	250,000	37,350	9,240,000
Jan-44	34,000	8,160,000	3,995	599,250	500	500,000	50	250,000	38,545	9,509,250
Jan-45	35,000	8,400,000	4,150	622,500	500	500,000	50	250,000	39,700	9,772,500

Following is the construction schedule for the current and final plant phases:

Proposed flow	<u>Interim I</u>	<u>Interim II</u>	Interim III	<u>Final</u>
Design Flow (MGD)	2.5	4.9	7.5	9.9
2-Hr Peak Flow (MGD)	10	19.6	30	39.6
Date construction to commence		2/23	2/28	2/34
Date construction completed and discharge begins		1/24	1/29	1/35

ATTACHMENT G

SUMMARY SUBMITTAL AND TCEQ APPROVAL

NEW BRAUNFELS UTILITIES SAM C. MCKENZIE, JR. WATER RECLAMATION FACILITY

May 2021

Bryan W. Shaw, Ph.D., *Chairman* Carlos Rubinstein, *Commissioner* Toby Baker, *Commissioner* Zak Covar, *Executive Director*

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

February 25, 2013

Protecting Texas by Reducing and Preventing Pollution

Hal Craig Bell, PE TRC Engineers, Inc. 505 East Huntland Dr. Ste. 250 Austin, Texas 78752

Re: New Braunfels Utilities Proposed Sam C. McKenzie Water Reclamation Facility Permit No. 10232-004 WWPR Log No. 0213/038 CN600522957; RN106228422 Guadalupe County

Dear Mr. Bell:

We have received the project summary transmittal letter dated February 14, 2013.

The rules which regulate the design, installation and testing of domestic wastewater projects are found in 30 TAC, Chapter 217, of the Texas Commission on Environmental Quality (TCEQ) rules titled, <u>Design Criteria for Wastewater Systems</u>.

Section 217.6(d), relating to case-by-case reviews, states in part that upon submittal of a summary transmittal letter, the executive director may approve of the project without reviewing a complete set of plans and specifications.

Under the authority of §217.6(e) a technical review of complete plans and specifications is not required. However, the project proposed in the summary transmittal letter is approved for construction. Please note, that this conditional approval does not relieve the applicant of any responsibilities to obtain all other necessary permits or authorizations, such as wastewater treatment permit or other authorization as required by Chapter 26 of the Texas Water Code. Below are provisions of the Chapter 217 regulations, which must be met as a condition of approval. These items are provided as a reminder. If you have already met these requirements, please disregard this additional notice.

1. You must keep certain materials on file for the life of the project and provide them to TCEQ upon request. These materials include an engineering report, test results, a summary transmittal letter, and the final version of the project plans and specifications. These materials shall be prepared and sealed by a Professional Engineer licensed in the State of Texas and must show substantial compliance with Chapter 217. All plans and specifications must conform to any waste discharge requirements authorized in a permit by the TCEQ. Certain specific items which shall be addressed in the engineering report discussed in §217.6(c). Additionally, the engineering report

Hal Craig Bell, PE Page 2 February 25, 2013

> must include all constants, graphs, equations, and calculations needed to show substantial compliance with Chapter 217. The items which shall be included in the summary transmittal letter are addressed in $\S217.6(c)(1)-(10)$.

- 2. Any deviations from Chapter 217 shall be disclosed in the summary transmittal letter and the technical justifications for those deviations shall be provided in the engineering report. Any deviations from Chapter 217 shall be based on the best professional judgement of the licensed professional engineer sealing the materials and the engineer's judgement that the design would not result in a threat to public health or the environment.
- Any variance from a Chapter 217 requirement disclosed in your summary transmittal 3. letter is approved. If in the future, additional variances from the Chapter 217 requirements are desired for the project, each variance must be requested in writing by the design engineer. Then, the TCEQ will consider granting a written approval to the variance from the rules for the specific project and the specific circumstances.
- 4. Within 60 days of the completion of construction, an appointed engineer shall notify both the Wastewater Permits Section of the TCEQ and the appropriate Region Office of the date of completion. The engineer shall also provide written certification that all construction, materials, and equipment were substantially in accordance with the approved project, the rules of the TCEO, and any change orders filed with the TCEO. All notifications, certifications, and change orders must include the signed and dated seal of a Professional Engineer licensed in the State of Texas.

This approval does not mean that future projects will be approved without a complete plans and specifications review. The TCEQ will provide a notification of intent to review whenever a project is to undergo a complete plans and specifications review. Please be reminded of §217.5 of the rules which states, "Approval given by the executive director...shall not relieve the sewerage system owner or the design engineer of any liabilities or responsibilities with respect to the proper design, construction, or authorized operation of the project in accordance with applicable commission rules."

If you have any questions or if we can be of any further assistance, please call me at (512) 239-4552.

Sincerely =D Louis C. Herrin, III, P.E. Wastewater Permits Section (MC 148)

Water Quality Division Texas Commission on Environmental Quality

LCH/mac

cc: TCEQ, Region 13 Office Bryan W. Shaw, Ph.D., *Chairman* Carlos Rubinstein, *Commissioner* Toby Baker, *Commissioner* Mark R. Vickery, P.G., *Executive Director*

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

April 23, 2012

MR HAL CRAIG BELL PE TRC ENGINEERS INC 505 EAST HUNTLAND DR STE 250 AUSTIN TX 78752

Re: NEW BRAUNFELS UTILITIES PROPOSED HWY 46 WWTP PERMIT NO 10232-004 WWPR LOG NO 0412/036 CN600522957 RN106228422 GUADALUPE COUNTY

Dear Mr. Bell:

We have received the project summary transmittal letter dated April 16, 2012.

The rules which regulate the design, installation and testing of domestic wastewater projects are found in 30 TAC, Chapter 217, of the Texas Commission on Environmental Quality (TCEQ) rules titled, <u>Design Criteria for Sewerage Systems</u>.

Section 217.6(d), relating to case-by-case reviews, states in part that upon submittal of a summary transmittal letter, the executive director may approve of the project without reviewing a complete set of plans and specifications.

Under the authority of §217.6(e) a technical review of complete plans and specifications is not required. However, the project proposed in the summary transmittal letter is approved for construction. Please note, that this conditional approval does not relieve the applicant of any responsibilities to obtain all other necessary permits or authorizations, such as wastewater treatment permit or other authorization as required by Chapter 26 of the Texas Water Code. Below are provisions of the Chapter 217 regulations, which must be met as a condition of approval. These items are provided as a reminder. If you have already met these requirements, please disregard this additional notice.

1. You must keep certain materials on file for the life of the project and provide them to TCEQ upon request. These materials include an engineering report, test results, a summary transmittal letter, and the final version of the project plans and specifications. These materials shall be prepared and sealed by a Professional Engineer licensed in the State of Texas and must show substantial compliance with Chapter 217. All plans and specifications must conform to any waste discharge requirements authorized in a permit by the TCEQ. Certain specific items which shall be addressed in the engineering report

P.O. Box 13087 • Austin, Texas 78711-3087 • 512-239-1000 • tceq.texas.gov

Mr. Hal Craig BellL PE Page 2 April 23, 2012

are discussed in \$217.6(c). Additionally, the engineering report must include all constants, graphs, equations, and calculations needed to show substantial compliance with Chapter 217. The items which shall be included in the summary transmittal letter are addressed in \$217.6(c)(1)-(10).

- 2. Any deviations from Chapter 217 shall be disclosed in the summary transmittal letter and the technical justifications for those deviations shall be provided in the engineering report. Any deviations from Chapter 217 shall be based on the best professional judgement of the licensed professional engineer sealing the materials and the engineer's judgement that the design would not result in a threat to public health or the environment.
- 3. Any variance from a Chapter 217 requirement disclosed in your summary transmittal letter is approved. If in the future, additional variances from the Chapter 217 requirements are desired for the project, each variance must be requested in writing by the design engineer. Then, the TCEQ will consider granting a written approval to the variance from the rules for the specific project and the specific circumstances.
- 4. Within 60 days of the completion of construction, an appointed engineer shall notify both the Wastewater Permits Section of the TCEQ and the appropriate Region Office of the date of completion. The engineer shall also provide written certification that all construction, materials, and equipment were substantially in accordance with the approved project, the rules of the TCEQ, and any change orders filed with the TCEQ. All notifications, certifications, and change orders must include the signed and dated seal of a Professional Engineer licensed in the State of Texas.

This approval does not mean that future projects will be approved without a complete plans and specifications review. The TCEQ will provide a notification of intent to review whenever a project is to undergo a complete plans and specifications review. Please be reminded of §217.5 of the rules which states, "Approval given by the executive director...shall not relieve the sewerage system owner or the design engineer of any liabilities or responsibilities with respect to the proper design, construction, or authorized operation of the project in accordance with applicable commission rules."

If you have any questions or if we can be of any further assistance, please call me at (512) 239-4552.

Sincerely,

Louis C. Herrin, III, P.E. Wastewater Permits Section (MC 148) Water Quality Division Texas Commission on Environmental Quality

LCH/evm

cc: TCEQ, Region 13 Office

ATTACHMENT H

FINAL EFFLUENT ANALYSIS

NEW BRAUNFELS UTILITIES SAM C. MCKENZIE, JR. WATER RECLAMATION FACILITY

May 2021

Client Information	Sample Information	Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: IPP Sam McKenzie WWTP Annual Sample ID: Eff Grab #1 Matrix: Non-Potable Water Date/Time Taken: 3/8/2021 0935	PCS Sample #: 627972 Page 1 of 1 Date/Time Received: 3/9/2021 10:12 Report Date: 4/7/2021 Approved by:
Test Description Flag	Result Units RL Analysis Date/Time	Method Analyst
Quality Statement: All supporting quality data adher exceptions or in a case narrative attachment. Reports	ed to data quality objectives and test results meet the requirement with full quality data deliverables are abailable on request.	nts of NELAC unless otherwise noted as flagged
+ Subcontract Work - NELAP Certified Lab	These analytical results relate	e only to the sample tested. Is' basis unless designated as 'Dry Wt'.
Web Site: www.pcslab.net Toll Free 800-880-461 eMail: chuck@pcslab.net This report ca	6 1532 Universal City Blvd, Suite 100 Universal City, TX 78148-3318 nnot be reproduced or duplicated, except in full, without prior written consent fro	210-340-0343 FAX # 210-658-7903 m Pollution Control Services. FAX # 210-658-7903

Client Information	Sample Informa	ation	Laboratory Information
Frish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: IPP Sam McI Sample ID: Eff Grab #1 Matrix: Non-Potable Wat Date/Time Taken: 3/8/202	er 21 0935	PCS Sample #: 627973 Page 1 of 1 Date/Time Received: 3/9/2021 10:12 Report Date: 4/7/2021 Approved by:
Fest Description Flag Phenolics + S	Result Units RL	Analysis Date/Time	MethodAnalystPace Analytical Services - Dallas
Quality Statement: All supporting quality data ad exceptions or in a case narrative attachment. Rep			of NELAC unless otherwise noted as flagged
Subcontract Work - NELAP Certified Lab	Al	nese analytical results relate of l data is reported on an 'As Is L = Reporting Limits	nly to the sample tested. ' basis unless designated as 'Dry Wt'.
Web Site: www.pcslab.net Toll Free 800-880 eMail: chuck@pcslab.net	4616 1532 Universal City Blvd. Universal City, TX 7814 brt cannot be reproduced or duplicated, except in full,	18-3318	210-340-0343 FAX # 210-658-7903 Collution Control Services Control Services

Client Information	Sample Inform	ation	Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: IPP Sam Mcl Sample ID: Eff Grab #2 Matrix: Non-Potable Wat Date/Time Taken: 3/8/202	er	PCS Sample #: 627974 Page 1 of 1 Date/Time Received: 3/9/2021 10:12 Report Date: 4/7/2021 Approved by:
Test DescriptionFlagRedCyanide, Amenable+See Atta		Analysis Date/Time	MethodAnalystPace Analytical Services - Dallas
Quality Statement: All supporting quality data adhered to exceptions or in a case narrative attachment. Reports with	o data quality objectives and test re th full quality data deliverables are	esults meet the requiremen abailable on request.	ts of NELAC unless otherwise noted as flagged
+ Subcontract Work - NELAP Certified Lab	Al	hese analytical results relate l data is reported on an 'As L = Reporting Limits	only to the sample tested. Is' basis unless designated as 'Dry Wt'.
Web Site: www.pcslab.netToll Free 800-880-4616eMail: chuck@pcslab.netThis report cannot	1532 Universal City Blvd. Universal City, TX 7814 be reproduced or duplicated, except in full,	18-3318	210-340-0343 FAX # 210-658-7903 a Pollution Control Services. FAX # 210-658-7903

	REVISED ¹ Report of Sample Analysis								
Client Information	Sample Information	Laboratory Information							
rish Soechting ew Braunfels Utilities .O. Box 310289 ew Braunfels, TX 78131	Project Name: IPP Sam McKenzie WWTP Annual Sample ID: Eff Grab #2 Matrix: Non-Potable Water Date/Time Taken: 3/8/2021 1445	PCS Sample #: 627975 Page 1 of 1 Date/Time Received: 3/9/2021 10:12 Report Date: 4/7/2021 Approved by:							
est Description Flag Flag Flag Flag Flag Flag Flag Flag	Result Units RL Analysis Date/Time	MethodAnalystPace Analytical Services - Dallas							
	l to data quality objectives and test results meet the requiremen with full quality data deliverables are abailable on request.	nts of NELAC unless otherwise noted as flagged							
	with full quality data deliverables are abailable on request. These analytical results relate								

POLLUTION CONTROL SERVICES **Report of Sample Analysis Client Information** Laboratory Information **Sample Information** Project Name: IPP Sam McKenzie WWTP Annual **PCS Sample #: 627976** Page 1 of 1 **Trish Soechting** Sample ID: Eff Grab #3 Date/Time Received: 3/9/2021 10:12 **New Braunfels Utilities** Report Date: 4/7/2021 Matrix: Non-Potable Water P.O. Box 310289 Date/Time Taken: 3/8/2021 2140 New Braunfels, TX 78131 Approved by: Chuck Wallgren, President **Test Description Analysis Date/Time** Flag Result Units RL Method Analyst Cyanide, Amenable Pace Analytical Services - Dallas +See Attached Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are abailable on request. + Subcontract Work - NELAP Certified Lab These analytical results relate only to the sample tested. All data is reported on an 'As Is' basis unless designated as 'Dry Wt'. RL = Reporting Limits Web Site: www.pcslab.net Toll Free 800-880-4616 1532 Universal City Blvd, Suite 100 210-340-0343 FAX # 210-658-7903 eMail: chuck@pcslab.net Universal City, TX 78148-3318

This report cannot be reproduced or duplicated, except in full, without prior written consent from Pollution Control Services.

Client Information	Sample Information	Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: IPP Sam McKenzie WWTP Annus Sample ID: Eff Grab #3 Matrix: Non-Potable Water Date/Time Taken: 3/8/2021 2140	Al PCS Sample #: 627977 Page 1 of 1 Date/Time Received: 3/9/2021 10:12 Report Date: 4/7/2021 Approved by:
	Result Units RL Analysis Date/Tin Attached	Pace Analytical Services - Dallas
	s with full quality data deliverables are abailable on request. These analytical results r	elate only to the sample tested. a 'As Is' basis unless designated as 'Dry Wt'.
Web Site: www.pcslab.net Toll Free 800-880-46 eMail: chuck@pcslab.net This report of the temperature of temperature	16 1532 Universal City Blvd, Suite 100 Universal City, TX 78148-3318 cannot be reproduced or duplicated, except in full, without prior written conset	210-340-0343 FAX # 210-658-7903

Client Information	Sample Information	Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: IPP Sam McKenzie WWTP Annual Sample ID: Eff Grab #4 Matrix: Non-Potable Water Date/Time Taken: 3/9/2021 0617	PCS Sample #: 627978 Page 1 of 1 Date/Time Received: 3/9/2021 10:12 Report Date: 4/7/2021 Approved by:
Test Description Flag R	esult Units RL Analysis Date/Time	Method Analyst
Cyanide, Amenable + See Atta		
Quality Statement: All supporting quality data adhered exceptions or in a case narrative attachment. Reports wi	to data quality objectives and test results meet the requireme th full quality data deliverables are abailable on request.	nis of MELAC unless otherwise noted as fugged
+ Subcontract Work - NELAP Certified Lab	These analytical results relat All data is reported on an 'As RL = Reporting Limits	e only to the sample tested. s Is' basis unless designated as 'Dry Wt'.
Web Site: www.pcslab.net Toll Free 800-880-4616 eMail: chuck@pcslab.net This report canno	II 1532 Universal City Blvd, Suite 100 Universal City, TX 78148-3318 at he reproduced or duplicated, except in full, without prior written consent fro	210-340-0343 FAX # 210-658-7903

$REVISED^{-1}$	BORATO				
Client Information	Sample Information	Laboratory Information			
Frish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: IPP Sam McKenzie WWTP Annual Sample ID: Eff Grab #4 Matrix: Non-Potable Water Date/Time Taken: 3/9/2021 0617	PCS Sample #: 627979 Page 1 of 1 Date/Time Received: 3/9/2021 10:12 Report Date: 4/7/2021 Approved by:			
Test Description Flag Thenolics + See	Result Units RL Analysis Date/Time	MethodAnalystPace Analytical Services - Dallas			
	red to data quality objectives and test results meet the requireme s with full quality data deliverables are abailable on request.	nts of NELAC unless otherwise noted as flagged			
	s with full quality data deliverables are abailable on request. These analytical results relat				

Client Information	Sample Information	Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: IPP Sam McKenzie WWTP Annual Sample ID: Eff Grab #1 Matrix: Non-Potable Water Date/Time Taken: 3/8/2021 0935	PCS Sample #: 627980 Page 1 of 1 Date/Time Received: 3/9/2021 10:22 Report Date: 4/7/2021 Approved by:
Test Description	Result Units RL Analysis Date/Time	MethodAnalystPace Analytical Services - Dallas
	ed to data quality objectives and test results meet the requirem s with full quality data deliverables are abailable on request.	ents of NELAC unless otherwise noted as flagged
		te only to the sample tested. As Is' basis unless designated as 'Dry Wt'.
Web Site: www.pcslab.net Toll Free 800-880-461 eMail: chuck@pcslab.net This report c	6 1532 Universal City Blvd, Suite 100 Universal City, TX 78148-3318 annot be reproduced or duplicated, except in full, without prior written consent f	210-340-0343 FAX # 210-658-7903 rom Pollution Control Services. FAX # 210-658-7903

Client Information		Sample Information						Laboratory Information			
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Sam Mat	Project Name: IPP Sam McKenzie WWTP Annu: I Sample ID: Eff Comp Matrix: Non-Potable Water Date/Time Taken: 3/9/2021 0600						ample #: 6 Fime Recei t Date: 3/2	ived: 3/9/2021 10:22		
Test Description	Result	Units	RL	Analys	is Date/	Time	Metho	od	Analyst		
Arsenic/ICP MS	< 0.0005	mg/L	0.0005		2021 14:		EPA 200		DJL		
Barium/ICP (Total)	0.017	mg/L	0.003		2021 14:).7 / 6010 B			
Cadmium/ICP (Total)	< 0.001	mg/L	0.001		2021 14:).7 / 6010 B			
Chromium/ICP (Total)	< 0.003	mg/L	0.003		2021 14:).7 / 6010 B			
Copper/ICP (Total)	0.007	mg/L	0.002		2021 14:).7 / 6010 B			
Lead/ICP MS	< 0.0005	mg/L	0.0005		2021 14:		EPA 200		DJL		
Aluminum/ICP (Total)	0.160	mg/L	0.0025	3/12/2	2021 14:	58	EPA 200).7 / 6010 B	B DJL		
Beryllium/ICP (Total)	< 0.0005	mg/L	0.0005		2021 14:	58).7 / 6010 B			
Cest Description	Precisio	Quality As n Limit	ssurance Summ LCL	MS	MSD	UCL	LCS	LCS Lin	nit		
Arsenic/ICP MS	2	20	70	98	96	130	96	85 - 115			
Barium/ICP (Total)	1	20	75	96	97	125	105	85 - 115			
Cadmium/ICP (Total)	<1	20	75	100	100	125	105	85 - 115			
Chromium/ICP (Total)	<1	20	75	99	99	125	105	85 - 115			
Copper/ICP (Total)	<1	20	75	100	100	125	105	85 - 115			
Lead/ICP MS	<1	20	70	105	105	130	103	85 - 115			
Aluminum/ICP (Total)	<1	20	75	99	99	125	105	85 - 115			
Beryllium/ICP (Total)	<1	20	75	100	100	125	105	85 - 115			
Quality Statement: All supporting quality data (exceptions or in a case narrative attachment. Re			eliverables a	<i>re abailabl</i> These analy	<i>e on requ</i> ytical resure reported c	ults relate	only to the	e sample teste			

Report of Sample Analysis

Client Information		Sample ID: Eff Comp				Laboratory Information			
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Samp Matri								
Test Description	Result	Units	RL	Analy	sis Date	/Time	Metho	od	Analyst
Nickel/ICP (Total)	< 0.002	mg/L	0.002		/2021 14:		the second s	0.7 / 6010 B	DJL
Zinc/ICP (Total)	0.047	mg/L	0.005		/2021 14:			0.7 / 6010 B	DJL
Antimony/ICP MS	< 0.005	mg/L	0.005		/2021 14:		EPA 20	0.8	DJL
Thallium/ICP MS	< 0.0005	mg/L	0.0005		/2021 14:		EPA 20	0.8	DJL
Selenium/ICP MS	< 0.005	mg/L	0.005		/2021 14:		EPA 20		DJL
Silver/ICP MS	< 0.0005	mg/L	0.0005	3/11/	/2021 14:	:20	EPA 20	0.8	DJL
Test Description	Precision	Quality As Limit	surance Summ LCL	MS	MSD	UCL	LCS	LCS Limit	
Nickel/ICP (Total)	1	20	75	96	95	125	105	85 - 115	
Zinc/ICP (Total)	<1	20	75	94	94	125	105	85 - 115	
Antimony/ICP MS	<1	20	70	97	97	130	99	85 - 115	
Thallium/ICP MS	<1	20	70	107	107	130	105	85 - 115	
Selenium/ICP MS	4	20	70	106	103	130	101	85 - 115	
Silver/ICP MS	2	20	70	94	96	130	97	85 - 115	
Quality Statement: All supporting quality exceptions or in a case narrative attachme	data adhered to data qu nt. Reports with full qua	ality objecta ality data de	eliverables a	<i>re abailab</i> These ana	ble on requi	<i>lest.</i> ilts relate	only to the	e sample tested.	
					reported orting Lim		Is' basis ur	iless designated as	s 'Dry Wt'.

This report cannot be reproduced or duplicated, except in full, without prior written consent from Pollution Control Services

Client Information			Sample Info	rmation		Laboratory Information			
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Samp Matri	Project Name: IPP Sam McKenzie WWTP Annus Sample ID: Eff Comp Matrix: Non-Potable Water Date/Time Taken: 3/9/2021 0600							
Test Description Nitrate-N Fluoride Hexavalent Chrome	Result 16.7 0.26 <0.003	Units mg/L mg/L mg/L	RL 0.1 0.10 0.003	Analysis Date 3/11/2021 15 3/11/2021 15 3/9/2021 13:4	:23 :23	Metho EPA 300 EPA 300 SM 3500).0).0	Analyst JAS JAS DJL	
Test Description	Precision	Quality As: Limit 20	surance Summ LCL 70	MS MSD 99 98	UCL 130	LCS 97	LCS Limit 85 - 115		
Nitrate-N Fluoride Hexavalent Chrome	3	10 20	93 75	99 96 87 88	109 125	95 101	85 - 115 85 - 115		

Report of Sample Analysis

Client Information	Sample Information	Laboratory Information
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Project Name: IPP Sam McKenzie WWTP Annual Sample ID: Eff Comp Matrix: Non-Potable Water Date/Time Taken: 3/9/2021 0600	PCS Sample #: 627983 Page 1 of 1 Date/Time Received: 3/9/2021 10:22 Report Date: 4/7/2021 Approved by:
Test Description	Dosult Units DI Analysis Data/Tima	Mothod Analyst

Test Description	Result	Units	RL	Analysis Date/Time	Method	Analyst	
Pesticides 617	See Attached				ANA-LAB Corp		
604.1 Hexachlorophene	See Attached				Pace Analytical Servic	ces - Dallas	
Semi Volatiles 625	See Attached				Pace Analytical Service	ces - Dallas	
Pesticides 608	See Attached				Pace Analytical Service	ces - Dallas	
Pesticides 632	See Attached				Pace Analytical Service	ces - Dallas	
Pesticide 1657	See Attached				ANA-LAB Corp		
Herbicides 615	See Attached				Pace Analytical Service	ces - Dallas	

Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are abailable on request.

			esults relate only to the sample tested. d on an 'As Is' basis unless designated as imits	'Dry Wt'.
Web Site: www.pcslab.net eMail: chuck@pcslab.net	Toll Free 800-880-4616	1532 Universal City Blvd. Suite 100 Universal City, TX 78148-3318	210-340-0343	FAX # 210-658-7903

This report cannot be reproduced or duplicated, except in full, without prior written consent from Pollution Control Services.

Project Name: IPP Sam Sample ID: Eff Grab Matrix: Non-Potable V Date/Time Taken: 3/9/ Result Units RL .000005 mg/L 0.00000 Precision Quality Assurance Sum Limit LCL 1 20 70	2021 0600 Analysis Date/Time 5 3/11/2021 08:56	Date/Time Received: 3/9/2021 10:22 Report Date: 3/11/2021 Approved by:
000005 mg/L 0.00000 Quality Assurance Sum Precision Limit LCL	5 3/11/2021 08:56 mary <u>MS MSD UCL</u>	EPA 245.7 DJL LCS LCS
Quality Assurance Sum Precision Limit LCL	^{mary} MS MSD UCL	LCS LCS Limit
1 20 70	02 04 120	
rred to data quality objectives and te ts with full auglity data deliverables	st results meet the requirement are abailable on request	nts of NELAC unless otherwise noted as flagged
and from growing and active ables	These analytical results relate	e only to the sample tested. Is' basis unless designated as 'Dry Wt'.
6	rts with full quality data deliverables 616 1532 Universal City B Universal City, TX	All data is reported on an 'As RL = Reporting Limits

		Sample Info	rmation			Laboratory	Information	
Samp Matri	ole ID: Ef ix: Non-F	ffluent Co Potable W	omp 03092124 /ater		hitPCS Sample #: 627985 Page 1 of 1 Date/Time Received: 3/9/2021 10:22 Report Date: 3/12/2021 Approved by:			
Result	Units	RL					Analyst	
174 91 174	mg/L mg/L mg/L	1 1 10	3/10/2021	20:23	EPA 300).0	JAS JAS CRM	
Precision	Quality As Limit	ssurance Sumn LCL	nary MS MSI	D UCL	LCS	LCS Limit		
<1 <1 <1	10 10 10	95 94 95	96 97 97 98 96 96	102	95 96 100	85 - 115 85 - 115 85 - 115		
adhered to data qu								
	Samp Matri Date/ Result 174 91 174 174 91 174 174	Sample ID: Eff Matrix: Non-H Date/Time Tak Result Units 174 mg/L 91 mg/L 174 10 <1	Project Name: Sam McH Sample ID: Effluent Color Matrix: Non-Potable W Date/Time Taken: 3/9/2 Result Units RL 174 mg/L 1 91 mg/L 1 174 mg/L 1 91 mg/L 1 174 mg/L 1 91 mg/L 1 174 mg/L 10 174 10 95 <1	Sample ID: Effluent Comp 03092124 Matrix: Matrix: Non-Potable Water Date/Time Taken: 3/9/2021 0600 Result Units RL Analysis Date/Signature 174 mg/L 1 3/10/2021 91 mg/L 1 3/10/2021 174 mg/L 10 3/12/2021 174 mg/L 10 3/12/2021	Project Name: Sam McKenzie TCEQ Major Pern Sample ID: Effluent Comp 03092124 Matrix: Non-Potable Water Date/Time Taken: 3/9/2021 0600ResultUnitsRLAnalvsis Date/Time174mg/L13/10/2021 20:23 91 17491174mg/L13/10/2021 20:23 174174mg/L103/12/2021 09:15PrecisionQuality Assurance Summary Limit<1	Project Name: Sam McKenzie TCEQ Major Pern Sample ID: Effluent Comp 03092124 Matrix: Non-Potable Water Date/Time Taken: 3/9/2021 0600itPCS S Date/T Repor ApprovedResultUnitsRLAnalysis Date/TimeMethod Method174mg/L13/10/2021 20:23EPA 30091mg/L13/10/2021 20:23EPA 300174mg/L103/12/2021 09:15SM 2320PrecisionQuality Assurance Summary LimitMSDUCLLCS<1	Project Name: Sam McKenzie TCEQ Major Pern Sample ID: Effluent Comp 03092124 Matrix: Non-Potable Water Date/Time Taken: 3/9/2021 0600it PCS Sample #: 627 Date/Time Received Report Date: 3/12/2 Approved by:ResultUnitsRLAnalysis Date/TimeMethod174mg/L13/10/2021 20:23EPA 300.091mg/L13/10/2021 20:23EPA 300.0174mg/L103/12/2021 09:15SM 2320 BPrecisionQuality Assurance Stummary Limit<1	

Report of Sample Analysis

Sample ID: Matrix: No Date/Time T sult Unit: 5.0 mg/L	Effluent 0 n-Potable 5 Taken: 3/9 <u>RL</u> 5	Water /2021 0720 <u>Analysis Date/Time</u> 3/9/2021 12:00	Date/Time Receir Report Date: 3/1 Approved by:	ved: 3/9/2021 10:22
5.0 mg/L	5	3/9/2021 12:00		
5.0 mg/L	5	3/9/2021 12:00		
Qualit	<u>م</u>			
ecision Limi	t LCL	MS MSD UCI	L LCS LCS Lim	iit
<1 18	N/A	N/A N/A N/A	A 90 78-114	
) data quality obj h full quality data	iectives and t a deliverables	est results meet the requireme are abailable on request.	ents of NELAC unless of	therwise noted as flagged
	o data quality obj a full quality data 1532	o data quality objectives and ta a full quality data deliverables 1532 Universal City I	o data quality objectives and test results meet the requirement of full quality data deliverables are abailable on request. These analytical results relat All data is reported on an 'A RL = Reporting Limits	o data quality objectives and test results meet the requirements of NELAC unless of a full quality data deliverables are abailable on request. These analytical results relate only to the sample test All data is reported on an 'As Is' basis unless designat RL = Reporting Limits

This report cannot be reproduced or duplicated, except in full, without prior written consent from Pollution Control Services.

Client Information		Sample In	formation			Laboratory	Information	
Trish Soechting New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131	Sample II Matrix: N		omp 03092143 Water	jor Pern	it PCS Sample #: 627987 Page 1 of 1 Date/Time Received: 3/9/2021 10:22 Report Date: 3/17/2021 Approved by:			
Test Description Kjeldahl-N, Total	Result Un 2 mg	the second diversion of the se	Analysis Date 3/16/2021 09		Methoo SM 4500-		Analyst CRM	
Test Description Kjeldahl-N, Total	Precision Lin 4 1	lity Assurance Sun nit LCL 0 91	105 101	UCL 110	LCS 106	LCS Limit 85 - 115		
Quality Statement: All supporting quality of exceptions or in a case narrative attachment	lata adhered to data quality o t. Reports with full quality d	objectives and te ata deliverables	<i>est results meet the reare abailable on req</i> These analytical res All data is reported RL = Reporting Lin	uest. ults relate on an 'As	only to the	sample tested.		
Web Site: www.pcslab.net Toll Free eMail: chuck@pcslab.net		32 Universal City B Universal City, TX	lvd. Suite 100	1115	210-34	40-0343	FAX # 210-658-79(

Chain of Custody Number

1

CUSTOMER INFORM					REPORT	INF	OR	MATION			e 1/2 Sta		
Name: New Braunfels Ut					Attention	: Tris	h So	echting		Phone	(830) 608-8900	F	ax: (830) 626-1361
SAMPLE INFORMATIO	N					_	_	The second	Req	uested .	Analysis		1
Project Information:			Colle	cted By	L.King/J	FRO	Sa	les S-Benered					Instructions/Comments:
IPP Sam McKenzie WW	TP Annual				Matrix			Container]				
eport "Soils" 🗆 As Is 🗆 Dry V			Field Chlorine Residual mg/L	Composite or Grab	DW-Drinking Water; NPW-Non-		5		35.1				
	Colfe	cted	dual	posi	potable water; WW-Wastewater;	Type	Number	Preservative	A33	lols			
Client / Field Sample ID	Date	Time		Com Grab	LW-Liquid Waste		ž		CN-A335.1	Phenols			PCS Sample Number
2ff Grab #1 03082108	End:	Start: 35 End:		□C IZG	DW NPW WW Soil Sludge LW Other	ØP ■G ■O	1	□ H ₂ SO ₄ □ HNO ₃ □ H ₃ PO ₄ ☑ NaOH ▣ ICE □	×				627972 DS DB DN DHEM Other:
Eff Grab #1 0308スリル	End:	Start: 0935 End:		□C ⊠G	DW NPW WW Soil Sludge LW Other	□P ØG □O	1	 H₂SO₄ □ HNO₃ □ H₃PO₄ □ NaOH ICE □ 		×			IS DB UN DHEMOUNT: 3
Eff Grab #2 0308 ふいの	Start: 3.8.21 End:	Start: 1995 End:		⊑C ⊠G	DW NPW WW Soil Sludge LW Other		1	□ H ₂ SO ₄ □ HNO ₃ □ H ₃ PO ₄ ☑ NaOH ☑ ICE □	×				627974 S B N HEM Other:
Eff Grab #2 53082113	Start: 3.9.21 End:	Start: 1445 End:		□C ⊡G	DW NPW WW Soil Sludge LW Other	□P IEG □O	1	$\square H_2SO_4 \square HNO_3 \square H_3PO_4 \square NaOH \square ICE \square$		×			6 2 7 9 7 5
Eff Grab #3	Start: 3·8·21 End:	Start 40 End:		□ C □ G	DW NPW WW Soil Sludge LW Other		1	$\square H_2 SO_4 \square HNO_3$ $\square H_3 PO_4 \square N_a OH$ $\blacksquare ICE \square$	×				627976
Eff Grab #3 53082114	Start: 3.8.31 End:	End:		⊡C ⊠G	DW DNPW WW Soil Sludge LW Other		1			×			6279771 CIS CIB CIN CIHEM Other: 71
MGrab #4 23092111	Start: 9.21 End:	Start: 0617 End:		∎c ∎g	DW NPW WW Soil Sludge LW	ØP ■G ■O	1	□ H ₂ SO ₄ □ HNO ₃ □ H ₃ PO ₄ ☑ NaOH ♥ ICE □	×				16 2 7 9 7 8
11 Grab #4 9309 2115	Start: 3.9.31 End:	Start: OGJ End		⊡C ⊠G	DW NPW WW Soil Sludge I.W		1	□ 11 ₂ SO ₄ □ 11NO ₃ □ 11.PO ₄ □ NaO11 ☑ ICE □		×			627979
equired Turnaround 🔳 1	Routine (6-10 day	s) ENPLDI	TE (Se	se Sure	harge Schedule)		8115	🗋 1640s 🗖 2446	× 🗆 5	days 🗖	Other Rush (Tharges Int	horized by
ample Archive/Disposal: [I Laboratory Star	ndard 🖾 Hold	for clic	at pick	up Co	ntain	or T	vpe: P = Plastic. G = Glass	0.=	Other		(Catrier ID:
elinquished By: J. fastle		1. Lun		09	30 Time 9 21 Time:	8		9 Aceived By:	not		rediting	Date Date:	3.9.2 Time 095 3/9/11 Time: 1022

1532 Universal City Blvd., Ste. 100, Universal City, Texas 78148

© 2008 Pollution Control Services All rights reserved Login at www.postah.net

MULTIPLE SAMPLE ANALYSIS REQUEST AND CHAIN OF CUSTODY FORM

Stamp 1st sample and COC as same number

Page 213

Chain of Custody Number

627980

CUSTOMER INFORM	ATION		-				_	MATION			1	100	9	011	4///0 1	sample and COC as same number
Name: New Braunfels Uti					Attention	_	_		_	Pho	ne: (8	330) 6	08-89	00		Fax: (830) 626-1361
SAMPLE INFORMATIC	DN								Reg	uestee						
Project Information:			Colle	cted B	J. Lore les		12	- King	1	37			15	557		Instructions/Comments:
IPP Sam McKenzie WWJ	P Annual				Matrix	T	-	Container		3*	J 3N	it 6	rb 6	best 10	-	*AgMS, Al_low, AsMS, Ba_low, Bc_low,
Report "Soils" 🗆 As Is 📮 Dry V	Vt.		line la la	5	DW-Drinking Water; NPW-Non-				1	tble	Ň	Pes	, He	604 I, Pust 617, Past 1657	Level	Cd_low, Cr_low, Cu_low, Ni_low, PbMS, SbMS, ScMS, TIMS, Zn_low
	Colle	ected	Chloi Tal m	osite	potable water;	Type	Number	Preservative	624	s Ta	L H	08	625	, Pest	LowI	Note: metuls, Hg, VOCs/SVOCs, HexCr, NO3N.F, CN-A, and Phenols to be used for IPP
Client / Field Sample ID	Date	Time	Field Chlorine Residual mg/L	Comp. Grab	WW-Wastewater, LW-Liquid Waste	Ty	Nun	rreservative	NOC N	Metals Table	Hex Cr, F, NO3N	Pest 608, Pest 632	SVOC 625, Herb 615	lex 604 1	Hg Lo	and Permit Renewal
Eff Grab#1 03087116	Start: 3.8.21 End:	Start: ©935 End:		□C ⊡G	DW NPW WW Soil Sludge LW	∎P ØG ∎0	1	$\square H_2SO_4 \square HNO_3 \square H_3PO_4 \square NaOH \square ICE \square$	×					, id.,		PCS Sample Number 6 2 7 9 8 0
Eff Grab	Start: 03 08 21 End:	Start: 45 I445 End:		□C □G	Other OW NPW WW Soil Sludge LW		1	□ H ₂ SO ₄ □ HNO ₃ □ H ₃ PO ₄ □ NaOH ☑ ICE □	×							
03082117 Eff Grab 3 03082118	Starts 21 3-3 21 End:	Start: 140 End:		∎c ⊠G	Other DW NPW WW Soil Sludge LW Other	□P ØG □O	-	$\square H_2SO_4 \square HNO_3$ $\square H_3PO_4 \square NaOH$ $\blacksquare ICE \square$	×							
Eff Grab 4	Start 2) End:	Start: 6616 End:		щC	DW DNPW WW Soil Sludge LW Other	QP ØG QO	1	□ H ₂ SO ₄ □ HNO ₃ □ H ₃ PO ₄ □ NaOH ☑ ICE □	×							
03092120	5921	Start: End:0600		⊠C ⊡G	DW NPW WW Soil Sludge LW Other	∎P ⊡G ⊡O	1	□ H ₂ SO ₄ □ HNO ₃ □ II ₃ PO ₄ □ NaOII □ ICE □		x						627981 DS DB DN DHEM Other:
Eff Comp 03092121	Starl: 3. O. S.I End: 3. T. S.I	Start: OSOO End:		⊠ C ⊡ G	DW NPW WW Soil Sludge LW Other	IIIP IIIG IIO	1	□ H₂SO4 □ HNO3 □ H₃PO4 □ NaOH ☑ ICE □			x					627982 DS DB DN DIFEM Other:
Eff Comp 0309 みしみみ	3821 Fud 3921	Start: 08:00 End: 06:00		⊇G םG	DW NPW WW Soil Sludge LW	□P ØG □O	7	□ H ₂ SO ₄ □ HNO ₃ □ H ₃ PO ₄ □ NaOH ⊠ ICE □				×	×	×		627983
03092123	3.8.21 3.9.21	0600			DW NPW WW Soil Studge I W Other	DP ØG DO	3	□ H ₂ SO ₄ □ HNO ₃ □ H ₂ DO ₄ □ N ₀ OE □ [C]: ☑ UCL							X	627984
Required Turnaround: 🔳 R							8 1 L s	🔲 16 lbs 🔲 24 lb	< □ 5	days E] Oth	I		Rush C	harges	Inthorized by
Sample Archive/Disposal: 🗆								vpe: P = Plastic, G = Glass,		Other	1					Carrier ID:
Relinquished By: J. Ross	kr kry	7.		3-9		0	23	O Received By:	s	S	ed	nhi	ng	-	Date	3921 Time 0930
Relinquished By:	-Sold	feng		30		10	ai	Received By:	he	5/		-	0		Date	0161
Rev. Multiple Sample COC 20120201		0							,							© 2008 Pollution Control Services All rights reserve

1532 Universal City Blvd., Ste. 100, Universal City, Texas 78148 P (210) 340-0343 or (800) 880-4646 - 11 (210) 658-7903

file path: Z:\COC\N\NBU\Inf_IPP_Annual_NK_Page2_Jan28_2016.pdf

© 2008 Pollution Conirol Services All rights reserved Login at white postabland

Chain of Custody Number 6 2 7 9 8 5

1

MULTIPLE SAMPI	LE ANALY	YSIS REQ	UES	T Al	ND CHAIN	OF	CU	STODY FORM		PO	Age	3/3 s	tamp 1 st se	ample	and COC	as same	number
CUSTOMER INFORM	ATION							MATION		-	4			-			
Name: New Braunfels Ut					Attention	Tris	h So	echting		Pho	ne: (8	30) 608-8900		Fax:	(830) 62	6-1361	
SAMPLE INFORMATIC	DN			_		_			Requ	ested	l Ana	lysis					
Project Information:			Collec	ted By	" J. Roselw	· .	L	- King						Ir	struction	s/Comme	ents:
Sam McKenzie TCEQ Ma	jor Permit Ro	enewal			Matrix			Container	SQ			1 1 1 1 1 1 1		* D	Note: Meta est 608, Pe	Is, Hex C	r, F, NO3N,
Report "Soils" 🗆 As Is 🗇 Dry			Field Chlorine Residual mg/L	Composite or Grab	DW-Drinking Water; NPW-Non-		H		Talk, CL		FOG (HEM)	2		I.	lerb 615, H cst 1657, h	lex 604.1,	Pest 617,
	Coll	ected	Ch]	posi	potable water; WW-Wastewater;	Type	Number	Preservative	1		E	2			ken from		
Client / Field Sample ID	Date	Time	Field Resid	Com	LW-Liquid Waste	L	Ν'n				FOG	F				-	Number
Effluent COM	Start: 3-8-21	Start:		∎C ∎G	DW R NPW WW Soil Sludge LW	₽ ₽G		\square H ₂ SO ₄ \square HNO ₃ \square H ₃ PO ₄ \square NaOH	X	V					16 Z		8 5
03092124	End: 3-5-21	End: 0605			Other		11			1					IS 🗆 B 🗆 N (JHEM Oth	er:
Effluent	Start: 3-9-21	Start: 072.5		⊡c ∎g	DW NPWJ-	MAG	1	$\square H_2SO_4 \square HNO_3 \square H_3PO_4 \square NaOH \square ICE \square$			\checkmark				16 2	79	8 6
03092125	End	End:		⊡G	C Sludge LW		H	SAICE			\wedge				IS 🗆 B 🗆 N I	JHEM OIh	er:
EAPl went Comp	Start: 3-8-21	Start:		Ac	DW NPW-			H₂SO₄ □HNO₃ H₃PO₄ □NaOH		-		3			6 2	798	27
03092143	End: 3-7-21	End: 0600		G	Sludge LW	□o	3										
and the second second	Start:	Start:			DW DW WW WW Soil			\square H ₂ SO ₄ \square HNO ₃ \square H ₃ PO ₄ \square NaOH									
	End:	End:		⊡G	□ Sludge □ L.W	0								C	IS CIB CIN I	THEM OIL	ier:
	Start:	Start:		ПС	DW NPW			H ₂ SO ₄ HNO ₃ H ₂ PO ₄ NaOH									
	End:	End:		□G	C Sludge LW									C	IS DB DN	HEM Oth	ier:
	Start:	Start:		□с	DW NPW			$\square H_2SO_4 \square HNO_3 \square H_3PO_4 \square N_3OH$									
	End:	End:		G□G	Sludge [] LW	Ξŏ								G	IS OB ON	THEM OIL	ær;
	Start:	Start:		С	DW NPW	□P □G		\square H ₂ SO ₄ \square HNO ₃ \square H ₃ PO ₄ \square NaOH									
	End:	End:		G	□ Sludge □ LW □ Other	Ξŭ								C	IS 🗇 B 🗆 N	⊐HEM Oił	ict
	Start:	Start:		□c	□ DW □ NPW □ WW □ Soit			H ₂ SO ₁ HNO ₃									
	lénd.	End:		□G	□ Sludge □1.W □ Other	Ē		CICE C						E	IS EIR EIR	DHRA1 Cab	ист
Required Turnaround: 🗆 R						□ <	8 Hi :	r = 16 Hrs = 16 Hrs	lrs □ 5	davs	🗖 Oth	er Rust	Charges .	Author	ized by:		
Sample Archive/Disposal			d for clie	ent piel	up Co	ntain	er T	ype: P = Plastic, G = Glass	s, Q = C	Other		1		Carrie	er ID:		
Relinquished By: 3 Rog	les Long	Kuy	Date	3-		1		- To -	nol	-	ale.	diting	Date:	3	9.21	Time:	0932
Relinquished By:	~ Gall	ating	Date	3	9-2/ Time:		53		TI,	_		0	Date	-	9/21	Time:	1022

1532 Universal City Blvd . Ste. 100, Universal City. Texas 78148 P (210) 340-0343 or (800) 880-4616 - F (210) 658-7903

	CHAR	N OF CU	STODY & SUBCONTRACT	TRACKING SHE	ET
TO:	Pace Analytic	al Service	s, Inc. Relinquished b	y: Greg Felux	
-	400 W Bethar	y Rd, Ste	190 Date/Tim	ie: 03/09/2021@	1700
_	Allen, TX 750)13	Received b	y: Uhy Plur	
			Date/Tim	e: 3/10/21 0857	
			Analysis		
PCS#	Date	Time	Requested	Pres	T. A. T
627972	03/08/2021	0935	Cyanide, Amenable	NaC	H Std
627973	, 03/08/2021	0935	Phenolics	H2S	O4 Std
627974	03/08/2021	1445	Cyanide, Amenable	NaO	H Std (
627975	, 03/08/2021	1445	Phenolics	H2S	O4 Std
627976	03/08/2021	2140	Cyanide, Amenable	NaO	
627977	03/08/2021	2140	Phenolics	H2S	
627978	03/09/2021	0617	Cyanide, Amenable	NaO	H Std C
627979	03/09/2021	0617	Phenolics	H2S	
627980	03/08/2021	0935	Volatiles 624	ICe	Std Ø

Unless otherwise requested, send results and invoice to:

Chuck Wallgren Pollution Control Services 1532 Universal City Blvd, Suite 100 Universal City, TX 78148-3318

Authorized by:

W0#:75151537 Due Date: 03/24/21 PH: NLM

CLIENT: PCS

Due Date: 03/24/21

2 Date:

PCS-DC-2K16(aa)LIMS/Subout/627972 docx

		F	OLLU	1532 Un Univer	CONTROL SE iversal City Blvd, Suite 100 sal City, TX 78148-3318 similie 210.658.7903 210.340.0343	RVICE	S		
TO:	400	CHAIN ce Analytic) W Bethan len, TX 750	al Service y Rd, Ste	s, Inc.	SUBCONTRACT TF Relinquished by: Date/Time: Received by:	Greg Feli 03/09/202	1x 21 @ 1700		
2	_				Date/Time:	3[1012]	0851		
PCS#	!	Date	Time	Analysis Requeste	d		Pres	T. A.	Т.
62798	83	03/09/2021	0600	604.1 He	xachlorophene		ICE	std	OIE
62798	33			Semi Vo	latiles 625				1
62798	33			Herbicide	es 615		1		1
62798	33			Pesticide	s 608				t
62798	33			Pesticide	s 632		1		U
				PH:	#:7515153 NLN Due Date: 1 NT: PCS				
					2 Augent	zop			

Chuck Wallgren Pollution Control Services 1532 Universal City Blvd, Suite 100 Universal City, TX 78148-3318

Authorized by:

121 Date:

PCS-DC-2K16 aa LIMS Subout 627983 doex

April 04, 2021

Chuck Wallgren Pollution Control Services 1532 Universal City Blvd. #100 Universal City, TX 78148

RE: Project: 627972 Pace Project No.: 75151537

Dear Chuck Wallgren:

Enclosed are the analytical results for sample(s) received by the laboratory on March 10, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Dallas

Revised report on 04/04/2021 to correct phenol results replacing report on 03/23/2021

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Melion Mc Ellough

Melissa McCullough melissa.mccullough@pacelabs.com (972)727-1123 Project Manager

Enclosures

cc: Michael Klang, Pollution Control Services Office Manager

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 1 of 39

ace Analytical www.pacelabs.com

CERTIFICATIONS

 Project:
 627972

 Pace Project No.:
 75151537

Pace Analytical Services Dallas Texas Certification T104704232-20-32 400 West Bethany Dr Suite 190, Allen, TX 75013 EPA# TX00074 Florida Certification #: E871118 Kansas Certification #: E-10388

Arkansas Certification #: 88-0647 Oklahoma Certification #: 8727 Louisiana Certification #: 30686 Iowa Certification #: 408

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 2 of 39

SAMPLE SUMMARY

Project: Pace Project No	627972 b.: 75151537				
Lab ID	Sample ID	Matrix	Date Collected	Date Received	
75151537001	627972	Water	03/08/21 09:35	03/10/21 08:51	
75151537002	627973	Water	03/08/21 09:35	03/10/21 08:51	
75151537003	627974	Water	03/08/21 14:45	03/10/21 08:51	
75151537004	627975	Water	03/08/21 14:45	03/10/21 08:51	
75151537005	627976	Water	03/08/21 21:40	03/10/21 08:51	
75151537006	627977	Water	03/08/21 21:40	03/10/21 08:51	
75151537007	627978	Water	03/09/21 06:17	03/10/21 08:51	
75151537008	627979	Water	03/09/21 06:17	03/10/21 08:51	
75151537009	627980	Water	03/08/21 09:35	03/10/21 08:51	
75151537010	627983	Water	03/09/21 06:00	03/10/21 08:51	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 3 of 39

SAMPLE ANALYTE COUNT

 Project:
 627972

 Pace Project No.:
 75151537

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
75151537001	627972	SM 4500-CN-E	LNM1	1	PASI-D
		SM 4500-CN-G	LNM1	1	PASI-D
75151537002	627973	EPA 420.1	LNM1	1	PASI-D
75151537003	627974	SM 4500-CN-E	LNM1	1	PASI-D
		SM 4500-CN-G	LNM1	1	PASI-D
75151537004	627975	EPA 420.1	LNM1	1	PASI-D
75151537005	627976	SM 4500-CN-E	LNM1	1	PASI-D
		SM 4500-CN-G	LNM1	1	PASI-D
75151537006	627977	EPA 420.1	LNM1	1	PASI-D
75151537007	627978	SM 4500-CN-E	LNM1	1	PASI-D
		SM 4500-CN-G	LNM1	1	PASI-D
75151537008	627979	EPA 420.1	LNM1	1	PASI-D
75151537009	627980	EPA 624.1	ZST	37	PASI-D
75151537010	627983	EPA 608.3	UPL	9	PASI-D
		EPA 608.3	UPL	20	PASI-D
		EPA 615	UPL	3	PASI-D
		EPA 604.1	XLY	2	PASI-D
		EPA 632	XLY	3	PASI-D
		EPA 625.1	XLY	69	PASI-D

PASI-D = Pace Analytical Services - Dallas

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC

Page 4 of 39

ANALYTICAL RESULTS

Project: Pace Project No.:	627972 75151537									
Sample: 627972		Lab ID:	75151537001	Collecte	d: 03/08/2	1 09:35	Received: 03	/10/21 08:51 Ma	atrix: Water	
Parame	ters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
4500CNE Cyanide,	Total		I Method: SM 45		Preparation	Method	I: SM 4500-CN-E			
Cyanide		ND	ug/L	10.0	4.3	1	03/12/21 15:00	03/12/21 16:13	57-12-5	
4500CNG Cyanide,	Amenable	,	Method: SM 45		Preparatior	n Methoo	1: SM 4500-CN-C	;		
Amenable Cyanide		ND	ug/L	10.0	5.0	1	03/12/21 12:00	03/12/21 17:00	57-12-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 5 of 39

ANALYTICAL RESULTS

Project:	627972									
Pace Project No.:	75151537									
Sample: 627973	ample: 627973		75151537002	Collecte	ed: 03/08/2	21 09:35	Received: 03	/10/21 08:51 Ma	trix: Water	
				Report						
Param	neters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
420.1 Phenolics C	Chloroform Ext	,	l Method: EPA 4 Ilytical Services		aration Met	hod: EP	A 420.1			
Phenolics, Total Re	ecoverable	ND	ug/L	10.0	8.0	1	03/16/21 16:11	03/16/21 16:45		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 6 of 39

ANALYTICAL RESULTS

	27972 5151537									
Sample: 627974		Lab ID:	75151537003	Collecte	d: 03/08/2	1 14:45	Received: 03	/10/21 08:51 Ma	atrix: Water	
Parameter	s	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
4500CNE Cyanide, To	Ital		Method: SM 45 lytical Services		Preparation	Method	I: SM 4500-CN-E			
Cyanide		ND	ug/L	10.0	4.3	1	03/12/21 15:00	03/12/21 16:18	57-12-5	
4500CNG Cyanide, Ar	nenable	,	Method: SM 45 lytical Services		Preparation	Method	I: SM 4500-CN-C			
Amenable Cyanide		ND	ug/L	10.0	5.0	1	03/12/21 12:00	03/12/21 17:00	57-12-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 7 of 39

ANALYTICAL RESULTS

Project: 6	27972									
Pace Project No.: 7	5151537									
Sample: 627975		Lab ID:	75151537004	Collected	: 03/08/21	14:45	Received: 03	/10/21 08:51	Matrix: Water	
				Report						
Parameter	rs	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
420.1 Phenolics Chlo	oroform Ext	,	l Method: EPA 4 llytical Services		ration Meth	od: EP/	420.1			
Phenolics, Total Recov	verable	13.7	ug/L	10.0	8.0	1	04/02/21 13:12	04/02/21 16:3	34	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC

Page 8 of 39

ANALYTICAL RESULTS

Project: 627972 Pace Project No.: 75151537									
Sample: 627976	Lab ID:	751515370	05 Collecte	d: 03/08/2	1 21:40	Received: 03	/10/21 08:51 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
4500CNE Cyanide, Total	,	Method: SM lytical Servic		Preparation	Method	: SM 4500-CN-E			
Cyanide	ND	ug/L	10.0	4.3	1	03/12/21 15:00	03/12/21 16:24	57-12-5	
4500CNG Cyanide, Amenable	5	Method: SM lytical Servic		Preparation	Method	I: SM 4500-CN-C			
Amenable Cyanide	ND	ug/L	10.0	5.0	1	03/12/21 12:00	03/12/21 17:00	57-12-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC,

Page 9 of 39

ANALYTICAL RESULTS

Project:	627972									
Pace Project No .:	75151537									
Sample: 627977		Lab ID:	75151537006	Collecte	d: 03/08/2	21 21:40	Received: 03	/10/21 08:51 Ma	trix: Water	
				Report						
Parame	eters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
420.1 Phenolics C	hloroform Ext	,	Method: EPA 4 lytical Services		aration Met	hod: EP/	A 420.1			
Phenolics, Total Re	coverable	ND	ug/L	10.0	8.0	1	03/16/21 16:11	03/16/21 16:46		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 10 of 39

ANALYTICAL RESULTS

Project: Pace Project No.:	627972 75151537									
Sample: 627978		Lab ID:	75151537007	Collecte	d: 03/09/2	1 06:17	Received: 03/	/10/21 08:51 M	atrix: Water	
Parame	ters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
4500CNE Cyanide,	Total		Method: SM 4 lytical Services		Preparation	Method	1: SM 4500-CN-E			
Cyanide		ND	ug/L	10.0	4.3	1	03/12/21 15:00	03/12/21 16:34	57-12-5	
4500CNG Cyanide,	Amenable	,	Method: SM 4 lytical Services		Preparatior	n Methoo	1: SM 4500-CN-C	;		
Amenable Cyanide		ND	ug/L	10.0	5.0	1	03/12/21 12:00	03/12/21 17:00	57-12-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 11 of 39

ANALYTICAL RESULTS

Project: 6	627972									
Pace Project No.: 7	75151537									
Sample: 627979	ample: 627979		75151537008	Collected: 03/09/21 06:17			Received: 03/	atrix: Water		
				Report						
Parameter	rs	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
420.1 Phenolics Chlo	proform Ext		l Method: EPA 4 Ilytical Services		aration Meth	od: EP/	420.1			
Phenolics, Total Recov	/erable	17.8	ug/L	10.0	8.0	1	04/02/21 13:12	04/02/21 16:34		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 12 of 39

ANALYTICAL RESULTS

Project:	627972
Pace Project No .:	75151537

Sample: 627980	Lab ID:	75151537009	Collected	03/08/21	09:35	Received:	03/10/21 08:51	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyze	d CAS No.	Qua
624.1 Volatile Organics 7 day	Analytical	Method: EPA 6	24.1						
	Pace Ana	lytical Services	- Dallas						
Acrolein	ND	ug/L	50.0	5.4	1		03/10/21 17	:10 107-02-8	
Acrylonitrile	ND	ug/L	50.0	7.1	1		03/10/21 17	:10 107-13-1	
Benzene	ND	ug/L	10.0	2.1	1		03/10/21 17	:10 71-43-2	
Bromoform	ND	ug/L	10.0	0.96	1		03/10/21 17	:10 75-25-2	M1
Carbon tetrachloride	ND	ug/L	2.0	1.6	1		03/10/21 17	:10 56-23-5	L1,M0
Chlorobenzene	ND	ug/L	10.0	2.8	1		03/10/21 17	:10 108-90-7	
Dibromochloromethane	ND	ug/L	10.0	3.3	1		03/10/21 17	:10 124-48-1	
Chloroethane	ND	ug/L	50.0	3.0	1		03/10/21 17	:10 75-00-3	
2-Chloroethylvinyl ether	ND	ug/L	10.0	6.5	1		03/10/21 17	:10 110-75-8	
Chloroform	ND	ug/L	10.0	2.1	1		03/10/21 17	:10 67-66-3	
Bromodichloromethane	ND	ug/L	10.0	1.8	1		03/10/21 17	:10 75-27-4	
1,1-Dichloroethane	ND	ug/L	5.0	2.9	1		03/10/21 17	:10 75-34-3	
1,4-Dichlorobenzene	ND	ug/L	10.0	1.7	1		03/10/21 17	:10 106-46-7	
1,3-Dichlorobenzene	ND	ug/L	10.0	4.2	1		03/10/21 17	:10 541-73-1	
1,2-Dichlorobenzene	ND	ug/L	10.0	1.7	1			:10 95-50-1	
1,2-Dibromoethane (EDB)	ND	ug/L	10.0	0.55	1		03/10/21 17	:10 106-93-4	
1,2-Dichloroethane	ND	ug/L	10.0	2.0	1		03/10/21 17	:10 107-06-2	
1.1-Dichloroethene	ND	ug/L	10.0	3.7	1			:10 75-35-4	
1,2-Dichloropropane	ND	ug/L	10.0	0.80	1			10 78-87-5	
Total 1,3-Dichloropropene	ND	ug/L	10.0	3.7	1		03/10/21 17		N3
Ethylbenzene	ND	ug/L	10.0	0.40	1			:10 100-41-4	
Bromomethane	ND	ug/L	50.0	3.5	1			10 74-83-9	
Chloromethane	ND	ug/L	50.0	3.6	1			:10 74-87-3	
2-Butanone (MEK)	ND	ug/L	50.0	8.2	1			10 78-93-3	
Methylene Chloride	ND	ug/L	20.0	11.8	1			:10 75-09-2	
1.1.2.2-Tetrachloroethane	ND	ug/L	10.0	0.60	1			:10 79-34-5	
Tetrachloroethene	ND	ug/L	10.0	4.9	1			:10 127-18-4	
Toluene	ND	ug/L	10.0	2.2	1		03/10/21 17	10 108-88-3	
rans-1,2-Dichloroethene	ND	ug/L	10.0	5.0	1		03/10/21 17	:10 156-60-5	
1,1,1-Trichloroethane	ND	ug/L	10.0	3.4	1			10 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	10.0	1.4	1			10 79-00-5	
	ND	ug/L	10.0	2.6	1			10 79-01-6	
Trichloroethene	ND	ug/L	10.0	4.7	1			10 75-01-4	
Vinyl chloride	ND	ug/L	10.0	3.4	1		03/10/21 17		
Total Trihalomethanes (Calc.) Surrogates	ND	ugre	10.0	0.4			00.10.211		
4-Bromofluorobenzene (S)	96	%.	70-130		1		03/10/21 17	10 460-00-4	
Toluene-d8 (S)	96	%.	70-130		1		03/10/21 17	:10 2037-26-5	
1,2-Dichloroethane-d4 (S)	97	%.	70-130		1			:10 17060-07-0	

REPORT OF LABORATORY ANALYSIS

Date: 04/04/2021 08:17 PM

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC

Page 13 of 39

ANALYTICAL RESULTS

Sample: 627983	Lab ID:	75151537010	Collected:	03/09/21	06:00	Received: 03/	10/21 08:51 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
608.3 GCS PCBs SF	Analytical	Method: EPA 6	08.3 Prepara	ation Meth	od: EP/	\ 608.3			
	Pace Anal	tical Services	- Dallas						
PCB-1016 (Aroclor 1016)	ND	ug/L	0.20	0.18	1	03/15/21 15:07	03/17/21 00:44	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/L	0.20	0.19	1	03/15/21 15:07	03/17/21 00:44	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/L	0.20	0.20	1	03/15/21 15:07	03/17/21 00:44	11141-16-5	
PCB-1242 (Aroclor 1242)	NÐ	ug/L	0.20	0.14	1	03/15/21 15:07	03/17/21 00:44	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/L	0.20	0.048	1	03/15/21 15:07			
PCB-1254 (Aroclor 1254)	ND	ug/L	0.20	0.17	1	03/15/21 15:07	03/17/21 00:44	11097-69-1	
PCB-1260 (Aroclor 1260) Surrogates	ND	ug/L	0.20	0.14	1	03/15/21 15:07	03/17/21 00:44	11096-82-5	
Tetrachloro-m-xylene (S)	77	%.	40-140		1		03/17/21 00:44		
Decachlorobiphenyl (S)	112	%.	40-140		1	03/15/21 15:07	03/17/21 00:44	2051-24-3	
608.3 GCS Pesticides SF	,	Method: EPA 6		ation Meth	od: EPA	608.3			
				0.0000		00/45/04 45:07	00/40/04 02:00	200.00.2	
Aldrin	ND	ug/L	0.0099	0.0069	1	03/15/21 15:07	03/16/21 23:09 03/16/21 23:09		
alpha-BHC	ND	ug/L	0.050	0.0059	1	03/15/21 15:07			
beta-BHC	ND	ug/L	0.050	0.011	1	03/15/21 15:07	03/16/21 23:09 03/16/21 23:09		
delta-BHC	ND	ug/L	0.050	0.0040	1	03/15/21 15:07			
gamma-BHC (Lindane)	ND	ug/L	0.050	0.0050	1 1	03/15/21 15:07	03/16/21 23:09 03/16/21 23:09		
Dieldrin	ND	ug/L	0.020	0.0040	1	03/15/21 15:07 03/15/21 15:07	03/16/21 23:09		
Endosulfan I	ND	ug/L	0.0099	0.0040	1	03/15/21 15:07	03/16/21 23:09		
Endosulfan II	ND	ug/L	0.020	0.0040 0.0040	1	03/15/21 15:07	03/16/21 23:09		
Endrin	ND	ug/L	0.020	0.0040	1	03/15/21 15:07	03/16/21 23:09		
Heptachlor	ND	ug/L	0.0099 0.0099	0.0059	1	03/15/21 15:07	03/16/21 23:09		
Heptachlor epoxide	ND	ug/L	0.0099	0.0040	1	03/15/21 15:07	03/16/21 23:09		СН
4,4'-DDE	ND	ug/L	0.099	0.0040	1	03/15/21 15:07	03/16/21 23:09		011
4,4'-DDT	ND	ug/L	0.020	0.0059	1	03/15/21 15:07	03/16/21 23:09		СН
4,4'-DDD	ND ND	ug/L	0.099	0.0039	1	03/15/21 15:07	03/16/21 23:09		011
Chlordane (Technical)	ND	ug/L	0.099	0.0040	1	03/15/21 15:07	03/16/21 23:09		
Endosulfan sulfate	ND	ug/L ug/L	0.30	0.0040	1	03/15/21 15:07	03/16/21 23:09		
Toxaphene	ND	ug/L	0.099	0.012	1	03/15/21 15:07	03/16/21 23:09		
Endrin aldehyde S <i>urrogates</i>	ND	ug/L	0.000	0.012	·	00,10.21 10.01	00,10,2,2,2,1		
Tetrachloro-m-xylene (S)	75	%	40-140		1	03/15/21 15:07	03/16/21 23:09	877-09-8	
Decachlorobiphenyl (S)	90	%	40-140		1	03/15/21 15:07	03/16/21 23:09	2051-24-3	
615 Chlorinated Herbicides	Analytical I	Method: EPA 6	15 Preparati	on Method	1: EPA 6	515			
	-	tical Services							
2,4-D	ND	ug/L	0.70	0.067	1	03/16/21 16:30	03/22/21 17:48		
2,4,5-TP (Silvex)	ND	ug/L	0.30	0.069	1	03/16/21 16:30	03/22/21 17:48	93-72-1	
Surrogates							00/00/04 47 40	40740.08.0	
2,4-DCAA (S)	82	%.	44-137		1	03/16/21 16:30	03/22/21 17:48	19/19-28-8	
604.1 HPLC Hexachlorophene	•	Method: EPA 6		ation Meth	od: EPA	604.1			
		rtical Services -						70.00.4	NO
Hexachlorophene	ND	ug/L	9.8	3.1	1	03/16/21 16:21	03/17/21 19:51	10-30-4	N3

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC

Date: 04/04/2021 08:17 PM

Page 14 of 39

ANALYTICAL RESULTS

Sample: 627983	Lab ID:	75151537010	Collected:	03/09/21	06:00	Received: 03/	10/21 08:51 N	latrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
504.1 HPLC Hexachlorophene	,	Method: EPA 6 ytical Services		ation Meth	od: EP/	A 604.1			
S <i>urrogates</i> Nitrobenzene (S)	42	%.	25-108		1	03/16/21 16:21	03/17/21 19:51	ſ	
632 HPLC Carbamates	-	Method: EPA 6 ytical Services		on Method	I: EPA I	532			
Carbaryl	ND	ug/L	3.9	0.60	1	03/16/21 16:21	03/17/21 19:51	63-25-2	
Diuron Surrogates	ND	ug/L	0.078	0.020	1	03/16/21 16:21	03/17/21 19:51		N3
Nitrobenzene (S)	42	%.	18-113		1	03/16/21 16:21	03/17/21 19:51		
625.1 MSSV	,	Method: EPA 6 ytical Services		ation Meth	od: EP/	A 625.1			
Nonylphenol	ND	ug/L	333	2.7	1	03/15/21 09:51	03/15/21 19:30	25154-52-3	N3
2-Chlorophenol	ND	ug/L	10.0	0.77	1	03/15/21 09:51	03/15/21 19:30	95-57-8	
.4-Dichlorophenol	ND	ug/L	10.0	0.77	1	03/15/21 09:51	03/15/21 19:30	120-83-2	
Cresols (Total)	ND	ug/L	10.0	1.4	1	03/15/21 09:51	03/15/21 19:30	1319-77-3	N3
,4-Dimethylphenol	ND	ug/L	10.0	1.3	1	03/15/21 09:51	03/15/21 19:30	105-67-9	
,6-Dinitro-2-methylphenol	ND	ug/L	10.0	1.4	1	03/15/21 09:51	03/15/21 19:30	534-52-1	
4-Dinitrophenol	ND	ug/L	50.0	1.1	1	03/15/21 09:51	03/15/21 19:30	51-28-5	
-Nitrophenol	ND	ug/L	20.0	1.6	1	03/15/21 09:51	03/15/21 19:30	88-75-5	
Nitrophenol	ND	ug/L	50.0	1.6	1	03/15/21 09:51	03/15/21 19:30	100-02-7	
3&4-Methylphenol(m&p Cresol)	ND	ug/L	10.0	0.72	1	03/15/21 09:51	03/15/21 19:30	}	N3
-Chloro-3-methylphenol	ND	ug/L	10.0	0.82	1	03/15/21 09:51	03/15/21 19:30		
Pentachlorophenol	ND	ug/L	4.7	2.0	1	03/15/21 09:51	03/15/21 19:30		
Phenol	ND	ug/L	10.0	0.91	1	03/15/21 09:51	03/15/21 19:30	108-95-2	
2,4,5-Trichlorophenol	ND	ug/L	50.0	1.8	1	03/15/21 09:51	03/15/21 19:30	95-95-4	
4,6-Trichlorophenol	ND	ug/L	10.0	1.7	1	03/15/21 09:51	03/15/21 19:30		
Acenaphthene	ND	ug/L	10.0	1.3	1	03/15/21 09:51	03/15/21 19:30		
Acenaphthylene	ND	ug/L	10.0	1.3	1	03/15/21 09:51	03/15/21 19:30		
Anthracene	ND	ug/L	10.0	1.0	1	03/15/21 09:51	03/15/21 19:30		
Benzidine	ND	ug/L	50.0	2.9	1	03/15/21 09:51	03/15/21 19:30		
Benzo(a)anthracene	ND	ug/L	5.0	0.88	1	03/15/21 09:51	03/15/21 19:30		
Benzo(a)pyrene	ND	ug/L	5.0	0.89	1	03/15/21 09:51	03/15/21 19:30		
Benzo(b)fluoranthene	ND	ug/L	10.0	0.96	1	03/15/21 09:51	03/15/21 19:30		
Benzo(g,h,i)perylene	ND	ug/L	20.0	0.95	1	03/15/21 09:51	03/15/21 19:30		
Benzo(k)fluoranthene	ND	ug/L	2.4	0.88	1	03/15/21 09:51	03/15/21 19:30		
is(2-Chloroethoxy)methane	ND	ug/L	10.0	0.94	1	03/15/21 09:51	03/15/21 19:30		
is(2-Chloroethyl) ether	ND	ug/L	10.0	0.95	1	03/15/21 09:51	03/15/21 19:30		
is(2-Chloroisopropyl) ether	ND	ug/L	2.4	1.1	1	03/15/21 09:51	03/15/21 19:30		
is(2-Ethylhexyl)phthalate	ND	ug/L	10.0	3.0	1	03/15/21 09:51	03/15/21 19:30		
-Bromophenylphenyl ether	ND	ug/L	10.0	0.98	1	03/15/21 09:51	03/15/21 19:30		
Butylbenzylphthalate	ND	ug/L	10.0	1.3	1	03/15/21 09:51	03/15/21 19:30		
2-Chloronaphthalene	ND	ug/L	10.0	1.4	1	03/15/21 09:51	03/15/21 19:30		
I-Chlorophenylphenyl ether	ND	ug/L	10.0	1.3	1	03/15/21 09:51	03/15/21 19:30		
Chrysene	ND	ug/L	5.0	0.96	1	03/15/21 09:51	03/15/21 19:30	218-01-9	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC

Page 15 of 39

Pace Analytical®

Pace Analytical Services, LLC 400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

ANALYTICAL RESULTS

Sample: 627983	
Pace Project No.:	75151537
Project:	627972

Sample: 627983	Lab ID:	75151537010	Collected	: 03/09/2	1 06:00	Received: 03	/10/21 08:51 M	atrix: Water		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No. Qual		
625.1 MSSV	Analytical Method: EPA 625.1 Preparation Method: EPA 625.1 Pace Analytical Services - Dallas									
	Pace Ana	lytical Services	- Dallas							
Dibenz(a,h)anthracene	ND	ug/L	5.0	1.0	1	03/15/21 09:51	03/15/21 19:30	53-70-3		
3,3'-Dichlorobenzidine	ND	ug/L	5.0	2.5	1	03/15/21 09:51	03/15/21 19:30	91-94-1		
Diethylphthalate	ND	ug/L	10.0	0.86	1	03/15/21 09:51	03/15/21 19:30	84-66-2		
Dimethylphthalate	ND	ug/L	10.0	0.83	1	03/15/21 09:51	03/15/21 19:30	131-11-3		
Di-n-butylphthalate	ND	ug/L	10.0	1.1	1	03/15/21 09:51	03/15/21 19:30	84-74-2		
2,4-Dinitrotoluene	ND	ug/L.	10.0	2.5	1	03/15/21 09:51	03/15/21 19:30	121-14-2		
2,6-Dinitrotoluene	ND	ug/L	10.0	1.7	1	03/15/21 09:51	03/15/21 19:30	606-20-2		
Di-n-octylphthalate	ND	ug/L	10.0	1.6	1	03/15/21 09:51	03/15/21 19:30	117-84-0		
1,2-Diphenylhydrazine	ND	ug/L	20.0	1.2	1	03/15/21 09:51				
Fluoranthene	ND	ug/L	10.0	1.1	1	03/15/21 09:51	03/15/21 19:30	206-44-0		
Fluorene	ND	ug/L	10.0	1.2	1	03/15/21 09:51				
Hexachlorobenzene	ND	ug/L	5.0	0.92	1	03/15/21 09:51				
Hexachloro-1,3-butadiene	ND	ug/L	10.0	1.7	1	03/15/21 09:51	03/15/21 19:30	87-68-3		
Hexachlorocyclopentadiene	ND	ug/L	10.0	1.1	1	03/15/21 09:51	03/15/21 19:30	77-47-4		
Hexachloroethane	ND	ug/L	20.0	1.8	1	03/15/21 09:51				
Indeno(1,2,3-cd)pyrene	ND	ug/L	5.0	0.93	1	03/15/21 09:51				
Isophorone	ND	ug/L	10.0	1.7	1	03/15/21 09:51				
Naphthalene	ND	ug/L	10.0	1.9	1	03/15/21 09:51				
Nitrobenzene	ND	ug/L	10.0	1.2	1	03/15/21 09:51				
N-Nitrosodiethylamine	ND	ug/L	20.0	0.87	1	03/15/21 09:51	03/15/21 19:30	55-18-5		
N-Nitrosodimethylamine	ND	ug/L	50.0	0.61	1	03/15/21 09:51				
N-Nitroso-di-n-butylamine	ND	ug/L	20.0	0.69	1	03/15/21 09:51				
N-Nitroso-di-n-propylamine	ND	ug/L	20.0	1.0	1	03/15/21 09:51				
N-Nitrosodiphenylamine	ND	ug/L	20.0	0.78	1	03/15/21 09:51				
Phenanthrene	ND	ug/L	10.0	1.1	1	03/15/21 09:51				
Pentachlorobenzene	ND	ug/L	20.0	1.3	1	03/15/21 09:51				
Pyrene	ND	ug/L	10.0	1.1	1	03/15/21 09:51				
Pyridine	ND	ug/L	20.0	1.1	1	03/15/21 09:51				
1,2,4-Trichlorobenzene	ND	ug/L	10.0	1.5	1	03/15/21 09:51				
1,2,4,5-Tetrachlorobenzene Surrogates	ND	ug/L	20.0	1.2	1	03/15/21 09:51				
Nitrobenzene-d5 (S)	52	%.	15-106		1	03/15/21 09:51				
2-Fluorobiphenyl (S)	57	%,	26-102		1	03/15/21 09:51	03/15/21 19:30			
p-Terphenyl-d14 (S)	70	%.	10-120		1	03/15/21 09:51				
Phenol-d6 (S)	18	%.	10-54		1	03/15/21 09:51				
2-Fluorophenol (S)	28	%.	10-66		1	03/15/21 09:51	03/15/21 19:30			
2,4,6-Tribromophenol (S)	83	%.	29-132		1	03/15/21 09:51	03/15/21 19:30	118-79-6		

REPORT OF LABORATORY ANALYSIS

Date: 04/04/2021 08:17 PM

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 16 of 39

QUALITY CONTROL DATA

QC Batch: 162546 QC Batch Method: EPA 624.1 Associated Lab Samples: 7515153	Analysis Meth Analysis Dese Laboratory:	cription:	EPA 624.1 624.1 MSV Pace Analytical Services - Dallas				
METHOD BLANK: 738043		Matrix:	Water				
Associated Lab Samples: 7515153	7009		· · · · · ·				
	1000	Blank	Reporting				
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifier	
1,1,1-Trichloroethane	ug/L	ND	10.	0 3.4	03/10/21 16:52		
1,1,2,2-Tetrachloroethane	ug/L	ND	10.	0 0.60	03/10/21 16:52		
I,1,2-Trichloroethane	ug/L	ND	10.	0 1.4	03/10/21 16:52		
I.1-Dichloroethane	ug/L	ND	5.	0 2.9	03/10/21 16:52		
, 1-Dichloroethene	ug/L	ND	10.	0 3.7	03/10/21 16:52		
I,2-Dibromoethane (EDB)	ug/L	ND	10.	0 0.55	03/10/21 16:52		
I.2-Dichlorobenzene	ug/L	ND	10.	0 1.7	03/10/21 16:52		
.2-Dichloroethane	ug/L	ND	10.	0 2.0	03/10/21 16:52		
,2-Dichloropropane	ug/L	ND	10.	0.80	03/10/21 16:52		
.3-Dichlorobenzene	ug/L	ND	10.	0 4.2	03/10/21 16:52		
.4-Dichlorobenzene	ug/L	ND	10.	0 1.7	03/10/21 16:52		
2-Butanone (MEK)	ug/L	ND	50.	0 8.2	03/10/21 16:52		
-Chloroethylvinyl ether	ug/L	ND	10.	0 6.5	03/10/21 16:52		
vcrolein	ug/L	ND	50.	0 5.4	03/10/21 16:52		
crylonitrile	ug/L	ND	50.	0 7.1	03/10/21 16:52		
Benzene	ug/L	ND	10.	0 2.1	03/10/21 16:52		
Bromodichloromethane	ug/L	ND	10.	0 1.8	03/10/21 16:52		
Bromoform	ug/L	ND	10.	0 0.96	03/10/21 16:52		
Bromomethane	ug/L	ND	50.	0 3.5	03/10/21 16:52		
Carbon tetrachloride	ug/L	ND	2.		03/10/21 16:52		
Chlorobenzene	ug/L	ND	10.0		03/10/21 16:52		
Chloroethane	ug/L	ND	50.0		03/10/21 16:52		
Chloroform	ug/L	ND	10.0		03/10/21 16:52		
Chloromethane	ug/L	ND	50.		03/10/21 16:52		
Dibromochloromethane	ug/L	ND	10.		03/10/21 16:52		
Ethylbenzene	ug/L	ND	10.0		03/10/21 16:52		
lethylene Chloride	ug/L	ND	20.		03/10/21 16:52		
etrachloroethene	ug/L	ND	10.0		03/10/21 16:52		
oluene	ug/L	ND	10.		03/10/21 16:52		
otal 1,3-Dichloropropene	ug/L	ND	10.0		03/10/21 16:52	N3	
otal Trihalomethanes (Calc.)	ug/L	ND	10.		03/10/21 16:52		
rans-1,2-Dichloroethene	ug/L	ND	10.0		03/10/21 16:52		
richloroethene	ug/L	ND	10.		03/10/21 16:52		
/inyl chloride	ug/L	ND	10.		03/10/21 16:52		
,2-Dichloroethane-d4 (S)	%.	100	70-13		03/10/21 16:52		
-Bromofluorobenzene (S)	%.	100	70-13		03/10/21 16:52		
oluene-d8 (S)	%.	97	70-13	0	03/10/21 16:52		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 04/04/2021 08:17 PM

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 17 of 39

QUALITY CONTROL DATA

Project:	627972
Pace Project No .:	75151537

LABORATORY CONTROL SAMPLE: 738045

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	19.9	19.2	97	70-130	
1,1,2,2-Tetrachloroethane	ug/L	20.1	18.9	94	60-140	
1,1,2-Trichloroethane	ug/L	19.9	18.4	92	70-130	
1,1-Dichloroethane	ug/L	20	16.3	82	70-130	
I,1-Dichloroethene	ug/L	19.8	12.5	63	50-150	
,2-Dibromoethane (EDB)	ug/L	20	18.4	92	70-130	
.2-Dichlorobenzene	ug/L	20	19.6	98	65-135	
2-Dichloroethane	ug/L	19.9	17.0	85	70-130	
	ug/L	19.9	19.6	99	35-165	
2-Dichloropropane 3-Dichlorobenzene	ug/L	19.9	20.7	99 104	70-130	
	ug/L	20	18.8	94	65-135	
4-Dichlorobenzene	0	20	10.0	94 99	70-130	
Butanone (MEK)	ug/L	20.2	17.1	99 85	1-225	
Chloroethylvinyl ether	ug/L	20.2	17.1	85 90	64-139	
rolein	ug/L		181	90 89	67-136	
rylonitrile	ug/L	199			65-135	
nzene	ug/L	20	18.2	91		
modichloromethane	ug/L	19.9	20.1	101	65-135	
moform	ug/L	19.8	20.0	101	70-130	
momethane	ug/L	20	29J	145	15-185	
bon tetrachloride	ug/L	19.8	26.2	132	70-130 L	.1
orobenzene	ug/L	19.8	19.5	98	65-135	
oroethane	ug/L	20	24.5J	122	40-160	
oroform	ug/L	19.8	18.1	91	70-135	
promethane	ug/L	20	15.8J	79	1-205	
omochloromethane	ug/L	19.8	21.2	107	70-135	
ylbenzene	ug/L	20.1	19.2	96	60-140	
thylene Chloride	ug/L	20.4	16.6J	82	60-140	
rachloroethene	ug/L	19.9	19.4	98	70-130	
luene	ug/L	20	18.9	95	70-130	
al 1,3-Dichloropropene	ug/L	40.1	35.4	88	70-130 1	13
al Trihalomethanes (Calc.)	ug/L		79.4			
ns-1,2-Dichloroethene	ug/L	20	15.0	75	70-130	
chloroethene	ug/L	20	20.1	101	65-135	
vi chloride	ug/L	20	21.5	107	5-195	
-Dichloroethane-d4 (S)	%.			103	70-130	
romofluorobenzene (S)	%.			102	70-130	
luene-d8 (S)	%.			99	70-130	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 738046 738047 MSD MS 75151537009 Spike Spike MS MSD MS MSD % Rec Max RPD RPD Qual % Rec % Rec Limits Result Result Units Result Conc. Parameter Conc. 2 12.5 52-162 36 64 63 19.9 12.7 1,1,1-Trichloroethane ug/L ND 19.9 46-157 7 61 15.0 16.1 75 80 1,1,2,2-Tetrachloroethane ug/L ND 20.1 20.1 75 52-150 5 45 79 1,1,2-Trichloroethane ug/L ND 19.9 19.9 15.7 14.9

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

Date: 04/04/2021 08:17 PM

without the written consent of Pace Analytical Services, LLC.

Page 18 of 39

QUALITY CONTROL DATA

Project:	627972
Pace Project No.:	75151537

MATRIX SPIKE & MATRIX SP	PIKE DUP	LICATE: 7380			738047							
			MS	MSD								
Deservator	Units	75151537009 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
Parameter	-											Qua
1,1-Dichloroethane	ug/L	ND	20	20	13.4	12.7	67	63	59-155	5	40	
1,1-Dichloroethene	ug/L	ND	19.8	19.8	11.4	11.2	58	57	1-234	2		
1,2-Dibromoethane (EDB)	ug/L	ND	20	20	14.6	15.5	73	77	70-130	6	20	
1,2-Dichlorobenzene	ug/L	ND	20	20	15.1	15.5	76	78	18-190	3	57	
1,2-Dichloroethane	ug/L	ND	19.9	19.9	13.9	14.1	70	71	49-155	2	49	
1,2-Dichloropropane	ug/L	ND	19.9	19.9	14.5	14.7	73	74	1-210	1	55	
1,3-Dichlorobenzene	ug/L	ND	19.9	19.9	15.1	15.2	76	76	59-156	0	43	
1,4-Dichlorobenzene	ug/L	ND	20	20	15.0	14.9	75	75	18-190	0	57	
2-Butanone (MEK)	ug/L	ND	101	101	118	116	117	115	70-130	2	20	
2-Chloroethylvinyl ether	ug/L	ND	20.2	20.2	14.2	13.6	71	68	1-305	4	71	
Acrolein	ug/L	ND	200	200	168	1 51	84	76	4-172	11	20	
Acrylonitrile	ug/L	ND	199	199	153	143	77	72	22-189	7	20	
Benzene	ug/L	ND	20	20	14.3	14.3	70	70	37-151	0	61	
Bromodichloromethane	ug/L	ND	19.9	19.9	11.3	11.5	57	58	35-155	1	56	
Bromoform	ug/L	ND	19.8	19.8	8.7J	ND	44	51	70-130		42	M1
Bromomethane	ug/L	ND	20	20	25.5J	21.6J	128	108	15-185	17	61	
Carbon tetrachloride	ug/L	ND	19.8	19.8	3.1	2.6	15	13	70-140	15	41	MO
Chlorobenzene	ug/L	ND	19.8	19.8	14.8	14.8	75	75	37-160	0	53	
Chloroethane	ug/L	ND	20	20	20.6J	21.9J	103	109	14-230	6	78	
Chloroform	ug/L	ND	19.8	19.8	13.7	13.2	69	67	51-138	4	54	
Chloromethane	ug/L	ND	20	20	19.3J	17.9J	97	89	1-273	8	20	
Dibromochloromethane	ug/L	ND	19.8	19.8	11.3	10.7	57	54	53-149	6	50	
Ethylbenzene	ug/L	ND	20.1	20.1	14.6	14.4	73	72	37-162	2	63	
Methylene Chloride	ug/L	ND	20.4	20.4	12.7J	12J	62	59	1-221		28	
Tetrachloroethene	ug/L	ND	19.9	19.9	20.1	19.5	101	98	64-148	3	39	
Toluene	ug/L	ND	20	20	15.5	14.7	77	74	47-150	5	41	
Total 1.3-Dichloropropene	ug/L	ND	40.1	40.1	27.8	27.2	69	68	70-130	2	20	N3
Total Trihalomethanes	ug/L	ND			36.3	35.4				3	20	
(Calc.)	ug/L	ne										
trans-1,2-Dichloroethene	ug/L	ND	20	20	13.1	13.4	66	67	54-156	2	45	
Trichloroethene	ug/L	ND	20	20	15.1	16.3	75	81	70-157	7	48	
Vinyl chloride	ug/L	ND	20	20	21.1	18.9	105	95	1-251	11	66	
1,2-Dichloroethane-d4 (S)	%.						95	97	70-130			
4-Bromofluorobenzene (S)	%.						97	101	70-130			
Toluene-d8 (S)	%.						100	99	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 19 of 39

007070

. . .

Pace Analytical Services, LLC 400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

QUALITY CONTROL DATA

Project: 627972								
Pace Project No.: 75151537								
QC Batch: 162878		Analysis Meth	nod: E	EPA 604.1				
QC Batch Method: EPA 604.1		Analysis Desc	cription: 6	604.1 HPLC Hexachlorophene				
		Laboratory:	F	Pace Analytical S				
Associated Lab Samples: 75151	537010							
METHOD BLANK: 739661		Matrix: \	Water					
Associated Lab Samples: 75151	537010							
		Blank	Reporting					
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers		
	ug/L	ND	10.0) 3.2				
Hexachlorophene	dg/L							
Hexachlorophene Nitrobenzene (S)	%.	63	25-108	3	03/17/21 17:5	7		
	%.		25-108	3	03/17/21 17:5	7		
Nitrobenzene (S)	%.	63	25-108 _CS	LCS	% Rec			
Nitrobenzene (S)	%.	63 Spike L			% Rec	7 ualifiers		
Nitrobenzene (S)	%. E: 739662	63 Spike L	_CS	LCS	% Rec			
Nitrobenzene (S) LABORATORY CONTROL SAMPL Parameter Hexachlorophene	%. E: 739662 Units	63 Spike L Conc. Re	_CS esult	LCS % Rec	% Rec Limits Q			
Nitrobenzene (S) LABORATORY CONTROL SAMPL Parameter Hexachlorophene Nitrobenzene (S)	%. E: 739662 Units ug/L	63 Spike L Conc. Re	_CS esult	LCS % Rec 74	% Rec Limits Q 28-123 N3			
Nitrobenzene (S) LABORATORY CONTROL SAMPL Parameter Hexachlorophene Nitrobenzene (S)	%. E: 739662 Units ug/L %.	63 Spike L Conc. Re	_CS esult	LCS % Rec 74	% Rec Limits Q 28-123 N3	ualifiers % Rec		
Nitroberzene (S) LABORATORY CONTROL SAMPL Parameter Hexachlorophene Nitroberzene (S)	%. E: 739662 Units ug/L %.	50 Spike L Conc. Re	LCS esult 36.9	LCS % Rec 74 64	% Rec Limits Q 28-123 N3 25-108	ualifiers		
Nitrobenzene (S) LABORATORY CONTROL SAMPL Parameter Hexachlorophene Nitrobenzene (S) MATRIX SPIKE SAMPLE:	%. E: 739662 Units ug/L %. 739663	63 Spike L Conc. Re 50 75151539010	CS esult 36.9 Spike Conc.	LCS % Rec 74 64 MS	% Rec Limits Q 28-123 N3 25-108 MS	ualifiers % Rec		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC

Page 20 of 39

Pace Analytical Services, LLC 400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

QUALITY CONTROL DATA

QC Batch:	1627	32		Analysis	Analysis Method: EPA 608.3						
QC Batch Method:	EPA 6	608.3		Analysis	Analysis Description:			РСВ			
				Laborat	ory:		Pace Analyt	ical Se	rvices - Dall	as	
Associated Lab Samp	oles:	75151537010									
METHOD BLANK:	739122	2		M	atrix: Wate	er					
Associated Lab Samp	oles:	75151537010									
				Blank	Re	porting					
Parame	eter		Units	Result		Limit	MDL		Analyz	ed	Qualifiers
PCB-1016 (Aroclor 10	016)		ug/L		ND	0.2	0	0.18	03/16/21:	20:13	
PCB-1221 (Aroclor 12			ug/L		ND	0.2	0	0.19	03/16/21	20:13	
PCB-1232 (Aroclor 12	232)		ug/L		ND	0.2	0	0.20	03/16/21	20:13	
PCB-1242 (Aroclor 12	242)		ug/L		ND	0.2		0.14	03/16/21		
PCB-1248 (Aroclor 12	'		ug/L		ND	0.2		0.048	03/16/21		
PCB-1254 (Aroclor 12			ug/L		ND	0.2		0.17	03/16/21		
PCB-1260 (Aroclor 12			ug/L		ND	0.2		0.14	03/16/21		
Decachlorobiphenyl (,		%.		115	40-14	-		03/16/21 2		
Tetrachloro-m-xylene	(S)		%.		82	40-14	J		03/10/21 /	20.13	
LABORATORY CONT	ROLS	SAMPLE: 739	123								
				Spike	LCS		LCS		6 Rec		
Parame	eter		Units	Conc.	Result		% Rec	L	imits	Qualifier	S
PCB-1016 (Aroclor 10	016)		ug/L	10		9.0	90		50-140		
PCB-1260 (Aroclor 12	260)		ug/L	10		10.5	105		8-140		
Decachlorobiphenyl (S)		%.				86		40-140		
Tetrachloro-m-xylene	(S)		%.				71		40-140		

Parameter	Units	75151632001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
PCB-1016 (Aroclor 1016)	ug/L	ND	9.7	9.6	8.8	8.4	90	88	50-140	4	36	
PCB-1260 (Aroclor 1260)	ug/L	ND	9.7	9.6	9.7	10.2	100	106	8-140	5	38	
Decachlorobiphenyl (S)	%.						74	78	40-140			
Tetrachloro-m-xylene (S)	%.						76	72	40-140			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 21 of 39

QUALITY CONTROL DATA

EPA 608.3

608.3 GCS Pesticides

Pace Analytical Services - Dallas

Project:	627972
Pace Project No .:	75151537

QC Batch:	162781
QC Batch Method:	EPA 608.3

Associated Lab Samples: 75151537010

METHOD BLANK: 739115

Matrix: Water

Analysis Method:

Laboratory:

Analysis Description:

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
4,4'-DDD	ug/L	ND	0.10	0.0060	03/16/21 20:15	CH
4,4'-DDE	ug/L	ND	0.10	0.0040	03/16/21 20:15	CH
4,4'-DDT	ug/L	ND	0.020	0.0050	03/16/21 20:15	
Aldrin	ug/L	ND	0.010	0.0070	03/16/21 20:15	
alpha-BHC	ug/L	ND	0.050	0.0060	03/16/21 20:15	
beta-BHC	ug/L	ND	0.050	0.011	03/16/21 20:15	
Chlordane (Technical)	ug/L	ND	0.20	0.041	03/16/21 20:15	
delta-BHC	ug/L	ND	0.050	0.0040	03/16/21 20:15	
Dieldrin	ug/L	ND	0.020	0.0040	03/16/21 20:15	
Endosulfan I	ug/L	ND	0.010	0.0040	03/16/21 20:15	
Endosulfan II	ug/L	ND	0.020	0.0040	03/16/21 20:15	
Endosulfan sulfate	ug/L	ND	0.10	0.0040	03/16/21 20:15	
Endrin	ug/L	ND	0.020	0.0040	03/16/21 20:15	
Endrin aldehyde	ug/L	ND	0.10	0.012	03/16/21 20:15	
gamma-BHC (Lindane)	ug/L	ND	0.050	0.0050	03/16/21 20:15	
Heptachlor	ug/L	ND	0.010	0.0060	03/16/21 20:15	
Heptachlor epoxide	ug/L	ND	0.010	0.0040	03/16/21 20:15	
Toxaphene	ug/L	ND	0.30	0.21	03/16/21 20:15	
Decachlorobiphenyl (S)	%.	74	40-140		03/16/21 20:15	
Tetrachloro-m-xylene (S)	%.	82	40-140		03/16/21 20:15	

LABORATORY CONTROL SAMPLE:	739116					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
4,4'-DDD	ug/L	0.5	0.49	98	31-141	CH
4,4'-DDE	ug/L	0.5	0.50	99	30-145	CH
4.4'-DDT	ug/L	0.5	0.44	88	25-160	
Aldrin	ug/L	0.5	0.35	70	42-140	
alpha-BHC	ug/L	0.5	0.42	84	37-140	
beta-BHC	ug/L	0.5	0.42	84	17-147	
delta-BHC	ug/L	0.5	0.45	90	19-140	
Dieldrin	ug/L	0.5	0.46	93	36-146	
Endosulfan I	ug/L	0.5	0.44	87	45-153	
Endosulfan II	ug/L	0.5	0.44	88	1-202	
Endosulfan sulfate	ug/L	0.5	0.42	85	26-144	
Endrin	ug/L	0.5	0.48	96	30-147	
Endrin aldehyde	ug/L	0.5	0.41	83	73-146	
gamma-BHC (Lindane)	ug/L	0.5	0.42	85	32-140	
Heptachlor	ug/L	0.5	0.24	48	34-140	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

Date: 04/04/2021 08:17 PM

without the written consent of Pace Analytical Services, LLC.

Page 22 of 39

Pace Analytical[®] www.pacelabs.com

Pace Analytical Services, LLC 400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

QUALITY CONTROL DATA

 Project:
 627972

 Pace Project No.:
 75151537

LABORATORY CONTROL SAMPLE: 739116

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Heptachlor epoxide	ug/L	0.5	0.41	82	37-142	
Decachlorobiphenyl (S)	%.			78	40-140	
Tetrachloro-m-xylene (S)	%.			71	40-140	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 739120

Parameter	Units	50281879002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
4,4'-DDD	ug/L	<0.0057	0.48	0.48	0.62	0.63	130	133	31-141	2	39	СН
4,4'-DDE	ug/L	< 0.0038	0.48	0.48	0.60	0.61	126	129	30-145	2	35	СН
4,4'-DDT	ug/L	< 0.0047	0.48	0.48	0.55	0.52	116	110	25-160	5	42	
Aldrin	ug/L	< 0.0066	0.48	0.48	0.42	0.45	89	96	42-140	7	35	
alpha-BHC	ug/L	< 0.0057	0.48	0.48	0.50	0.51	106	107	37-140	1	36	
beta-BHC	ug/L	<0.010	0.48	0.48	0.53	0.54	112	113	17-147	1	44	
delta-BHC	ug/L	<0.0038	0.48	0.48	0.54	0.54	114	113	19-140	2	52	
Dieldrin	ug/L	< 0.0038	0.48	0.48	0.60	0.62	125	129	36-146	3	49	
Endosulfan I	ug/L	< 0.0038	0.48	0.48	0.57	0.58	1 19	122	45-153	3	28	
Endosulfan II	ug/L	< 0.0038	0.48	0.48	0.54	0.55	113	116	1-202	2	53	
Endosulfan sulfate	ug/L	<0.0038	0.48	0.48	0.50	0.54	106	113	26-144	7	38	
Endrin	ug/L	<0.0038	0.48	0.48	0.57	0.60	120	127	30-147	6	48	
Endrin aldehyde	ug/L	< 0.011	0.48	0.48	0.27	0.29	58	62	40-140	7	26	
gamma-BHC (Lindane)	ug/L	< 0.0047	0.48	0.48	0.51	0.52	108	109	32-140	1	39	
Heptachlor	ug/L	< 0.0057	0.48	0.48	0.33	0.33	69	70	34-140	1	43	
Heptachlor epoxide	ug/L	< 0.0038	0.48	0.48	0.51	0.53	108	112	37-142	4	26	
Decachlorobiphenyl (S)	%.						97	111	40-140			
Tetrachloro-m-xylene (S)	%.						87	89	40-140			

739121

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC,

Page 23 of 39

QUALITY CONTROL DATA

Pace Project No.: 75151537							
QC Batch: 162810		Analysis Metho	d: EP	PA 615			
QC Batch Method: EPA 615		Analysis Descri	iption: 61	5 GCS Herbicide	es		
		Laboratory:	Pa	ce Analytical Se	ervices - Dallas		
Associated Lab Samples: 751	51537010			,			
METHOD BLANK: 739221		Matrix: W	/ater				
Associated Lab Samples: 751	51537010						
		Blank	Reporting				
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifier	S
2,4,5-TP (Silvex)	ug/L	ND	0.30	0.074	03/22/21 16:	44	
2,4-D	ug/L	ND	0.70	0.071	03/22/21 16:	44	
2,4-0	ug/L	IND	0.70	0.071	03/22/21 10.		
2,4-DCAA (S)	%.	81	44-137	0.071	03/22/21 16:		
	%.			0.071			
2,4-DCAA (S)	%.		44-137				
2,4-DCAA (S)	%.	81	44-137 CS	LCS	03/22/21 16: % Rec		
2,4-DCAA (S) LABORATORY CONTROL SAMP Parameter	%. PLE: 739222	81 Spike LC	44-137 CS	LCS	03/22/21 16: % Rec	44	
2,4-DCAA (S)	%. PLE: 739222 Units ug/L	81 Spike LC Conc. Ret	44-137 CS sult %	LCS 9 6 Rec I	03/22/21 16: % Rec Limits	44	
2,4-DCAA (S) LABORATORY CONTROL SAMF Parameter 2,4,5-TP (Silvex) 2,4-D	%. PLE: 739222 Units	81 Spike LC Conc. Res 3	44-137 CS sult % 2.5	LCS 9 6 Rec I 84	03/22/21 16: % Rec Limits 0 57-125	44	
2,4-DCAA (S) LABORATORY CONTROL SAMF Parameter 2,4,5-TP (Silvex)	%. PLE: 739222 Units ug/L ug/L	81 Spike LC Conc. Res 3	44-137 CS sult % 2.5	LCS 9 6 Rec 1 84 82	03/22/21 16: % Rec Limits 0 57-125 49-133	44	
2,4-DCAA (S) LABORATORY CONTROL SAMF Parameter 2,4,5-TP (Silvex) 2,4-D 2,4-DCAA (S)	%. PLE: 739222 Units ug/L ug/L %.	81 Spike LC Conc. Res 3	44-137 CS sult % 2.5	LCS 9 6 Rec 1 84 82	03/22/21 16: % Rec Limits 0 57-125 49-133	44 Qualifiers % Rec	
ABORATORY CONTROL SAMF Parameter 2,4,5-TP (Silvex) 2,4-D 2,4-DCAA (S)	%. PLE: 739222 Units ug/L ug/L %.	81 Spike LC Conc. Res 3 3	44-137	LCS 9 6 Rec 1 84 82 87	03/22/21 16: % Rec Limits 0 57-125 49-133 44-137	44 Qualifiers	Qualifiers
2,4-DCAA (S) LABORATORY CONTROL SAMF Parameter 2,4,5-TP (Silvex) 2,4-D 2,4-DCAA (S) MATRIX SPIKE SAMPLE:	%. PLE: 739222 Units ug/L ug/L %. 739223	81 Spike LC Conc. Res 3 3 75151537010	44-137 2.5 2.5 2.5 Spike	LCS 9 6 Rec 1 84 82 87 MS	03/22/21 16: % Rec Limits 57-125 49-133 44-137 MS	44 Qualifiers % Rec	Qualifiers
2,4-DCAA (S) LABORATORY CONTROL SAMF Parameter 2,4,5-TP (Silvex) 2,4-D 2,4-D 2,4-DCAA (S) MATRIX SPIKE SAMPLE: Parameter	%. PLE: 739222 Units ug/L ug/L %. 739223 Units	81 Spike LC Conc. Res 3 3 75151537010 Result	44-137 2.5 2.5 2.5 Spike Conc.	LCS 9 6 Rec 1 84 82 87 MS Result	03/22/21 16: % Rec Limits 57-125 49-133 44-137 MS % Rec	44 Qualifiers % Rec Limits	Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Date: 04/04/2021 08:17 PM

Page 24 of 39

Pace Analytical[®] www.pacelabs.com

Pace Analytical Services, LLC 400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

QUALITY CONTROL DATA

EPA 625.1

625.1 MSS

Pace Analytical Services - Dallas

537

QC Batch: 162742 QC Batch Method: EPA 625.1

METHOD BLANK: 738994

Associated Lab Samples: 75151537010

Matrix: Water

Analysis Method:

Laboratory:

Analysis Description:

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,2,4,5-Tetrachlorobenzene	ug/L	ND	20.0	1.3	03/15/21 16:33	
1,2,4-Trichlorobenzene	ug/L	ND	10.0	1.6	03/15/21 16:33	
1,2-Diphenylhydrazine	ug/L	ND	20.0	1.2	03/15/21 16:33	
2,4,5-Trichlorophenol	ug/L	ND	50.0	1.9	03/15/21 16:33	
2,4,6-Trichlorophenol	ug/L	ND	10.0	1.8	03/15/21 16:33	
2,4-Dichlorophenol	ug/L	NÐ	10.0	0.82	03/15/21 16:33	
2,4-Dimethylphenol	ug/L	ND	10.0	1.4	03/15/21 16:33	
2,4-Dinitrophenol	ug/L	ND	50.0	1.1	03/15/21 16:33	
2,4-Dinitrotoluene	ug/L	ND	10.0	2.7	03/15/21 16:33	
2,6-Dinitrotoluene	ug/L	ND	10.0	1.8	03/15/21 16:33	
2-Chloronaphthalene	ug/L	ND	10.0	1.4	03/15/21 16:33	
2-Chlorophenol	ug/L	ND	10.0	0.82	03/15/21 16:33	
2-Nitrophenol	ug/L	ND	20.0	1.7	03/15/21 16:33	
3&4-Methylphenol(m&p Cresol)	ug/L	ND	10.0	0.77	03/15/21 16:33	N3
3,3'-Dichlorobenzidine	ug/L	ND	5.0	2.7	03/15/21 16:33	
4,6-Dinitro-2-methylphenol	ug/L	ND	10.0	1.5	03/15/21 16:33	
4-Bromophenylphenyl ether	ug/L	ND	10.0	1.0	03/15/21 16:33	
4-Chloro-3-methylphenol	ug/L	ND	10.0	0.87	03/15/21 16:33	
4-Chlorophenylphenyl ether	ug/L	ND	10.0	1.4	03/15/21 16:33	
4-Nitrophenol	ug/L	ND	50.0	1.6	03/15/21 16:33	
Acenaphthene	ug/L	ND	10.0	1.3	03/15/21 16:33	
Acenaphthylene	ug/L	ND	10.0	1.3	03/15/21 16:33	
Anthracene	ug/L	ND	10.0	1.1	03/15/21 16:33	
Benzidine	ug/L	ND	50.0	3.1	03/15/21 16:33	
Benzo(a)anthracene	ug/L	ND	5.0	0.93	03/15/21 16:33	
Benzo(a)pyrene	ug/L	ND	5.0	0.94	03/15/21 16:33	
Benzo(b)fluoranthene	ug/L	ND	10.0	1.0	03/15/21 16:33	
Benzo(g,h,i)perylene	ug/L	ND	20.0	1.0	03/15/21 16:33	
Benzo(k)fluoranthene	ug/L	ND	2.5	0.93	03/15/21 16:33	
bis(2-Chloroethoxy)methane	ug/L	ND	10.0	0.99	03/15/21 16:33	
bis(2-Chloroethyl) ether	ug/L	ND	10.0	1.0	03/15/21 16:33	
bis(2-Chloroisopropyl) ether	ug/L	ND	2.5	1.2	03/15/21 16:33	
bis(2-Ethylhexyl)phthalate	ug/L	ND	10.0	3.2	03/15/21 16:33	
Butylbenzylphthalate	ug/L	ND	10.0	1.4	03/15/21 16:33	
Chrysene	ug/L	ND	5.0	1.0	03/15/21 16:33	
Cresols (Total)	ug/L	ND	10.0	1.5	03/15/21 16:33	N3
Di-n-butylphthalate	ug/L	ND	10.0	1.2	03/15/21 16:33	
Di-n-octylphthalate	ug/L	ND	10.0	1.7	03/15/21 16:33	
Dienz(a,h)anthracene	ug/L	ND	5.0	1.1	03/15/21 16:33	
Diethylphthalate	ug/L	ND	10.0	0.92	03/15/21 16:33	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 04/04/2021 08:17 PM

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 25 of 39

QUALITY CONTROL DATA

Project:	627972
Pace Project No.:	75151537

METHOD BLANK: 738994	Matrix:	Water				
Associated Lab Samples: 757	151537010 Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Dimethylphthalate	ug/L	ND	10.0	0.88	03/15/21 16:33	
Fluoranthene	ug/L	ND	10.0	1.1	03/15/21 16:33	
Fluorene	ug/L	ND	10.0	1.3	03/15/21 16:33	
Hexachloro-1,3-butadiene	ug/L	ND	10.0	1.8	03/15/21 16:33	
Hexachlorobenzene	ug/L	ND	5.0	0.97	03/15/21 16:33	
Hexachlorocyclopentadiene	ug/L	ND	10.0	1.2	03/15/21 16:33	
Hexachloroethane	ug/L	ND	20.0	1.9	03/15/21 16:33	
Indeno(1,2,3-cd)pyrene	ug/L	ND	5.0	0.98	03/15/21 16:33	
Isophorone	ug/L	ND	10.0	1.8	03/15/21 16:33	
N-Nitroso-di-n-butylamine	ug/L	ND	20.0	0.74	03/15/21 16:33	
N-Nitroso-di-n-propylamine	ug/L	ND	20.0	1.1	03/15/21 16:33	
N-Nitrosodiethylamine	ug/L	ND	20.0	0.93	03/15/21 16:33	
N-Nitrosodimethylamine	ug/L	ND	50.0	0.65	03/15/21 16:33	
N-Nitrosodiphenylamine	ug/L	ND	20.0	0.83	03/15/21 16:33	
Naphthalene	ug/L	ND	10.0	2.0	03/15/21 16:33	
Nitrobenzene	ug/L	ND	10.0	1.2	03/15/21 16:33	
Nonylphenol	ug/L	ND	333	2.9	03/15/21 16:33	N3
Pentachlorobenzene	ug/L	ND	20.0	1.3	03/15/21 16:33	
Pentachlorophenol	ug/L	ND	5.0	2.1	03/15/21 16:33	
Phenanthrene	ug/L	ND	10.0	1.1	03/15/21 16:33	
Phenol	ug/L	ND	10.0	0.97	03/15/21 16:33	
Pyrene	ug/L	ND	10.0	1.2	03/15/21 16:33	
Pyridine	ug/L	ND	20.0	1.2	03/15/21 16:33	
2,4,6-Tribromophenol (S)	%.	105	29-132		03/15/21 16:33	
2-Fluorobiphenyl (S)	%.	94	26-102		03/15/21 16:33	
2-Fluorophenol (S)	%.	50	10-66		03/15/21 16:33	
Nitrobenzene-d5 (S)	%.	88	15-106		03/15/21 16:33	
p-Terphenyl-d14 (S)	%.	97	10-120		03/15/21 16:33	
Phenol-d6 (S)	%.	32	10-54		03/15/21 16:33	

LABORATORY CONTROL SAMPLE: 738995

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1.2.4.5-Tetrachlorobenzene	ug/L	50	44.0	88	60-140	
1.2.4-Trichlorobenzene	ug/L	50	39.3	79	44-142	
1,2-Diphenylhydrazine	ug/L	50	41.3	83	60-117	
2.4.5-Trichlorophenol	ug/L	50	45.8J	92	50-126	
2.4.6-Trichlorophenol	ug/L	50	44.9	90	37-144	
2.4-Dichlorophenol	ug/L	50	43.3	87	39-135	
2.4-Dimethylphenol	ug/L	50	39.8	80	32-120	
2,4-Dinitrophenol	ug/L	50	32.6J	65	1-191	
2.4-Dinitrotoluene	ug/L	50	47.7	95	39-139	
2.6-Dinitrotoluene	ug/L	50	44.2	88	50-158	
2-Chloronaphthalene	ug/L	50	43.1	86	60-118	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 04/04/2021 08:17 PM

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 26 of 39

QUALITY CONTROL DATA

Project:	627972
Pace Project No.:	75151537

LABORATORY CONTROL SAMPLE: 738995

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
2-Chlorophenol	ug/L	50	42.7	85	23-134	
2-Nitrophenol	ug/L	50	49.0	98	29-182	
3&4-Methylphenol(m&p Cresol)	ug/L	50	33.7	67	36-89 N	13
3,3'-Dichlorobenzidine	ug/L	100	101	101	1-262	
,6-Dinitro-2-methylphenol	ug/L	50	40.2	80	39-128	
-Bromophenylphenyl ether	ug/L	50	45.8	92	53-127	
-Chloro-3-methylphenol	ug/L	50	44.7	89	22-147	
-Chlorophenylphenyl ether	ug/L	50	43.1	86	25-158	
-Nitrophenol	ug/L	50	21J	42	1-132	
cenaphthene	ug/L	50	43.1	86	47-145	
cenaphthylene	ug/L	50	45.0	90	33-145	
nthracene	ug/L	50	42.8	86	27-133	
enzidine	ug/L	100	104	104	1-165	
enzo(a)anthracene	ug/L	50	43.8	88	33-143	
enzo(a)pyrene	ug/L	50	42.9	86	17-163	
enzo(b)fluoranthene	ug/L	50	43.4	87	24-159	
enzo(g,h,i)perylene	ug/L	50	44.0	88	1-219	
enzo(k)fluoranthene	ug/L	50	43.7	87	11-162	
s(2-Chloroethoxy)methane	ug/L	50	41.9	84	33-184	
s(2-Chloroethyl) ether	ug/L	50	42.2	84	12-158	
s(2-Chloroisopropyl) ether	ug/L	50	39.6	79	36-166	
s(2-Ethylhexyl)phthalate	ug/L	50	46.8	94	8-158	
tylbenzylphthalate	ug/L	50	45.6	91	1-152	
irysene	ug/L	50	43.6	87	17-168	
esols (Total)	ug/L	100	72.5	72	60-140 N	13
	ug/L	50	45.3	91	1-118	
-n-butylphthalate	ug/L	50	46.1	92	4-146	
-n-octylphthalate	ug/L	50	46.4	93	1-227	
benz(a,h)anthracene	ug/L	50	44.5	89	1-114	
ethylphthalate	ug/L	50	44.2	88	1-112	
methylphthalate	U U	50	44.2	84	26-137	
uoranthene	ug/L	50	42.0	85	59-121	
uorene	ug/L	50	42.4	84	25-98	
exachloro-1,3-butadiene	ug/L	50	46.7	93	1-152	
exachlorobenzene	ug/L	50	39.5	79	14-140	
exachlorocyclopentadiene	ug/L	50	37.8	76	40-113	
exachloroethane	ug/L	50	45.1	90	1-171	
deno(1,2,3-cd)pyrene	ug/L		45.4	91	21-196	
ophorone	ug/L	50 50	45.4	86	60-140	
Nitroso-di-n-butylamine	ug/L	50 50	43.1 43.6	87	1-230	
Nitroso-di-n-propylamine	ug/L		43.0 46.4	93	60-140	
Nitrosodiethylamine	ug/L	50	46.4 28.4J	93 57	32-76	
Nitrosodimethylamine	ug/L	50		85	65-111	
-Nitrosodiphenylamine	ug/L	50	42.6	85	21-133	
aphthalene	ug/L	50	40.6	81 84	35-180	
itrobenzene	ug/L	50	42.0		35-180 60-140 N	2
onyiphenol	ug/L	50	49.1J	98		0
entachlorobenzene	ug/L	50	43.2	86	60-140	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Date: 04/04/2021 08:17 PM

Page 27 of 39

QUALITY CONTROL DATA

Project:	627972
Pace Project No.:	75151537

LABORATORY CONTROL SAMPLE: 738995

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Pentachlorophenol	ug/L	50	22.1	44	14-176	
Phenanthrene	ug/L	50	42.5	85	54-120	
Phenol	ug/L	50	21.2	42	5-112	
Pyrene	ug/L	50	41.3	83	52-115	
Pyridine	ug/L	50	20.0	40	15-55	
2,4,6-Tribromophenol (S)	%.			94	29-132	
2-Fluorobiphenyl (S)	%.			85	26-102	
2-Fluorophenol (S)	%.			57	10-66	
Nitrobenzene-d5 (S)	%.			81	15-106	
p-Terphenyl-d14 (S)	%.			81	10-120	
Phenol-d6 (S)	%.			41	10-54	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 7389			738998							
Parameter	Units	75151632001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,2,4,5-Tetrachlorobenzene	ug/L	ND	47.2	47.2	43.2	40.6	92	86	70-130	6		
1,2,4-Trichlorobenzene	ug/L	ND	47.2	47.2	37.9	36.4	80	77	44-142	4		
1,2-Diphenylhydrazine	ug/L	ND	47.2	47.2	40.4	38.7	86	82	70-130	4		
2,4,5-Trichlorophenol	ug/L	ND	47.2	47.2	43.1J	44.1J	91	94	70-130	2		
2,4,6-Trichlorophenol	ug/L	ND	47.2	47.2	43.7	43.6	93	92	37-144	0		
2.4-Dichlorophenol	ug/L	ND	47.2	47.2	39.7	39.0	84	83	39-135	2		
2,4-Dimethylphenol	ug/L	ND	47.2	47.2	33.7	35.2	72	75	32-120	4		
2,4-Dinitrophenol	ug/L	ND	47.2	47.2	34.5J	30.9J	73	66	1-191	11	132	
2.4-Dinitrotoluene	ug/L	ND	47.2	47.2	47.7	46.0	101	97	39-139	4		
2.6-Dinitrotoluene	ug/L	ND	47.2	47.2	44.6	42.8	95	91	50-158	4		
2-Chloronaphthalene	ug/L	ND	47.2	47.2	42.5	40.9	90	87	60-118	4		
2-Chlorophenol	ug/L	ND	47.2	47.2	35.7	34.9	76	74	23-134	2		
2-Nitrophenol	ug/L	ND	47.2	47.2	46.5	44.6	99	95	29-182	4		
3&4-Methylphenol(m&p Cresol)	ug/L	ND	47.2	47.2	27.3	26.3	58	56	70-130	4		M1,N3
3,3'-Dichlorobenzidine	ug/L	ND	94.3	94.3	97.3	94.2	103	100	1-262	3		
4,6-Dinitro-2-methylphenol	ug/L	ND	47.2	47.2	38.9	39.6	83	84	1-181	2		
4-Bromophenylphenyl ether	ug/L	ND	47.2	47.2	43.3	44.0	92	93	53-127	2		
4-Chloro-3-methylphenol	ug/L	ND	47.2	47.2	38.7	37.4	82	79	22-147	4		
4-Chlorophenylphenyl ether	ug/L	ND	47.2	47.2	42.8	40.8	91	87	25-158	5		
4-Nitrophenol	ug/L	ND	47.2	47.2	18.7J	18.5J	40	39	1-132	1	131	
Acenaphthene	ug/L	ND	47.2	47.2	42.1	40.7	89	86	47-145	3		
Acenaphthylene	ug/L	ND	47.2	47.2	44.6	42.1	95	89	33-145	6		
Anthracene	ug/L	ND	47.2	47.2	40.7	42.1	86	89	27-133	3		
Benzidine	ug/L	ND	94.3	94.3	60.6	47.3J	64	50	70-130	25		M1
Benzo(a)anthracene	ug/L	ND	47.2	47.2	42.6	42.0	90	89	33-143	1		
Benzo(a)pyrene	ug/L	ND	47.2	47.2	42.1	41.4	89	88	17-163	2	72	
Benzo(b)fluoranthene	ug/L	ND	47.2	47.2	42.6	42.6	90	90	24-159	0	71	
Benzo(g,h,i)perylene	ug/L	ND	47.2	47.2	41.8	41.3	89	88	1-219	1	97	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

Date: 04/04/2021 08:17 PM

without the written consent of Pace Analytical Services, LLC

Page 28 of 39

QUALITY CONTROL DATA

Project:	627972
Pace Project No .:	75151537

MATRIX SPIKE & MATRIX SP	IKE DUPI	LICATE: 738			738998							
		75151632001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qu
Benzo(k)fluoranthene	ug/L	ND	47.2	47.2	43.3	41.5	92	88	11-162	4	63	
bis(2-	ug/L	ND	47.2	47.2	39.5	38.0	84	81	33-184	4	54	
Chloroethoxy)methane			47.0	17.0		07.0		00	40.450	-	400	
bis(2-Chloroethyl) ether	ug/L	ND	47.2	47.2	39.6	37.9	84	80	12-158	5	108	
bis(2-Chloroisopropyl) ether	ug/L	ND		47.2	37.8	35.6	80	75	36-166	6	76	
pis(2-Ethylhexyl)phthalate	ug/L	ND		47.2	46.5	45.9	97	96	8-158	1	82	
Butylbenzylphthalate	ug/L	ND		47.2	44.2	43.6	94	92	1-152	1	30	
Chrysene	ug/L	ND	47.2	47.2	42.1	42.9	89	91	17-168	2	87	
Cresols (Total)	ug/L	ND	94.3	94.3	57.7	56.9	61	60	70-130	1		N3
Di-n-butylphthalate	ug/L	ND	47.2	47.2	44.1	44.4	93	94	1-118	1	47	
Di-n-octylphthalate	ug/L	ND	47.2	47.2	44.5	44.3	94	94	4-146	0	69	
Dibenz(a,h)anthracene	ug/L	ND	47.2	47.2	44.1	43.7	93	93	1-227	1	126	
Diethylphthalate	ug/L	ND	47.2	47.2	44.0	42.9	93	91	1-114	3	100	
Dimethylphthalate	ug/L	ND	47.2	47.2	43.2	41.9	92	89	1-112	3	183	
Fluoranthene	ug/L	ND	47.2	47.2	41.0	42.2	87	89	26-137	3	66	
luorene	ug/L	ND	47.2	47.2	42.0	40.0	89	85	59-121	5	38	
lexachloro-1,3-butadiene	ug/L	ND	47.2	47.2	40.1	37.9	85	80	24-116	6	30	
Hexachlorobenzene	ug/L	ND	47.2	47.2	44.6	44.8	94	95	1-152	1	55	
Hexachlorocyclopentadiene	ug/L	ND	47.2	47.2	36.1	34.7	77	74	70-130	4	30	
lexachloroethane	ug/L	ND	47.2	47.2	35.2	34.2	75	72	40-113	3	52	
ndeno(1,2,3-cd)pyrene	ug/L	ND	47.2	47.2	43.5	42.7	92	91	1-171	2	99	
sophorone	ug/L	ND	47.2	47.2	43.3	41.2	92	87	21-196	5	93	
N-Nitroso-di-n-butylamine	ug/L	ND	47.2	47.2	40.2	38.4	85	82	70-130	4	30	
N-Nitroso-di-n-propylamine	ug/L	ND	47.2	47.2	41.2	39.2	87	83	1-230	5	87	
N-Nitrosodiethylamine	ug/L	ND	47.2	47.2	42.2	41.2	89	87	70-130	2	30	
N-Nitrosodimethylamine	ug/L	ND	47.2	47.2	25.8J	25.7J	55	54	70-130	1	30	M1
N-Nitrosodiphenylamine	ug/L	ND	47.2	47.2	42.4	41.3	90	88	70-130	2	30	
Naphthalene	ug/L	ND	47.2	47.2	39.2	36.9	83	78	21-133	6	65	
Nitrobenzene	ug/L	ND	47.2	47.2	39.8	38.0	84	81	35-180	5	62	
Nonylphenol	ug/L	ND	47.2	47.2	45.8J	47J	97	100	70-130	3	30	N3
Pentachlorobenzene	ug/L	ND	47.2	47.2	42.6	40.8	90	87	70-130	4	30	
Pentachlorophenol	ug/L	ND	47.2	47.2	22.2	24.9	47	53	14-176	12	86	
Phenanthrene	ug/L	ND	47.2	47.2	41.2	41.3	87	88	54-120	0	39	
Phenol	ug/L	ND	47.2	47.2	16.9	16.9	36	36	5-112	1	64	
Pyrene	ug/L	ND	47.2	47.2	40.8	41.8	86	89	52-115	2	49	
Pyridine	ug/L	ND	47.2	47.2	14J	13.1J	30	28	70-130	7	30	M1
2,4,6-Tribromophenol (S)	%.	11D					96	96	29-132			
2-Fluorobiphenyl (S)	%.						90	83	26-102			
2-Fluorophenol (S)	%.						51	49	10-66			
vitrobenzene-d5 (S)	%.						83	79	15-106			
-Terphenyl-d14 (S)	%.						85	82	10-120			
Fierprienyi-u i 4 (3)	%.						35	33	10-54			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 04/04/2021 08:17 PM

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC,

Page 29 of 39

007070

Pace Analytical Services, LLC 400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

QUALITY CONTROL DATA

Project: 627972							
Pace Project No.: 75151537							
QC Batch: 162879		Analysis Meth	od:	EPA 632			
QC Batch Method: EPA 632		Analysis Desc	ription:	632 HPLC Carban			
		Laboratory:		Pace Analytical Se	ervices - Dallas		
Associated Lab Samples: 7515	51537010						
METHOD BLANK: 739664		Matrix: V	Vater				
Associated Lab Samples: 7515	51537010						
		Blank	Reporting				
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifie	ers
Carbaryl	ug/L	ND	4.	0 0.61	03/17/21 17:	57	
Diuron	ug/L	ND	0.08	0 0.020	03/17/21 17:	57 N3	
Nitrobenzene (S)	%.	64	18-11	3	03/17/21 17:	57	
LABORATORY CONTROL SAMP	LE: 739665						
		Spike L	CS	LCS	% Rec		
Parameter	Units	Conc. Re	sult	% Rec	Limits C	Qualifiers	
Carbaryl	ug/L	10	8.9	89	59-119		
Diuron	ug/L	5	4.8	95	61-114 N3		
Nitrobenzene (S)	%.			65	18-113		
MATRIX SPIKE SAMPLE:	739666						
		75151539010	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Carbaryl	ug/L	ND		9.2	96	45-139	
Diuron	ug/L	ND	4.8	4.4	92	54-127	N3
Nitrobenzene (S)	%.				47	18-113	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 30 of 39

QUALITY CONTROL DATA

Project:	627972												
Pace Project No.:	75151537												
QC Batch:	162839	_		Anal	ysis Metho	d:	EPA 420.1						-
QC Batch Method:	EPA 420.1	1		Anal	ysis Descri	iption:	420.1 Phen	olics Chlor	oform				
			Labo	Laboratory:			Pace Analytical Services - Dallas						
Associated Lab Sarr	ples: 751	1515370	002, 7515153700	6									
METHOD BLANK:	739365				Matrix: W	/ater				_			
Associated Lab Sam	nples: 751	1515370	02, 7515153700	6									
				Bla	nk	Reporting							
Param	neter		Units	Res	ult	Limit	MD	L	Analyzed		ualifiers	5	
Phenolics, Total Rec	overable		ug/L		ND	10	.0	8.0 0	3/16/21 16	:42			
LABORATORY CON Param		PLE:	739366 Units	Spike Conc.	LC Re:		LCS % Rec	% R Lim		Qualifiers	_		
Phenolics, Total Rec	overable		ug/L	20	00	190	9	5	80-120				
MATRIX SPIKE & M	ATRIX SPIK	E DUPL	LICATE: 7393	67 MS	MSD	739368							_
			75151618001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter		Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Phenolics, Total Recoverable		ug/L	329	200	200	495	496	83	84	80-120	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 31 of 39

Pace Analytical[®]

Pace Analytical Services, LLC 400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

QUALITY CONTROL DATA

Project:	627972											
Pace Project No .:	75151537											
QC Batch:	163986		Anal	ysis Metho	od:	EPA 420.1						
QC Batch Method:	EPA 420.1		Anal	ysis Descri	iption:	420.1 Phen	olics Chlor	oform				
			Labo	oratory:		Pace Analy	tical Servic	æs - Dalla	5			
Associated Lab San	nples: 75151537	004, 75151537008										
METHOD BLANK:	744677			Matrix: W	Vater							
Associated Lab San	nples: 75151537	004, 75151537008										
			Bla		Reporting							
Paran	neter	Units	Res	ult	Limit	MD	L	Analyzed		ualifiers	-	
Phenolics, Total Red	coverable	ug/L		ND	10	0.0	8.0 0	4/02/21 16	:33			
LABORATORY CON	NTROL SAMPLE:	744678										
			Spike	LC		LCS	% R					
Paran	neter	Units	Conc.	Re	sult	% Rec	Lim	its	Qualifiers	_		
Phenolics, Total Rec	coverable	ug/L	20	00	187	94	4	80-120				
												_
MATRIX SPIKE & M	IATRIX SPIKE DUP	LICATE: 74467	-		744680							
		75450465005	MS	MSD	MS	MSD	MS	MSD	% Rec		Max	
Parameter	- Units	75152465005 Result	Spike Conc.	Spike Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Phenolics Total	11/1	ND	200	200	189	201	93	99	80-120	6	20	

Phenolics, Total ug/L ND 200 200 189 201 93 99 80-120 6 Recoverable

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC

Page 32 of 39

QUALITY CONTROL DATA

Project: Pace Project No.:	627972 75151537											
QC Batch:	162672		Ana	lysis Metho	od:	SM 4500-C	N-E			_		
QC Batch Method:	SM 4500-CN-E		Anal	Analysis Description:			4500CNE Cyanide, Total					
			Lab	oratory:	1	Pace Analy	tical Servio	ces - Dallas				
Associated Lab Sam	nples: 75151537	001, 7515153700	3, 751515	37005, 751	51537007							
METHOD BLANK:	738660			Matrix: W	/ater							
Associated Lab Sarr	ples: 75151537	001, 7515153700	3, 751515	37005, 751	51537007							
			Bla		Reporting							
Param	neter	Units	Res	sult	Limit	MD	L	Analyzed	Q	ualifiers		
Cyanide		ug/L		ND	10.0	0	4.3 0	3/12/21 15:	58			
LABORATORY CON	ITROL SAMPLE:	738661										
LABORATORY CON Param		738661 Units	Spike Conc.			LCS % Rec	% R Lim		Qualifiers			
Param			Conc.				Lim		Qualifiers	-		
Param Cyanide	leter	Units ug/L	Conc. 1(Res	sult	% Rec	Lim	its (Qualifiers			
Param Cyanide	leter	Units ug/L	Conc. 1(Res	90.2	% Rec	Lim	its (Qualifiers	-		
Param Cyanide MATRIX SPIKE & M	Neter	Units ug/L LICATE: 7386 75151537003	Conc. 10 62 MS Spike	Res 00 MSD Spike	90.2 738663 MS	% Rec 94 MSD	Lim	its (85-115 MSD	% Rec	-	Мах	
Param Cyanide	leter	Units ug/L LICATE: 7386	Conc. 10 62 MS	Res D0 MSD	90.2 738663	% Rec 9	Lim 0 MS % Rec	its (85-115	% Rec Limits	RPD	RPD	Qua
Cyanide MATRIX SPIKE & M	Neter	Units ug/L LICATE: 7386 75151537003	Conc. 10 62 MS Spike	Res 00 MSD Spike	90.2 738663 MS	% Rec 94 MSD	Lim 0 MS	its (85-115 MSD	% Rec	RPD 9	RPD	Qua
Param Cyanide MATRIX SPIKE & M. Parameter Cyanide	Neter ATRIX SPIKE DUP Units ug/L	Units ug/L LICATE: 73860 75151537003 Result ND	Conc. 10 62 MS Spike Conc. 100	Res 00 MSD Spike Conc. 100	90.2 738663 MS Result	% Rec 94 MSD Result	Lim 0 MS % Rec	its (85-115 MSD % Rec	% Rec Limits		RPD	Qua
Param Cyanide MATRIX SPIKE & M. Parameter	Neter ATRIX SPIKE DUP Units ug/L	Units ug/L LICATE: 73860 75151537003 Result ND LICATE: 73860	Conc. 10 62 MS Spike Conc. 100 64 MS	Res 200 MSD Spike Conc. 100 MSD	sult 90.2 738663 MS Result 99.9 738665 1000000000000000000000000000000000000	% Rec 94 MSD Result 90.9	Lim 0 MS % Rec 98	MSD % Rec 89	% Rec Limits 85-115		RPD 20	Qua
Param Cyanide MATRIX SPIKE & M. Parameter Cyanide	Neter ATRIX SPIKE DUP Units ug/L	Units ug/L LICATE: 73860 75151537003 Result ND	Conc. 10 62 MS Spike Conc. 100	Res 00 MSD Spike Conc. 100	90.2 738663 MS Result 99.9	% Rec 94 MSD Result	Lim 0 MS % Rec	its (85-115 MSD % Rec	% Rec Limits		RPD	Qua

93.3

100

88.8

90

85 85-115 5 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 33 of 39

Date: 04/04/2021 08:17 PM

Cyanide

ug/L

ND

100

Pace Analytical Services, LLC 400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

QUALITY CONTROL DATA

Project:	627972							
Pace Project No.:	75151537							
QC Batch:	162871			Analysis Me	thod:	SM 4500-CN-G		
QC Batch Method:	SM 4500-C	N-C		Analysis Des	scription:	4500CNG Cyani	le, Amenable	
				Laboratory:		Pace Analytical S	Services - Dallas	
Associated Lab San	nples: 7515	51537001, 75	5151537003,	75151537005, 7	75151537007			
Associated Lab Sam METHOD BLANK:		51537001, 75	5151537003,		75151537007 Water			
	739638				Water			
METHOD BLANK:	739638			Matrix:	Water			
METHOD BLANK:	739638 nples: 7515	51537001, 75		Matrix: 75151537005, 7	Water 75151537007	MDL	Analyzed	Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 34 of 39

QUALIFIERS

Project:	627972
Pace Project No.:	75151537

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The Nelac Institute

ANALYTE QUALIFIERS

Date: 04/04/2021 08:17 PM

CH The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased

high. L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated

- samples may be biased high.
- M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- N3 Accreditation is not offered by the relevant laboratory accrediting body for this parameter.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 35 of 39

QUALITY CONTROL DATA CROSS REFERENCE TABLE

 Project:
 627972

 Pace Project No.:
 75151537

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
75151537010	627983	EPA 608.3	162782	EPA 608.3	162892
75151537010	627983	EPA 608.3	162781	EPA 608.3	162891
75151537010	627983	EPA 615	162810	EPA 615	163112
75151537010	627983	EPA 604.1	162878	EPA 604.1	162997
75151537010	627983	EPA 632	162879	EPA 632	162996
75151537010	627983	EPA 625.1	162742	EPA 625.1	162789
75151537009	627980	EPA 624.1	162546		
75151537002	627973	EPA 420.1	162839	EPA 420.1	162881
75151537004	627975	EPA 420.1	163986	EPA 420.1	164036
75151537006	627977	EPA 420.1	162839	EPA 420.1	162881
75151537008	627979	EPA 420.1	163986	EPA 420.1	164036
75151537001 75151537003 75151537005 75151537007	627972 627974 627976 627978	SM 4500-CN-E SM 4500-CN-E SM 4500-CN-E SM 4500-CN-E	162672 162672 162672 162672	SM 4500-CN-E SM 4500-CN-E SM 4500-CN-E SM 4500-CN-E	162692 162692 162692 162692
75151537001 75151537003 75151537005 75151537007	627972 627974 627976 627978	SM 4500-CN-C SM 4500-CN-C SM 4500-CN-C SM 4500-CN-C	162871 162871 162871 162871	SM 4500-CN-G SM 4500-CN-G SM 4500-CN-G SM 4500-CN-G	162872 162872 162872 162872

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 36 of 39

Pace Analytical	Document Name: Sample Condition Upon Receipt	Document Revised: 7/27/20
r >raceAnalytical	Document No.:	Page 1 of 1 Issuing Authority:
L	F-DAL-C-001-rev.14	Pace Dallas Quality Office
Da	Sample Condition Upon Rece	
		0#:75151537
Client Name: PCS	Project Work order	10# . 19191931
Lourier: Fedex II UPS I USPS I flient I	LSO Z PACE - Other:	
Tracking #: 2403 X9E9	75	151537
Custody Seal on Cooler/Box: Yes D No, Received on ice: Wet of Blue C Noice		
Receiving Lab 1 Thermometer Used:	216 Cooler Tomp °C: 3,6 (Record	ded)(Correction Factor) 3.6 (Actu ded) (Correction Factor)(Actu
Receiving Lab 2 Thermometer Used:	Cooler Temp °C:(Record	led)(Correction Factor)(Actu
	6°C unless collected same day as receipt in v	which evidence of cooling is acceptable
Triage Person: <u>CK</u> D	hate: 3/10/21	
Chain of Custody relinguished	Yes 💋 No 🗆	
Sampler name & signature on COC	Yes 🗆 No 🖉	
Short HT analyses (<72 hrs)	Yes Z No	
	1 6	
Sufficient Volume received	Yes & No D	
Sufficient Volume received		
Sufficient Volume received Correct Container used	Yes & No D	
Sufficient Volume received Correct Container used Container Intact Sample pH Acceptable	Yes & No D Yes & No D	А с
Sufficient Volume received Correct Container used Container Intact Sample pH Acceptable pH Strips: 19310 Residual Chlorine Present 1911	Yes No D Yes No D Yes No D	
Sufficient Volume received Correct Container used Container Intact Sample pH Acceptable 1931 PH Strips: 1910 Cl Strips: 1910	Yes No I Yes No I Yes No I Yes No I Yes No I No No N Yes No No N Yes No No N	A
Sufficient Volume received Correct Container used Container Intact Sample pH Acceptable 1931 PH Strips: 1910 Cl Strips: 1910	Yes No D Yes No D Yes No D Yes No D Yes No D N	A
Sufficient Volume received Correct Container used Container Intact Sample pH Acceptable pH Strips:1931 C Residual Chlorine Present Cl Strips:1910 Sulfide Present Lead Acetate Strips:1911	Yes No I Yes No I Yes No I Yes No I Yes No I No I Yes No I No No Yes No No Vo No Yes No No No No No No No No No No No No No No N	A C A C
Sufficient Volume received Correct Container used Container Intact Sample pH Acceptable pH Strips:1931 C Cl Strips:1910 Sulfide Present Lead Acetate Strips:1911 Are soil samples (volatiles, TPH) recei	Yes < No	A C A C
Sufficient Volume received Correct Container used Container Intact Sample pH Acceptable 1931 C PH Strips: 1931 C Cl Strips: 1910 Sulfide Present 1910 Lead Acetate Strips: 1911 Are soil samples (volatiles, TPH) recei (not applicable to TCLP VOA or PST Prog	Yes No I Yes No I	
Sufficient Volume received Correct Container used Container Intact Sample pH Acceptable 1931 C pH Strips: 1930 Cl Strips: 1910 Sulfide Present 1910 Lead Acetate Strips: 1911 Lead Acetate Strips: 1911 Are soil samples (volatiles, TPH) recei (not applicable to TCLP VOA or PST Prop Unpreserved S035A soil frozen within	Yes No I Yes No I	
Sufficient Volume received Correct Container used Container Intact Sample pH Acceptable 1931 C pH Strips: 1910 Cl Strips: 1910 Sulfide Present 1910 Lead Acetate Strips: 1911 Are soil samples (volatiles, TPH) recei (not applicable to TCLP VOA or PST Prog Unpreserved S035A soil frozen within Headspace in VOA (>6mm)	Yes No No Ves No No Ves No No ved in 5035A Kits gram TPH) Yes No N48 hrs Yes No No Yes No No No	A C A C A C A C A C T 3)10/7.1
Sufficient Volume received Correct Container used Container Intact Sample pH Acceptable 1931 C pH Strips: 1910 Cl Strips: 1910 Sulfide Present 1910 Lead Acetate Strips: 1911 Lead Acetate Strips: 1911 Are soil samples (volatiles, TPH) recei (not applicable to TCLP VOA or PST Prop Unpreserved S035A soil frozen within Headspace in VOA (>6mm) Project sampled in USDA Regulated A fexas	Yes No I Ved in 5035A Kits Yes No I	
Residual Chlorine Present 1910 Cl Strips:1910 Sulfide Present1910	Yes No No Ves No No Ves No No ved in 5035A Kits gram TPH) Yes No N48 hrs Yes No No Yes No No No	

2600 Dudley Rd. Kilgore, Texas 75662 R: 3306 State Highway 135 N. Kilgore, TX 75662 Office: 903-984-0551 * Fax: 903-984-5914

PCSL-C

PCS Laboratories Chuck Wallgren 1532 Universal City Blvd. Suite 100 Universal City, TX 78148

TABLE OF CONTENTS

This report consists of this Table of Contents and the following pages:

Report Name	Description	Pages
957073_r03_03_ProjectResults	Ana-Lab Project P:957073 C:PCSL Project Results t:304	3
957073_r10_05_ProjectQC	Ana-Lab Project P:957073 C:PCSL Project Quality Control Groups	3
957073_r99_09_CoC_1_of_1	Ana-Lab CoC PCSL 957073_1_of_1	2
	Total Pages:	8

Email: projectmanger@ana-lab.com

Report Page 1 of 9

NELAP-accredited #T104704201-21-18

LDSClient v1.16 11.2034

Central TX Region: 8101 Cameron Rd - Ste 305 Austin TX 78754

Form rptTOC1N Created 12/19/2019 V 2 0

2600 Dudley Rd. Kilgore, Texas 75662 R: 3306 State Highway 135 N, Kilgore, TX 75662 Office: 903-984-0551 * Fax: 903-984-5914

PCSL-C

PCS Laboratories Chuck Wallgren 1532 Universal City Blvd. Suíte 100 Universal City, TX 78148

Printed: 03/22/2021

RESULTS

	Sample Re	esults					
					Received:	03/10)/202
Collected by: Client	PCS Labora	tories		PO:			
Taken: 03/09/2021	06:0	0:00					
Propured:	942096 03	3/12/2021	11:00:00	Analyzed 942641	03:15:2021	19:00:00	EM
Results	Units	RL		Flags	CAS		Bottle
<0.0481	ug/L	0.0481			86-50-0		04
<0.0481	ug/L	0.0481			2921-88-2		04
<0.0481	ug/L	0.0481			8065-48-3		04
<0.0481	ug/L	0.0481			333-41-5		04
<0.0481	ug/L	0.0481			121-75-5		04
	ug/L						04
<0.0481	ug/L	0.0481		Х	298-00-0		04
Prepared:	942087 03	012/2021	11:00:00	Analyzed 942435	03/15/2021	20:44:00	EM
Results	Units	RL		Flags	CAS		Bottle
<0.0481	ug/L	0.0481		SD	115-32-2		03
<0.00962	ug/L	0.00962			72-43-5		03
					2385-85-5		03
S	ample Prep	aration					
					Received:	03/10	/2021
03/09/2021							
Prepared:	03.	-11/2021	15:30:00	Analyzed	03/11/2021	15:30.00	MG.
	Taken: 03/09/2021 Prepared: Results <0.0481	Taken: 03/09/2021 06:0 Prapured: 942096 0.0 Results Units <0.0481	Taken: 03/09/2021 06:00:00 Prepured: 942096 03/12/2021 Results Units RL <0.0481	Taken: 03/09/2021 06:00:00 Prepured: 942096 03/12/2021 11:00:00 Results Units RL <0.0481	Taken: 03/09/2021 06:00:00 Prepared: 942096 03/12/2021 11:00:00 Analyzed 942641 Results Units RL Flags <0.0481	Collected by: Clint PCS Laboratories PC: Taken: 03/09/2021 05:00:00 Analyzed 942641 03:15:2021 Prepured: 942096 03:12:2021 11:00:00 Analyzed 942641 03:15:2021 Results Units RL Flags CAS 40.0481 ug/L 0.0481 x 56:38:2 0.0481 ug/L 0.0481 x 29:600-0 Prepured: 942087 03:12:2021 11:00:00 Analyzed 9424:5 03:15:2021 Results Units RL Flags CAS 0.00962 ug/L 0.00962 23:53:55 Sample Preparation Received: 03:09:2021 03:09:2021 03:09:2021 03:09:2021 03:09:2021 04:00 04:00	Collected by: Client Taken: PCS Laboratories 05:00:00 PO: Propured: 942096 03/12-2071 11:00:00 Analysed 942641 03:15:2071 19:00:00 Results Units RL Flags CAS 86-50-0 90:00:00 0.00481 ug/L 0.0481 Endowed 942641 03:15:2071 19:00:00 0.00481 ug/L 0.0481 Endowed 942645 03:15:2071 19:00:00 0.00481 ug/L 0.0481 X 56:38:21 20:04:00 Propured: 942087 03:12:2021 11:00:00 Analysed 942455 03:15:202 20:44:00 Results Ug/L 0.00962 Endowed 942455 03:15:202 20:44:00 20:44:00 0.00962 ug/L 0.00962 Endowed 942455 03:15:202 20:45:00 20:45:00 20:45:

NELAP-accredited #T104704201-21-18

LDS Client v2 16 11 2034

Central TX Region: B101 Cameron Rd - Ste 305 Austin TX 78754

ustin TX 78754 Form rptPROJRESN Created 12/19/2019/11/2

2600 Dudley Rd. Kilgore, Texas 75662 R: 3306 State Highway 135 N, Kilgore, TX 75662 Office: 903-984-0551 * Fax: 903-984-5914

957073

Received:

Printed

03/22/2021

03/10/2021

PCSL-C

PCS Laboratories Chuck Wallgren 1532 Universal City Blvd. Suíte 100 Uníversal City, TX 78148

1968943 627983

03/09/2021 EPA 1657 Prepared: 942096 03/12/2021 11:00:00 Analyzed 942641 03/15/2021 19:00:00 EMT Organophos. Pesticides/1657 Entered 04 EPA 608.3 Prepared: 942087 03/12/2021 11:00:00 Analyzod 942087 03/12/2021 11:00:00 CRS Liquid-Liquid Extr. W/Hex Ex 1/1039 ml 01 EPA 608.3 Prepared: 942096 03/12/2021 Analyzed 942096 03/12/2021 CRS 11:00:00 11:00:00 -Solvent Extraction 1/1039 ml 01 Prepared: 942087 03/12/2021 11:00:00 Analyzod 942435 03/15/2021 20:44:00 EPA 617 EMT Dicofol/Methoxychlor/Mirex Entered 03

Report Page 3 of 9

NELAP-accredited #T104704201-21-18

Central TX Region: 8101 Cameron Rd - Ste 305 Austin TX 78754

Form rptPROJRESN Created 12/19/2019/1.2

2600 Dudley Rd. Kilgore, Texas 75662 R: 3306 State Highway 135 N, Kilgore, TX 75662 Office: 903-984-0551 * Fax: 903-984-5914

PCSL-C

PCS Laboratories Chuck Wallgren 1532 Universal City Blvd. Suite 100 Universal City, TX 78148

Qualifiers:

C - Duplicate RPD was higher than expected X - Standard reads higher than desired.
 S - Standard reads lower than desired

We report results on an As Received or wet basis unless marked Dry Weight. Unless otherwise noted, testing was performed at Ana-labs corporate laboratory that holds the following Federal and State certificates: EPA Lab Number TX00053, US Department of Agriculture Soil Import Permit P330-38-00378, Tevas Commission on Environmental Quality Commercial Drinking Water Lab Approval (abl Dr. TX23), Texas Commission on Environmental Quality NELAP Tac/2020-232-38, Louisiana Department of Environmental Quality Laboratory Certification (NELAP, LELAP) #02008, Louisiana Department of Health Drinking Water Certificate No LA026, O dahoma Department of Environmental Quality TNI Laboratory Accreditation Program Certificate No. 2020-097, Arkansas Department of Environmental Quality Certification #28-068-0. The Accredited column designates accreditation by N – NELAC, or z – not covered under NELAC scope of accreditation.

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of Ana-Lab Corp. Unless otherwise specified, these test results meet the requirements of NELAC. RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number. RL is our Reporting Limit, on Minimum Quantitation Level. The RL takes into account the instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Level. The RL takes into account the instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Level. The RL takes into account the instrument origin of our report (without a 1' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column. MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences prevent it, we work to have our RL at or below the MAL.

U

Trey Peery, MA, Project Manager

Report Page 4 of 9

NELAP-accredited #T104704201-21-18

1DSClient v1 16.11.2034

Central TX Region: 8101 Cameron Rd - Ste 305 Austin TX 78754

Form rptPROJRESN Created 12/19/2019/1-2

Testing the Limits of Science and Service Page 3 of 3 Project 1

JAGLA

Printed: 03/22/2021

QUALITY CONTROL

PCSL-C

PCS Laboratories Chuck Wallgren 1532 Universal City Blvd. Suite 100 Universal City, TX 78148

957073

Printed 03/22/2021

Analytical Set	942435										EPA 61'
arameter	PrepSet	Reading	MDL	MQL	Units			File			
. ,					-						
					-						
ürex	942087	ND	0.905					122107027			
arameter		Reading	Known	Units	Recover ^o o	Limits%		File			
elthane (Dicofol)		86.5	100	ug/L	86.5	70.0 - 130		122107026			
elthane (Dicofol)		64.6	100	ug/L	64.6	70.0 - 130	*	122107039			
elthane (Dicofol)		101	100	ug/L	101	70.0 - 130		122107044			
ethoxychlor		45.1	50.0	ug/L	90.2	70.0 - 130					
lethoxychlor		39.5	50.0	ug/L	79.1	70.0 - 130					
lethoxychlor		48.4	50.0	ug/L	96.8	70.0 - 130		122107044			
lirex		49.5	50.0	ug/L	99.1	70.0 - 130		122107026			
lirex		48.4	50.0	ug/L	96.8			122107039			
lirex		51.6	50.0	ug/L	103	70.0 - 130		122107044			
				LC	S Dup						
vameter	PrepSet	LCS	LCSD		Known	Limits%	LCS%	LCSD%	L'nits	RPD	Limite
elthane (Dicofol)	942087	74.6	102		200	0.100 - 137	37.3	51.0	ug/L	31.0 *	30.0
ethoxychlor	942087	60.1	80.1		100	21.5 - 151	60.1	80.1	ug/L	28.5	30.0
lirex	942087	69.8	87.4		100	11.6 - 140	69.8	87.4	ug/L	22.4	30.0
				Sur	rogate						
nrameter	Sample	Type	Reading	Клонт	Units	Recover%	Limits%	File			
ecachlorobiphenyl		CCV	47.1	100	ug/L	47.1	10.0 - 150	122107026			
				100		47.3	10.0 - 150	122107039			
		CCV	56.2	100	ug/L	56.2	10.0 - 150	122107044			
			50.6	100	-	50.6	10.0 - 150	122107026			
, ,			50.1		-	50.1	10.0 - 150	122107039			
			51.5	100	+	51.5	10.0 - 150	122107044			
, ,	942087		47.0	100	-	47.0	10.0 - 150	122107027			
					-		10.0 - 150	122107028			
1 1					-	78.6	10.0 - 150	122107029			
		-			-		10.0 - 150	122107027			
					-	50.6	10.0 - 150	122107028			
					-		10.0 - 150	122107029			
		-					10.0 - 150	122107042			
etrachloro-m-Xylene (Surr)	1968943			0.0962	ug/L	41.5	10.0 - 150	122107042			
Applytical Set	942641									E	PA 1657
Analytical Set	/ 12012			В	lank						
rander	PrepSei	Reading	14/27.	MOL.	Daits			File			
		ND	0.018	0.050				122111335			
imprice meany (e canon)											
					and a store of						
					THI				Ren	ort Par	te 5 of 9
					CIDTATO'S				Kep	งกาสงุ	
	arameter elthane (Dicofol) lethoxychlor lirex arameter elthane (Dicofol) elthane (Dicofol) elthane (Dicofol) elthoxychlor irex irex irex irex arameter ecachlorobiphenyl	arameter PrepSet elthane (Dicofol) 942087 lethoxychlor 942087 lirex 942087 lirex 942087 urameter elthane (Dicofol) elthane (Dicofol) elthane (Dicofol) elthoxychlor elthoxychlor iethoxychlor elthoxychlor iethoxychlor 942087 irex 942087 irex 942087 irex 942087 rameter Sample ecachlorobiphenyl 942087 ecachlorobiphenyl 942087 trachloro-m-Xylene (Surr) ytzo87 ecachlorobiphenyl 942087 trachloro-m-Xylene (Surr) 942087 trachloro-m-Xylene (S	arameter PrepSet Reading lethane (Dicofol) 942087 ND lethoxychlor 942087 ND lirex 942087 ND ummeter Reading elthane (Dicofol) 86.5 elthane (Dicofol) 64.6 elthane (Dicofol) 64.6 elthane (Dicofol) 64.6 elthane (Dicofol) 64.6 iterx 49.5 iterx 49.5 iterx 48.4 irex 48.4 irex 48.4 irex 48.4 irex 48.4 irex 48.7 ethoxychlor 48.4 irex 49.5 itex 49.5 itex 49.5 itex 49.5 itex 49.6 ethoxychlor 942087 irex 942087 ethox 942087 irex 942087	arameterPrepSetReadingMDLelthane (Dicofol)942087ND 3.52 lethoxychlor942087ND 0.897 lirex942087ND 0.905 <i>ummeter</i> ReadingKnownelthane (Dicofol) 64.6 100elthane (Dicofol) 64.6 100elthane (Dicofol) 64.6 100elthane (Dicofol) 64.6 100elthoxychlor 45.1 50.0 itrex 49.5 50.0 itrex 49.5 50.0 itrex 49.5 50.0 itrex 48.4 50.0 itrex 49.5 50.0 itrex 49.5 50.0 itrex 942087 74.6 lethoxychlor 942087 74.6 ethoxychlor 942087 60.1 ethoxychlor 942087 69.8 ethoxychlor 942087 69.8 itrex 942087 60.1 ecachlorobiphenyl CCV 56.2 ecachlorobiphenyl CCV 51.5 ecachlorobiphenyl CCV 50.6 trachloro-m-Xylene (Surr) CCV 50.6 trachloro-m-Xylene (Surr) CCV 50.6 trachloro-m-Xylene (Surr) 942087 ILCSecachlorobiphenyl 942087 ILCS 50.6 trachloro-m-Xylene (Surr) 942087 ILCS 50.6 trachloro-m-Xylene (Surr) 942087 ILCS 50.6 trachloro-m-Xylene (Surr) 942087 <	arameter PrepSet Reading MDL MQL MQL lethane (Dicofol) 942087 ND 3.52 5.00 lethoxychlor 942087 ND 0.897 1.00 lirex 942087 ND 0.897 1.00 lirex 942087 ND 0.905 1.00 ummeter Reading Known Units elthane (Dicofol) 64.6 100 ugTL elthane (Dicofol) 64.6 100 ugTL lethoxychlor 45.1 50.0 ugTL lethoxychlor 48.4 50.0 ugTL irex 49.5 50.0 ugTL irex 48.4 50.0 ugTL	HandbornPrepSetReadingMDLMQLUnitselthane (Dicofol)942087ND3.525.00ugLlethoxychlor942087ND0.8971.00ug/Llitrex942087ND0.9051.00ug/Llitrex942087ND0.9051.00ug/Llitrex942087ND0.9051.00ug/Llitrex942087ND0.9051.00ug/Llitrex86.5100ug/L86.5elthane (Dicofol)64.6100ug/L64.6elthane (Dicofol)45.150.0ug/L90.2elthoxychlor45.450.0ug/L90.2elthoxychlor48.450.0ug/L90.1irex49.550.0ug/L90.1irex51.650.0ug/L90.1irex94208774.6102200ethane (Dicofol)94208774.6102200ethane (Dicofol)94208760.180.1100irex94208760.180.1100irex94208761.2100ug/LeachlorobiphenylCCV47.3100ug/Lirex94208761.180.1100irex61.980.4100ug/Lirex94208710.1100ug/Lirex61.180.1100ug/Lirex62.110.0ug	Image in the second	Blank armsder PrepSet Reading MDL MQL Units elhane (Dicofo) 942087 ND 3.52 5.00 ug/L lethose (Dicofo) 942087 ND 0.897 1.00 ug/L lethose (Dicofo) 942087 ND 0.895 1.00 ug/L armsder Reading Known Units Recover*s Limits/K elhane (Dicofo) 64.6 100 ug/L 60.1 70.0 - 130 elhane (Dicofo) 64.6 100 ug/L 101 70.0 - 130 elhane (Dicofo) 45.1 50.0 ug/L 90.2 70.0 - 130 iethoxychlor 39.5 50.0 ug/L 91.0 70.0 - 130 irex 49.5 50.0 ug/L 96.8 70.0 - 130 irex 48.4 50.0 ug/L 96.8 70.0 - 130 irex 48.4 50.0 ug/L 96.8 70.0 - 130 irex	Image is a standard in the image is a standard in t	Blank mam.or Prop.Set Rolling M/DL M/DL Links F/le ellana (Dioofol) 942087 ND 3.52 5.00 ug/L 122107027 122107027 tires 942087 ND 0.895 1.00 ug/L Set 122107027 tires 942087 ND 0.895 1.00 ug/L 86.5 700 - 130 122107026 tires Routing Known Koeverts Links% File elhane (Diofol) 1.01 100 ug/L 86.5 700 - 130 122107026 elhane (Diofol) 1.01 100 ug/L 95.8 700 - 130 122107026 elhosychlor 48.4 50.0 ug/L 96.8 700 - 130 122107027 tires 84.4 50.0 ug/L 96.8 700 - 130 122107026 tires 84.4 50.0 ug/L 96.8 70.0 - 130 122107026 tires 84.4 <td>Black tarmage free fields of the standing MOL MOL Link File tellsongeline 942087 ND 0.52 0.00 ug/L 122107027 trice US US 0.00 UG UG UG UG trice US 0.00 UG UG UG UG UG US US US US US US US US US tellsone Non 0.55 100 ug/L 64.5 70.0-130 12107004 tellsane<(Dicofol)</td> 64.6 100 ug/L 64.8 70.0-130 12107004 tellsane<(Dicofol)	Black tarmage free fields of the standing MOL MOL Link File tellsongeline 942087 ND 0.52 0.00 ug/L 122107027 trice US US 0.00 UG UG UG UG trice US 0.00 UG UG UG UG UG US US US US US US US US US tellsone Non 0.55 100 ug/L 64.5 70.0-130 12107004 tellsane<(Dicofol)

QUALITY CONTROL

PCSL-C

PCS Laboratories Chuck Wallgren 1532 Universal City Blvd. Suite 100 Universal City, TX 78148

Printed 03/22/2021

				DI							
Parameter	PrepSet	Reading	MDL	MQL	Units			File			
Chlorpyrifos	942096	ND	0.0159	0.050	ug/L			122111335			
Demeton	942096	ND	0.0217	0.050	ug/L			122111335			
Diazinon	942096	ND	0.0351	0.050	ug/L			122111335			
Malathion	942096	ND	0.018	0.050	ug/L			122111335			
Parathion, ethyl	942096	ND	0.0164	0.050	ug/L			122111335			
Parathion, methyl	942096	ND	0.0168	0.050	ug/L			122111335			
					cv						
Parameter		Reading	Known	Units	Recover%	Limits?o		File			
Azinphos-methyl (Guthion)		1030	1000	ug/L	103	80.0 - 120		122111334			
Azinphos-methyl (Guthion)		1210	1000	ug/L	121	80.0 - 120	*	122111344			
Chlorpyrifos		1000	1000	ug/L	100	80.0 - 120		122111334			
Chlorpyrifos		1180	1000	ug/L	118	80.0 - 120		122111344			
Demeton		1000	1000	ug/L	100	80.0 - 120		122111334			
Demeton		1170	1000	ug/L	117	80.0 - 120		122111344			
Diazinon		1020	1000	ug/L	102	80.0 - 120		122111334			
Diazinon		1120	1000	ug/L	112	80.0 - 120		122111344			
Malathion		1010	1000	ug/L	101	80.0 - 120		122111334			
Malathion		1100	1000	ug/L	110	80.0 - 120		122111344			
Parathion, ethyl		1030	1000	ug/L	103	80.0 - 120		122111334			
Parathion, ethyl		1240	1000	ug/L	124	80.0 - 120	٠	122111344			
Parathion, methyl		1040	1000	ug/L	104	80.0 - 120		122111334			
Parathion, methyl		1360	1000	ug/L	136	80.0 - 120	*	122111344			
				LCS	Dup						
P	PrepSet	LCS	LCSD		Клоwп	Limits	LCS%	LCSD%	Units	RPD	Limit%
Parameter	942096	0.339	0.301		1.00	0.100 - 152	33.9	30.1	ug/L	11.9	50.0
Azinphos-methyl (Guthion)	942090 942096	0.369	0.393		1.00	0.100 - 132	36.9	39.3	ug/L	6.30	50.0
Chlorpyrifos Demeton	942090 942096	0.283	0.339		1.00	0.100 - 152	28.3	33.9	ug/L	18.0	50.0
Diazinon	942096 942096	0.383	0.335		1.00	0.100 - 119		41.1	ug/L	7.05	50.0
Malathion	942096	0.374	0.376		1.00	0.100 - 126	37.4	37.6	ug/L	0.533	50.0
Parathion, ethyl	942096	0.527	0.555		1.00	0.100 - 138	52.7	55.5	ug/L	5.18	50.0
Parathion, methyl	942096	0.327	0.413		1.00	0.100 - 125		41.3	ug/L	0.724	50.0
rataution, meutyr	J-12050	0.410	0.415	C		01100 100			-8		
				Surro	-						
Parameter	Sample	Type	Reading	Клења	Units	Recover ^a e	Limits%	File			
Tributylphosphate		CCV	1010	2000	ug/L	50.5	0.100 - 106	122111334			
Tributylphosphate		CCV	1100	2000	ug/L	55.0	0.100 - 106	122111344			
Triphenylphosphate		CCV	1000	2000	ug/L	50.0	0.100 - 172	122111334			
Triphenylphosphate		CCV	960	2000	ug/L	48.0	0.100 - 172	122111344			
Tributylphosphate	942096	Blank	449	2000	ug/L	22.4	0.100 - 106	122111335			
Tributylphosphate	942096	LCS	433	2000	ug/L	21.6	0.100 - 106	122111336			
Tributylphosphate	942096	LCS Dup	433	2000	ug/L	21.6	0.100 - 106	122111337			
Triphenylphosphate	942096	Blank	516	2000	ug/L	25.8	0.100 - 172	122111335			
Triphenylphosphate	942096	LCS	486	2000	ug/L	24.3	0.100 - 172	122111336			

Blank

NELAP-accredited #T104704201-21-18

Report Page 6 of 9

LDS.C leni va a6 aa 2034

Central TX Region: 8101 Cameron Rd - Ste 305 Austin TX 78754

Form (ptPRDJQCGN Created 12/30//2019 vs.e

QUALITY CONTROL

PCSL-C

PCS Laboratories Chuck Wallgren 1532 Universal City Blvd. Suite 100 Universal City, TX 78148

Surrogate Parameter Sample Reading Units Limits% Filc Турс Клоwа Recover% 122111337 ug/L Triphenylphosphate 942096 LCS Dup 507 2000 0.100 - 172 25.4 Tributylphosphate 1968943 UNKNOW10.396 122111341 1.92 ug/L 20.6 0.100 - 106 Triphenylphosphate 1968943 UNKNOW10,451 1.92 ug/L 23.5 0.100 - 172 122111341

* Out RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) * 100%

ת-רבי) / mean(רבי,רבי) = 100% Recovery Percent: result / known = 100% Blank - Method Blank; CCV - Continuing Calibration Verification

and the second

Report Page 7 of 9

NELAP-accredited #T104704201-21-18

Form optPROJQCGN Created 12/30//2019 v1.0

LDSC lent va 16:11 2034

Central TX Region: 8101 Cameron Rd 5te 305 Austin TX 78754

957073 CoC Print Group 001 of 001

POLLUTION CONTROL SERVICES 1532 Universal City Blvd, Suite 100 Universal City, TX 78148-3318 Facsimilie 210.658.7903 210.340.0343

CHAIN OF CUSTODY & SUBCONTRACT TRACKING SHEET

TO: A	NA·LAB C	orp	Relinquished by:	: Greg Felux
2	600 Dudley	Road	Date/Time:	: 03/09/2021 @ 1700 to LSO
k	Cilgore, TX 7	5662	3/11/21 Date/Time:	150 relinguished to Army Davis Ana 3-10-21 0900
PCS#	Date	Time	Analysis Requested	Pres T. A. T.
627983	03/09/2021	0600	Pesticide 1657 196194	I YOT LA I
627983			Pesticides 617	I I

		Pesticides 617	1	
	-	Testiendes 017	+	12
-				
				_
			-	_
				_
			Special Instructions:	

Unless otherwise requested, send results and invoice to:

2

1

Chuck Wallgren Pollution Control Services 1532 Universal City Blvd, Suite 100 Universal City, TX 78148/3318

See Attached for Tracking # and Temp

1 of 2

Authorized by:

Date:

Report Page 8 of 9

1 2 3

957073 CoC Print Group 001 of 001 ELSO LSO 1-800-800-8984 www.lso.com Airbill No. ZY03X9F7 SHIP TO: ANA-LAB CORP From: CHUCK WALLGREN POLLUTRON CONTROL SERVICES 1532 UNIVERSAL CITY BLVD SUITE 100 UNIVERSAL CITY, TX 78148 2103400343 ANA-LAB CORP 2600 DUDLEY ROAD KILGORE, TX 75662 9039840551 LSO GROUND END OF BUSINESS DAY DELIVERY PRINT DATE: 3/9/2021 QUICKCODE: ANALAB REF 1: 1000V.0000 REF 2: REF 3: WEIGHT: 33.00LBS <u>AmB</u> Tech 0925 3-10-2/ Date Time C 0.2/0.4 Temp: Therm#: 6205 Corr Fact: 0.2 C Fold on above line and place shipping label in pouch on package. Please be sure the barcodes and addresses can be read and scanned. Shipping Instructions 1. Fold this page along the horizontal line above. 2. Place this Airbill in the shipping label pouch on the package you are shipping. Please be sure the barcodes and addresses can be read and scanned. 3. To locate a drop box near you, click on Find A Drop Box from the home page main menu.

4. To schedule a pickup, click on Request Pickup.

WARNING: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your Lone Star Overnight account number. This label is valid for use for 1 months from the date printed. Use of expired labels may result in delayed billing and / or additional research charges. LIMIT

OF LIABILITY: We are not responsible for claims in excess of \$100 for any reason unless you: 1) declare a greater value (not to exceed 255,000; 2) pay an additional fee; 3) and document your actual lose in a timely mamer. We will not pay any claim in excess of the actual loss. We are not liable for any aperial or consequential damages. Additional limitations of liability are contained in our current Service Guide. If you tak us to define a prester of a service without obtaining a delivery signature, you release us of all liability for claims resulting from such service. NO DELIVERY SIGNATURE WILL BE OBTAINED FOR 8:30 AM DELIVEREES OR RESIDENTIAL DELIVERES.

Report Page 9 of 9

1 2 3

2 of 2

	C _			rvices	
DOG G I N	G	mple Log-			627972
PCS Sample No(s)_	100	2 0	2150	7	
Client/Company Na	ame: MISU	-		Checklist Com	pleted by: 6 La
Sample Delivery to	Lab-Via:				
Client Drop Off	Commercial Carrier: E	usUPS	Lone S	Star FedEx	USPS
PCS Field Services: Co	ollection/Pick Up	Other:			
Sample Kit/Cooler	<u>is</u>		/	-	
Sample Kit/Cooler? Ye Custody Seals	esNo Sample on Sample Kit/Cooler: N	Kit/Cooler: Inta	ict? Yes_ N	10	
Sample Containers Inta	ct; Unbroken and Not Le	aking? Yes	No	tact Broken	-
Custody Seals	on Sample Bottles: Not	Present If	Present Intag	t Broken	
Has COC sample date/t	ment or Delivery or Com ime and other pertinent in	pleted at Drop	Off? Yes <u></u>	No	/
Has COC been properly	Signed when Received/	Relinquished?	Yes_No		and the second se
Does COC agree with S	ample Bottle Information	n, Bottle Types.	Preservation	, etc.? Yes No	
Sufficient Sample Volu	before Hold Time Expirat mes for Analysis Reques	ion? Yes / N	lo		
Zero Headspace in VOA	A Vial if Present? Yes	_No	<u> </u>		
	on:	/			
Cooling: Not Requir	ed or Require	db		1	11
f cooling required, reco	rd temperature of submit	ted samples Ob	served/Correc	cted/_	<u> </u>
S Ice Present in Sample	Kit/Cooler? Yes ad Serial Number: Vaughar	No Sar	nples received	same day as colle	ted? Vec
	e - If present, is pH <2?				
ample Preservation: Ample Preservations Ch H paper used to check s	If present, is pH >12? If present, is pH >12? If preservation (PCS sted by Lab: Lab #	Date Date S log #): Parameters	Requirement	s? YesNo ne (HEM pH cho Preservative Use	ecked at analysis). d Log #
djusted by Tech/Analys	st: Date :				
rson Notified:	Documentation for '	No" Respon	ses Above/	Discrepancies/	RevisionCommen
Notified Date:	Time:				
ethod of Contact: At Di	rop Off: Phone	Left Voice Ma	ail E-Ma	ail Fax	-
able to Contact	Authorized Laboratory to	Proceed :			(Lab Director
Barong, commonto.					
·····	11 (1: .		_		
tions taken to correct p	roblems/discrepancies:				
ceiving qualifier neede	d (requires client notifica		emp Hole	ding Time Init	ails:
aniving qualifier antam	d Into LINIS at login				
ceiving qualifier enter vision Comments:	w. I. PCS # 6	Initial/Date:	+6249	179 - Total	phende
vision Comments: 4	W. I. PCS # 6	27975	A 620	changed	from pierror
	w. Z. PCS # 6	27975 25an	A G 240 Jeler	179 - Total	tim pierer