ATTACHMENT D

APPLICATION TECHNICAL REPORTS 1.0-2.0-4.0-5.0-6.0

NEW BRAUNFELS UTILITIES GRUENE ROAD WATER RECLAMATION FACILITY

APRIL 2025

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

DOMESTIC WASTEWATER PERMIT APPLICATION TECHNICAL REPORT 1.0

For any questions about this form, please contact the Domestic Wastewater Permitting Team at 512-239-4671.

The following information is required for all renewal, new, and amendment applications.

Section 1. Permitted or Proposed Flows (Instructions Page 43)

A. Existing/Interim I Phase

Design Flow (MGD): <u>1.1</u> 2-Hr Peak Flow (MGD): <u>2.75</u> Estimated construction start date: <u>Click to enter text.</u> Estimated waste disposal start date: <u>5/1990</u>

B. Interim II Phase

Design Flow (MGD): <u>2.5</u> 2-Hr Peak Flow (MGD): <u>8.3</u> Estimated construction start date: <u>Click to enter text.</u> Estimated waste disposal start date: <u>11/2020</u>

C. Final Phase

Design Flow (MGD): <u>4.9</u> 2-Hr Peak Flow (MGD): <u>16.3</u> Estimated construction start date: <u>2027</u> Estimated waste disposal start date: <u>2029</u>

D. Current Operating Phase

Provide the startup date of the facility: Interim II

Section 2. Treatment Process (Instructions Page 43)

A. Current Operating Phase

Provide a detailed description of the treatment process. **Include the type of treatment plant, mode of operation, and all treatment units.** Start with the plant's head works and finish with the point of discharge. Include all sludge processing and drying units. **If more than one phase exists or is proposed, a description of** *each phase* **must be provided**.

See Attachment G – Treatment Process and Units

B. Treatment Units

In Table 1.0(1), provide the treatment unit type, the number of units, and dimensions (length, width, depth) **of each treatment unit, accounting for** *all* **phases of operation.**

Table 1.0(1) - Treatment Units

Treatment Unit Type	Number of Units	Dimensions (L x W x D)
See Attachment G		

C. Process Flow Diagram

Provide flow diagrams for the existing facilities and **each** proposed phase of construction. **Attachment**: <u>Attachment F</u>

Section 3. Site Information and Drawing (Instructions Page 44)

Provide the TPDES discharge outfall latitude and longitude. Enter N/A if not applicable.

- Latitude: <u>29.727390</u>
- Longitude: <u>-98.112059</u>

Provide the TLAP disposal site latitude and longitude. Enter N/A if not applicable.

- Latitude: <u>N/A</u>
- Longitude: <u>N/A</u>

Provide a site drawing for the facility that shows the following:

- The boundaries of the treatment facility;
- The boundaries of the area served by the treatment facility;
- If land disposal of effluent, the boundaries of the disposal site and all storage/holding ponds; and
- If sludge disposal is authorized in the permit, the boundaries of the land application or disposal site.

Attachment: <u>Attachment G</u>

Provide the name **and** a description of the area served by the treatment facility.

<u>Gruene Road WRF serves the City of New Braunfels and surrounding areas within the Guadalupe</u> <u>River drainage basin on the north side of the City.</u>

Collection System Information **for wastewater TPDES permits only**: Provide information for each **uniquely owned** collection system, existing and new, served by this facility, including satellite collection systems. **Please see the instructions for a detailed explanation and examples.**

Collection System Information

Collection System Name	Owner Name	Owner Type	Population Served
NBU Gruene	NBU	Publicly Owned	~30K

Section 4. Unbuilt Phases (Instructions Page 45)

Is the application for a renewal of a permit that contains an unbuilt phase or phases?

🖾 Yes 🗆 No

If yes, does the existing permit contain a phase that has not been constructed within five years of being authorized by the TCEQ?

🛛 Yes 🗆 No

If yes, provide a detailed discussion regarding the continued need for the unbuilt phase. **Failure to provide sufficient justification may result in the Executive Director recommending denial of the unbuilt phase or phases**.

The City is experiencing growth. A nearby development is occurring and will require moving on to the Final Phase in the future.

Section 5. Closure Plans (Instructions Page 45)

Have any treatment units been taken out of service permanently, or will any units be taken out of service in the next five years?

🗆 Yes 🖾 No

If yes, was a closure plan submitted to the TCEQ?

□ Yes □ No

If yes, provide a brief description of the closure and the date of plan approval.

N<u>/A</u>

Section 6. Permit Specific Requirements (Instructions Page 45)

For applicants with an existing permit, check the Other Requirements or Special Provisions of the permit.

A. Summary transmittal

Have plans and specifications been approved for the existing facilities and each proposed phase?

🖾 Yes 🗆 No

If yes, provide the date(s) of approval for each phase: November 2014

Provide information, including dates, on any actions taken to meet a *requirement or provision* pertaining to the submission of a summary transmittal letter. **Provide a copy of an approval letter from the TCEQ, if applicable**.

Final Phase will be approved prior to construction (Other Requirement No. 7)

B. Buffer zones

Have the buffer zone requirements been met?

🖾 Yes 🗆 No

Provide information below, including dates, on any actions taken to meet the conditions of the buffer zone. If available, provide any new documentation relevant to maintaining the buffer zones.

Other Requirement No. 4 – buffer zone met by legal restrictions for the TxDOT ROW on the south side of the facility.

C. Other actions required by the current permit

Does the *Other Requirements* or *Special Provisions* section in the existing permit require submission of any other information or other required actions? Examples include Notification of Completion, progress reports, soil monitoring data, etc.

🗆 Yes 🖾 No

If yes, provide information below on the status of any actions taken to meet the conditions of an *Other Requirement* or *Special Provision*.

N/A

D. Grit and grease treatment

1. Acceptance of grit and grease waste

Does the facility have a grit and/or grease processing facility onsite that treats and decants or accepts transported loads of grit and grease waste that are discharged directly to the wastewater treatment plant prior to any treatment?

🗆 Yes 🖾 No

If No, stop here and continue with Subsection E. Stormwater Management.

2. Grit and grease processing

Describe below how the grit and grease waste is treated at the facility. In your description, include how and where the grit and grease is introduced to the treatment works and how it is separated or processed. Provide a flow diagram showing how grit and grease is processed at the facility.

N/A

3. Grit disposal

Does the facility have a Municipal Solid Waste (MSW) registration or permit for grit disposal?

If No, contact the TCEQ Municipal Solid Waste team at 512-239-2335. Note: A registration or permit is required for grit disposal. Grit shall not be combined with treatment plant sludge. See the instruction booklet for additional information on grit disposal requirements and restrictions.

Describe the method of grit disposal.

<u>N/A</u>

4. Grease and decanted liquid disposal

Note: A registration or permit is required for grease disposal. Grease shall not be combined with treatment plant sludge. For more information, contact the TCEQ Municipal Solid Waste team at 512-239-2335.

Describe how the decant and grease are treated and disposed of after grit separation.

<u>N/A</u>

E. Stormwater management

1. Applicability

Does the facility have a design flow of 1.0 MGD or greater in any phase?

🖾 Yes 🗆 No

Does the facility have an approved pretreatment program, under 40 CFR Part 403?

🖾 Yes 🗆 No

If no to both of the above, then skip to Subsection F, Other Wastes Received.

2. MSGP coverage

Is the stormwater runoff from the WWTP and dedicated lands for sewage disposal currently permitted under the TPDES Multi-Sector General Permit (MSGP), TXR050000?

🖾 Yes 🗆 No

If yes, please provide MSGP Authorization Number and skip to Subsection F, Other Wastes Received:

TXR05 ET59 or TXRNE Click to enter text.

If no, do you intend to seek coverage under TXR050000?

🗆 Yes 🗆 No

3. Conditional exclusion

Alternatively, do you intend to apply for a conditional exclusion from permitting based TXR050000 (Multi Sector General Permit) Part II B.2 or TXR050000 (Multi Sector General Permit) Part V, Sector T 3(b)?

🗆 Yes 🗆 No

If yes, please explain below then proceed to Subsection F, Other Wastes Received:

N/A

4. Existing coverage in individual permit

Is your stormwater discharge currently permitted through this individual TPDES or TLAP permit?

🗆 Yes 🗆 No

If yes, provide a description of stormwater runoff management practices at the site that are authorized in the wastewater permit then skip to Subsection F, Other Wastes Received.

N/A

5. Zero stormwater discharge

Do you intend to have no discharge of stormwater via use of evaporation or other means?

🗆 Yes 🗆 No

If yes, explain below then skip to Subsection F. Other Wastes Received.

N/A

Note: If there is a potential to discharge any stormwater to surface water in the state as the result of any storm event, then permit coverage is required under the MSGP or an individual discharge permit. This requirement applies to all areas of facilities with treatment plants or systems that treat, store, recycle, or reclaim domestic sewage, wastewater or sewage sludge (including dedicated lands for sewage sludge disposal located within the onsite property boundaries) that meet the applicability criteria of above. You have the option of obtaining coverage under the MSGP for direct discharges, (recommended), or obtaining coverage under this individual permit.

6. Request for coverage in individual permit

Are you requesting coverage of stormwater discharges associated with your treatment plant under this individual permit?

🗆 Yes 🗆 No

If yes, provide a description of stormwater runoff management practices at the site for which you are requesting authorization in this individual wastewater permit and describe whether you intend to comingle this discharge with your treated effluent or discharge it via a separate dedicated stormwater outfall. Please also indicate if you intend to divert stormwater to the treatment plant headworks and indirectly discharge it to water in the state.

N/A

Note: Direct stormwater discharges to waters in the state authorized through this individual permit will require the development and implementation of a stormwater pollution prevention plan (SWPPP) and will be subject to additional monitoring and reporting requirements. Indirect discharges of stormwater via headworks recycling will require compliance with all individual permit requirements including 2-hour peak flow limitations. All stormwater discharge authorization requests will require additional information during the technical review of your application.

F. Discharges to the Lake Houston Watershed

Does the facility discharge in the Lake Houston watershed?

🗆 Yes 🖂 No

If yes, attach a Sewage Sludge Solids Management Plan. See Example 5 in the instructions. $\underline{\mathrm{N/A}}$

G. Other wastes received including sludge from other WWTPs and septic waste

1. Acceptance of sludge from other WWTPs

Does or will the facility accept sludge from other treatment plants at the facility site?

🗆 Yes 🖂 No

If yes, attach sewage sludge solids management plan. See Example 5 of the instructions.

In addition, provide the date the plant started or is anticipated to start accepting sludge, an estimate of monthly sludge acceptance (gallons or millions of gallons), an

estimate of the BOD₅ concentration of the sludge, and the design BOD₅ concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

N/A

Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.

2. Acceptance of septic waste

Is the facility accepting or will it accept septic waste?

🗆 Yes 🖂 No

If yes, does the facility have a Type V processing unit?

🗆 Yes 🗆 No

If yes, does the unit have a Municipal Solid Waste permit?

□ Yes □ No

If yes to any of the above, provide the date the plant started or is anticipated to start accepting septic waste, an estimate of monthly septic waste acceptance (gallons or millions of gallons), an estimate of the BOD_5 concentration of the septic waste, and the

design BOD₅ concentration of the influent from the collection system. Also note if this information has or has not changed since the last permit action.

N/A

Note: Permits that accept sludge from other wastewater treatment plants may be required to have influent flow and organic loading monitoring.

3. Acceptance of other wastes (not including septic, grease, grit, or RCRA, CERCLA or as discharged by IUs listed in Worksheet 6)

Is or will the facility accept wastes that are not domestic in nature excluding the categories listed above?

🗆 Yes 🗵 No

If yes, provide the date that the plant started accepting the waste, an estimate how much waste is accepted on a monthly basis (gallons or millions of gallons), a description of the entities generating the waste, and any distinguishing chemical or other physical characteristic of the waste. Also note if this information has or has not changed since the last permit action.

N/A

Section 7. Pollutant Analysis of Treated Effluent (Instructions Page 50)

Is the facility in operation?

If no, this section is not applicable. Proceed to Section 8.

If yes, provide effluent analysis data for the listed pollutants. *Wastewater treatment facilities* complete Table 1.0(2). W*ater treatment facilities* discharging filter backwash water, complete Table 1.0(3). Provide copies of the laboratory results sheets. **These tables are not applicable for a minor amendment without renewal.** See the instructions for guidance.

Note: The sample date must be within 1 year of application submission.

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
CBOD ₅ , mg/l	1.58	2.0	8	Comp	2/5, 2/7, 2/13, 2/14, 2/19, 2/21, 2/26, 2/28 @ 0800
Total Suspended Solids, mg/l	0.86	2.20	8	Comp	2/5, 2/7, 2/13, 2/14, 2/19, 2/21, 2/26, 2/28 @ 0800
Ammonia Nitrogen, mg/l	< 0.10	<0.10	1	Comp	2/11/25 @ 0800
Nitrate Nitrogen, mg/l	16	16	1	Comp	2/11/25 @ 0800
Total Kjeldahl Nitrogen, mg/l	2.0	2.0	1	Comp	2/11/25 @ 0800
Sulfate, mg/l	76	76	1	Comp	2/11/25 @ 0800
Chloride, mg/l	259	259	1	Comp	2/11/25 @ 0800
Total Phosphorus, mg/l	0.36	0.54	8	Comp	2/11/25 @ 0800
pH, standard units	8.27	8.27	1	Grab	2/11/25 @ 1010
Dissolved Oxygen*, mg/l	8.91	8.91	1	Grab	2/11/25 @ 1010
Chlorine Residual, mg/l	N/A	N/A	N/A	N/A	N/A
<i>E.coli</i> (CFU/100ml) freshwater	<1	<1	1	Grab	2/11/25 @ 0820
Entercocci (CFU/100ml) saltwater	N/A	N/A	N/A	N/A	N/A
Total Dissolved Solids, mg/l	1570	1570	1	Grab	2/27/25 @ 0845
Electrical Conductivity, µmohs/cm, †	3.10	3.10	1	Grab	2/27/25 @ 0845
Oil & Grease, mg/l	<5.0	<5.0	1	Grab	2/11/25 @ 0820
Alkalinity (CaCO ₃)*, mg/l	166	166	1	Comp	3/26/25 @ 0800

Table1.0(2) – Pollutant Analysis for Wa	astewater Treatment Facilities
---	--------------------------------

*TPDES permits only

†TLAP permits only

Table1.0(3) – Pollutant Analysis for Water Treatment Facilities

Pollutant	Average	Max	No. of	Sample	Sample
	Conc.	Conc.	Samples	Type	Date/Time
Total Suspended Solids, mg/l	N/A	N/A	N/A	N/A	N/A

Pollutant	Average Conc.	Max Conc.	No. of Samples	Sample Type	Sample Date/Time
Total Dissolved Solids, mg/l	N/A	N/A	N/A	N/A	N/A
pH, standard units	N/A	N/A	N/A	N/A	N/A
Fluoride, mg/l	N/A	N/A	N/A	N/A	N/A
Aluminum, mg/l	N/A	N/A	N/A	N/A	N/A
Alkalinity (CaCO ₃), mg/l	N/A	N/A	N/A	N/A	N/A

Section 8. Facility Operator (Instructions Page 50)

Facility Operator Name: Jamie Alvarez, Sr.

Facility Operator's License Classification and Level: A

Facility Operator's License Number: <u>WW0059401</u>

Section 9. Sludge and Biosolids Management and Disposal (Instructions Page 51)

A. WWTP's Biosolids Management Facility Type

Check all that apply. See instructions for guidance

- \boxtimes Design flow>= 1 MGD
- \boxtimes Serves >= 10,000 people
- □ Class I Sludge Management Facility (per 40 CFR § 503.9)
- ☑ Biosolids generator
- Biosolids end user land application (onsite)
- Biosolids end user surface disposal (onsite)
- □ Biosolids end user incinerator (onsite)

B. WWTP's Biosolids Treatment Process

Check all that apply. See instructions for guidance.

- Aerobic Digestion
- Air Drying (or sludge drying beds)
- Lower Temperature Composting
- Lime Stabilization
- □ Higher Temperature Composting
- □ Heat Drying
- □ Thermophilic Aerobic Digestion
- Beta Ray Irradiation
- □ Gamma Ray Irradiation

- □ Pasteurization
- □ Preliminary Operation (e.g. grinding, de-gritting, blending)
- Thickening (e.g. gravity thickening, centrifugation, filter press, vacuum filter)
- □ Sludge Lagoon
- □ Temporary Storage (< 2 years)
- □ Long Term Storage (>= 2 years)
- □ Methane or Biogas Recovery
- □ Other Treatment Process: <u>Click to enter text.</u>

C. Biosolids Management

Provide information on the *intended* biosolids management practice. Do not enter every management practice that you want authorized in the permit, as the permit will authorize all biosolids management practices listed in the instructions. Rather indicate the management practice the facility plans to use.

Biosolids	Management
------------------	------------

Management Practice	Handler or Preparer Type	Bulk or Bag Container	Amount (dry metric tons)	Pathogen Reduction Options	Vector Attraction Reduction Option
Disposal in Landfill	Off-site Third-Party Preparer	Bulk	150.54	Choose an item.	Choose an item.
Choose an item.	Choose an item.	Choose an item.		Choose an item.	Choose an item.
Choose an item.	Choose an item.	Choose an item.		Choose an item.	Choose an item.

If "Other" is selected for Management Practice, please explain (e.g. monofill or transport to another WWTP): <u>Click to enter text.</u>

D. Disposal site

Disposal site name: Mesquite Creek Landfill

TCEQ permit or registration number: <u>66C</u>

County where disposal site is located: Comal

E. Transportation method

Method of transportation (truck, train, pipe, other): <u>Truck</u>

Name of the hauler: Residuals Transport

Hauler registration number: <u>24346</u>

Sludge is transported as a:

Liquid 🗆

semi-liquid \Box

semi-solid		
------------	--	--

Section 10. Permit Authorization for Sewage Sludge Disposal (Instructions Page 53)

A. Beneficial use authorization

Does the existing permit include authorization for land application of sewage sludge for beneficial use?

🗆 Yes 🗵 No

If yes, are you requesting to continue this authorization to land apply sewage sludge for beneficial use?

□ Yes □ No

If yes, is the completed **Application for Permit for Beneficial Land Use of Sewage Sludge (TCEQ Form No. 10451)** attached to this permit application (see the instructions for details)?

🗆 Yes 🗆 No

B. Sludge processing authorization

Does the existing permit include authorization for any of the following sludge processing, storage or disposal options?

Sludge Composting	Yes	\boxtimes	No
Marketing and Distribution of sludge	Yes	\boxtimes	No
Sludge Surface Disposal or Sludge Monofill	Yes	\boxtimes	No
Temporary storage in sludge lagoons	Yes	\boxtimes	No

If yes to any of the above sludge options and the applicant is requesting to continue this authorization, is the completed **Domestic Wastewater Permit Application: Sewage Sludge Technical Report (TCEQ Form No. 10056)** attached to this permit application?

🗆 Yes 🗆 No

Section 11. Sewage Sludge Lagoons (Instructions Page 53)

Does this facility include sewage sludge lagoons?

🗆 Yes 🖾 No

If yes, complete the remainder of this section. If no, proceed to Section 12.

A. Location information

The following maps are required to be submitted as part of the application. For each map, provide the Attachment Number.

• Original General Highway (County) Map:

Attachment: N/A

• USDA Natural Resources Conservation Service Soil Map:

Attachment: <u>N/A</u>

• Federal Emergency Management Map:

Attachment: N/A

• Site map:

Attachment: <u>N/A</u>

Discuss in a description if any of the following exist within the lagoon area. Check all that apply.

- Overlap a designated 100-year frequency flood plain
- □ Soils with flooding classification
- Overlap an unstable area
- □ Wetlands
- □ Located less than 60 meters from a fault
- \Box None of the above

Attachment: N/A

If a portion of the lagoon(s) is located within the 100-year frequency flood plain, provide the protective measures to be utilized including type and size of protective structures:

N/A

B. Temporary storage information

Provide the results for the pollutant screening of sludge lagoons. These results are in addition to pollutant results in *Section 7 of Technical Report 1.0.*

Nitrate Nitrogen, mg/kg: N/A Total Kjeldahl Nitrogen, mg/kg: N/A Total Nitrogen (=nitrate nitrogen + TKN), mg/kg: N/A Phosphorus, mg/kg: N/A Potassium, mg/kg: N/A pH, standard units: N/A Ammonia Nitrogen mg/kg: N/A Arsenic: N/A Cadmium: N/A Chromium: N/A Copper: N/A Lead: N/A Mercury: N/A Molybdenum: N/A Nickel: N/A Selenium: N/A Zinc: N/A Total PCBs: N/A

Provide the following information:

Volume and frequency of sludge to the lagoon(s): <u>N/A</u>

Total dry tons stored in the lagoons(s) per 365-day period: N/A

Total dry tons stored in the lagoons(s) over the life of the unit: N/A

C. Liner information

Does the active/proposed sludge lagoon(s) have a liner with a maximum hydraulic conductivity of 1x10⁻⁷ cm/sec?

🗆 Yes 🗆 No

If yes, describe the liner below. Please note that a liner is required.

N/A

D. Site development plan

Provide a detailed description of the methods used to deposit sludge in the lagoon(s):

N/A

Attach the following documents to the application.

• Plan view and cross-section of the sludge lagoon(s)

Attachment: <u>N/A</u>

• Copy of the closure plan

Attachment: <u>N/A</u>

- Copy of deed recordation for the site
 - Attachment: <u>N/A</u>
- Size of the sludge lagoon(s) in surface acres and capacity in cubic feet and gallons Attachment: N/A
- Description of the method of controlling infiltration of groundwater and surface water from entering the site

Attachment: N/A

• Procedures to prevent the occurrence of nuisance conditions

Attachment: <u>N/A</u>

E. Groundwater monitoring

Is groundwater monitoring currently conducted at this site, or are any wells available for groundwater monitoring, or are groundwater monitoring data otherwise available for the sludge lagoon(s)?

If groundwater monitoring data are available, provide a copy. Provide a profile of soil types encountered down to the groundwater table and the depth to the shallowest groundwater as a separate attachment.

Attachment: N/A

Section 12. Authorizations/Compliance/Enforcement (Instructions Page 55)

A. Additional authorizations

Does the permittee have additional authorizations for this facility, such as reuse authorization, sludge permit, etc?

🖾 Yes 🗆 No

If yes, provide the TCEQ authorization number and description of the authorization:

Reuse R10232002	2
-----------------	---

B. Permittee enforcement status

Is the permittee currently under enforcement for this facility?

🗆 Yes 🗵 No

Is the permittee required to meet an implementation schedule for compliance or enforcement?

🗆 Yes 🗵 No

If yes to either question, provide a brief summary of the enforcement, the implementation schedule, and the current status:

N/A

Section 13. RCRA/CERCLA Wastes (Instructions Page 55)

A. RCRA hazardous wastes

Has the facility received in the past three years, does it currently receive, or will it receive RCRA hazardous waste?

🗆 Yes 🖾 No

B. Remediation activity wastewater

Has the facility received in the past three years, does it currently receive, or will it receive CERCLA wastewater, RCRA remediation/corrective action wastewater or other remediation activity wastewater?

🗆 Yes 🖾 No

C. Details about wastes received

If yes to either Subsection A or B above, provide detailed information concerning these wastes with the application.

Attachment: N/A

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 2.0: RECEIVING WATERS

The following information is required for all TPDES permit applications.

Section 1. Domestic Drinking Water Supply (Instructions Page 64)

Is there a surface water intake for domestic drinking water supply located within 5 miles downstream from the point or proposed point of discharge?

🖾 Yes 🗆 No

If **no**, proceed it Section 2. **If yes**, provide the following:

Owner of the drinking water supply: <u>New Braunfels Utilities</u>

Distance and direction to the intake: 4,000 ft south

Attach a USGS map that identifies the location of the intake.

Attachment: <u>Attachment C</u>

Section 2. Discharge into Tidally Affected Waters (Instructions Page 64)

Does the facility discharge into tidally affected waters?

🗆 Yes 🖾 No

If **no**, proceed to Section 3. **If yes**, complete the remainder of this section. If no, proceed to Section 3.

A. Receiving water outfall

Width of the receiving water at the outfall, in feet: $\underline{N/A}$

B. Oyster waters

Are there oyster waters in the vicinity of the discharge?

🗆 Yes 🗆 No

If yes, provide the distance and direction from outfall(s).

<u>N/A</u>

C. Sea grasses

Are there any sea grasses within the vicinity of the point of discharge?

🗆 Yes 🗆 No

If yes, provide the distance and direction from the outfall(s).

<u>N/A</u>

Section 3. Classified Segments (Instructions Page 64)

Is the discharge directly into (or within 300 feet of) a classified segment?

🖾 Yes 🗆 No

If yes, this Worksheet is complete.

If no, complete Sections 4 and 5 of this Worksheet.

Section 4. Description of Immediate Receiving Waters (Instructions Page 65)

Name of the immediate receiving waters: N/A

A. Receiving water type

Identify the appropriate description of the receiving waters.

- □ Stream
- □ Freshwater Swamp or Marsh
- □ Lake or Pond
 - Surface area, in acres: <u>N/A</u>

Average depth of the entire water body, in feet: N/A

Average depth of water body within a 500-foot radius of discharge point, in feet: $\underline{\mathbf{N/A}}$

- □ Man-made Channel or Ditch
- Open Bay
- 🗖 🛛 Tidal Stream, Bayou, or Marsh
- □ Other, specify: <u>N/A</u>

B. Flow characteristics

If a stream, man-made channel or ditch was checked above, provide the following. For existing discharges, check one of the following that best characterizes the area *upstream* of the discharge. For new discharges, characterize the area *downstream* of the discharge (check one).

□ Intermittent - dry for at least one week during most years

□ Intermittent with Perennial Pools - enduring pools with sufficient habitat to maintain significant aquatic life uses

□ Perennial - normally flowing

Check the method used to characterize the area upstream (or downstream for new dischargers).

- □ USGS flow records
- □ Historical observation by adjacent landowners
- □ Personal observation
- □ Other, specify: <u>N/A</u>

C. Downstream perennial confluences

List the names of all perennial streams that join the receiving water within three miles downstream of the discharge point.

<u>N/A</u>

D. Downstream characteristics

Do the receiving water characteristics change within three miles downstream of the discharge (e.g., natural or man-made dams, ponds, reservoirs, etc.)?

🗆 Yes 🗆 No

If yes, discuss how.

<u>N/A</u>

E. Normal dry weather characteristics

Provide general observations of the water body during normal dry weather conditions.

<u>N/A</u>

Date and time of observation: <u>Click to enter text.</u>

Was the water body influenced by stormwater runoff during observations?

🗆 Yes 🗆 No

Section 5. General Characteristics of the Waterbody (Instructions Page 66)

A. Upstream influences

Is the immediate receiving water upstream of the discharge or proposed discharge site influenced by any of the following? Check all that apply.

- Oil field activities
 Upstream discharges
 Agricultural runoff
- □ Septic tanks □ Other(s), specify: <u>N/A</u>

B. Waterbody uses

Observed or evidences of the following uses. Check all that apply.

- □ Livestock watering
- □ Irrigation withdrawal
- □ Fishing
- □ Domestic water supply
- Park activities

- Contact recreation
- □ Non-contact recreation
- □ Navigation
- □ Industrial water supply
- □ Other(s), specify: <u>N/A</u>

C. Waterbody aesthetics

Check one of the following that best describes the aesthetics of the receiving water and the surrounding area.

- Wilderness: outstanding natural beauty; usually wooded or unpastured area; water clarity exceptional
- Natural Area: trees and/or native vegetation; some development evident (from fields, pastures, dwellings); water clarity discolored
- Common Setting: not offensive; developed but uncluttered; water may be colored or turbid
- Offensive: stream does not enhance aesthetics; cluttered; highly developed; dumping areas; water discolored

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 4.0: POLLUTANT ANALYSIS REQUIREMENTS

The following **is required** for facilities with a permitted or proposed flow of **1.0 MGD or greater**, facilities with an approved **pretreatment** program, or facilities classified as a **major** facility. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Toxic Pollutants (Instructions Page 78)

For pollutants identified in Table 4.0(1), indicate the type of sample.

Grab \boxtimes Composite \boxtimes

Date and time sample(s) collected: 2/11/2025@ 0814 - G, 0800 - C

Pollutant	AVG Effluent Conc. (μg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Acrylonitrile	<50	<50	1	50
Aldrin	< 0.01	< 0.01	1	0.01
Aluminum	96	96	1	2.5
Anthracene	<10	<10	1	10
Antimony	<5	<5	1	5
Arsenic	<0.5	<0.5	1	0.5
Barium	<3	<3	1	3
Benzene	<10	<10	1	10
Benzidine	<50	<50	1	50
Benzo(a)anthracene	<5	<5	1	5
Benzo(a)pyrene	<5	<5	1	5
Bis(2-chloroethyl)ether	<10	<10	1	10
Bis(2-ethylhexyl)phthalate	<10	<10	1	10
Bromodichloromethane	<10	<10	1	10
Bromoform	<10	<10	1	10
Cadmium	<1	<1	1	1
Carbon Tetrachloride	<2	<2	1	2
Carbaryl	<5	<5	1	5
Chlordane*	<0.2	<0.2	1	0.2
Chlorobenzene	<10	<10	1	10
Chlorodibromomethane	<10	<10	1	10

Table 4.0(1) – Toxics Analysis

Pollutant	AVG Effluent	MAX Effluent	Number of Samples	MAL (µg/l)
	Conc. (µg/l)	Conc. (µg/l)		
Chloroform	<10	<10	1	10
Chlorpyrifos	< 0.05	< 0.05	1	0.05
Chromium (Total)	<3	<3	1	3
Chromium (Tri) (*1)	<3	<3	1	N/A
Chromium (Hex)	<3	<3	1	3
Copper	<2	<2	1	2
Chrysene	<5	<5	1	5
p-Chloro-m-Cresol	<10	<10	1	10
4,6-Dinitro-o-Cresol	<50	<50	1	50
p-Cresol	<10	<10	1	10
Cyanide (*2)	<10	<10	1	10
4,4'- DDD	<0.1	<0.1	1	0.1
4,4'- DDE	<0.1	<0.1	1	0.1
4,4'- DDT	< 0.02	< 0.02	1	0.02
2,4-D	<0.7	<0.7	1	0.7
Demeton (O and S)	<0.2	<0.2	1	0.20
Diazinon	<0.5	<0.5	1	0.5/0.1
1,2-Dibromoethane	<10	<10	1	10
m-Dichlorobenzene	<10	<10	1	10
o-Dichlorobenzene	<10	<10	1	10
p-Dichlorobenzene	<10	<10	1	10
3,3'-Dichlorobenzidine	<5	<5	1	5
1,2-Dichloroethane	<10	<10	1	10
1,1-Dichloroethylene	<10	<10	1	10
Dichloromethane	<20	<20	1	20
1,2-Dichloropropane	<10	<10	1	10
1,3-Dichloropropene	<10	<10	1	10
Dicofol	<1	<1	1	1
Dieldrin	<0.02	<0.02	1	0.02
2,4-Dimethylphenol	<10	<10	1	10
Di-n-Butyl Phthalate	<10	<10	1	10
Diuron	<0.09	<0.09	1	0.09
Endosulfan I (alpha)	< 0.01	< 0.01	1	0.01

Pollutant	AVG Effluent	MAX Effluent	Number of Samples	MAL (µg/l)
	Conc. $(\mu g/I)$	Conc. (µg/I)	-	
Endosulfan II (beta)	<0.02	<0.02	1	0.02
Endosulfan Sulfate	<0.1	<0.1	1	0.1
Endrin	<0.02	< 0.02	1	0.02
Ethylbenzene	<10	<10	1	10
Fluoride	<500	<500	1	500
Guthion	<0.1	<0.1	1	0.1
Heptachlor	< 0.01	< 0.01	1	0.01
Heptachlor Epoxide	< 0.01	< 0.01	1	0.01
Hexachlorobenzene	<5	<5	1	5
Hexachlorobutadiene	<10	<10	1	10
Hexachlorocyclohexane (alpha)	< 0.05	< 0.05	1	0.05
Hexachlorocyclohexane (beta)	< 0.05	< 0.05	1	0.05
gamma-Hexachlorocyclohexane	< 0.05	< 0.05	1	0.05
(Lindane)				
Hexachlorocyclopentadiene	<10	<10	1	10
Hexachloroethane	<20	<20	1	20
Hexachlorophene	<10	<10	1	10
Lead	<0.5	< 0.5	1	0.5
Malathion	<0.1	<0.1	1	0.1
Mercury	< 0.005	< 0.005	1	0.005
Methoxychlor	<2	<2	1	2
Methyl Ethyl Ketone	<50	<50	1	50
Mirex	< 0.02	< 0.02	1	0.02
Nickel	<2	<2	1	2
Nitrate-Nitrogen	<100	<100	1	100
Nitrobenzene	<10	<10	1	10
N-Nitrosodiethylamine	<20	<20	1	20
N-Nitroso-di-n-Butylamine	<20	<20	1	20
Nonylphenol	<333	<333	1	333
Parathion (ethyl)	<0.1	<0.1	1	0.1
Pentachlorobenzene	<20	<20	1	20
Pentachlorophenol	<5	<5	1	5
Phenanthrene	<10	<10	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (μg/l)	Number of Samples	MAL (µg/l)
Polychlorinated Biphenyls (PCB's) (*3)	<0.2	<0.2	1	0.2
Pyridine	<20	<20	1	20
Selenium	<5	<5	1	5
Silver	<0.5	<0.5	1	0.5
1,2,4,5-Tetrachlorobenzene	<20	<20	1	20
1,1,2,2-Tetrachloroethane	<10	<10	1	10
Tetrachloroethylene	<10	<10	1	10
Thallium	<0.5	< 0.5	1	0.5
Toluene	<10	<10	1	10
Toxaphene	<0.3	<0.3	1	0.3
2,4,5-TP (Silvex)	<0.3	<0.3	1	0.3
Tributyltin (see instructions for explanation)	N/A	N/A	N/A	0.01
1,1,1-Trichloroethane	<10	<10	1	10
1,1,2-Trichloroethane	<10	<10	1	10
Trichloroethylene	<10	<10	1	10
2,4,5-Trichlorophenol	<50	<50	1	50
TTHM (Total Trihalomethanes)	<10	<10	1	10
Vinyl Chloride	<10	<10	1	10
Zinc	<5	<5	1	5

(*1) Determined by subtracting hexavalent Cr from total Cr.

(*2) Cyanide, amenable to chlorination or weak-acid dissociable.

(*3) The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248, 1260, and 1016.

Section 2. Priority Pollutants

For pollutants identified in Tables 4.0(2)A-E, indicate type of sample.

Grab ⊠ Composite ⊠

Date and time sample(s) collected: <u>2/11/2025 @ 0814 - G, 0800 - C</u>

Table 4.0(2)A – Metals, Cyanide, and Phenols

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Antimony	<5	<5	1	5
Arsenic	<0.5	<0.5	1	0.5
Beryllium	<0.5	<0.5	1	0.5
Cadmium	<1	<1	1	1
Chromium (Total)	<3	<3	1	3
Chromium (Hex)	<3	<3	1	3
Chromium (Tri) (*1)	<3	<3	1	N/A
Copper	11	11	1	2
Lead	<0.5	<0.5	1	0.5
Mercury	< 0.005	< 0.005	1	0.005
Nickel	<2	<2	1	2
Selenium	<5	<5	1	5
Silver	<0.5	<0.5	1	0.5
Thallium	0.7	0.7	1	0.5
Zinc	9	9	1	5
Cyanide (*2)	<10	<10	1	10
Phenols, Total	10	10	1	10

(*1) Determined by subtracting hexavalent Cr from total Cr.

(*2) Cyanide, amenable to chlorination or weak-acid dissociable

Table 4.0(2)B – Volatile Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Acrolein	<50	<50	1	50
Acrylonitrile	<50	<50	1	50
Benzene	<10	<10	1	10
Bromoform	<10	<10	1	10
Carbon Tetrachloride	<2	<2	1	2
Chlorobenzene	<10	<10	1	10
Chlorodibromomethane	<10	<10	1	10
Chloroethane	<50	<50	1	50
2-Chloroethylvinyl Ether	<10	<10	1	10
Chloroform	<10	<10	1	10
Dichlorobromomethane [Bromodichloromethane]	<10	<10	1	10
1,1-Dichloroethane	<10	<10	1	10
1,2-Dichloroethane	<10	<10	1	10
1,1-Dichloroethylene	<10	<10	1	10
1,2-Dichloropropane	<10	<10	1	10
1,3-Dichloropropylene	<10	<10	1	10
[1,3-Dichloropropene]				
1,2-Trans-Dichloroethylene	<10	<10	1	10
Ethylbenzene	<10	<10	1	10
Methyl Bromide	<50	<50	1	50
Methyl Chloride	<50	<50	1	50
Methylene Chloride	<20	<20	1	20
1,1,2,2-Tetrachloroethane	<10	<10	1	10
Tetrachloroethylene	<10	<10	1	10
Toluene	<10	<10	1	10
1,1,1-Trichloroethane	<10	<10	1	10
1,1,2-Trichloroethane	<10	<10	1	10
Trichloroethylene	<10	<10	1	10
Vinyl Chloride	<10	<10	1	10

Table 4.0(2)C – Acid Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
2-Chlorophenol <10		<10	1	10
2,4-Dichlorophenol	<10	<10	1	10
2,4-Dimethylphenol	<10	<10	1	10
4,6-Dinitro-o-Cresol	<50	<50	1	50
2,4-Dinitrophenol	<50	<50	1	50
2-Nitrophenol	<20	<20	1	20
4-Nitrophenol	<50	<50	1	50
P-Chloro-m-Cresol	<10	<10	1	10
Pentalchlorophenol	<5	<5	1	5
Phenol	<10	<10	1	10
2,4,6-Trichlorophenol	<10	<10	1	10

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Acenaphthene	<10	<10	1	10
Acenaphthylene	<10	<10	1	10
Anthracene	<10	<10	1	10
Benzidine	<50	<50	1	50
Benzo(a)Anthracene	<5	<5	1	5
Benzo(a)Pyrene	<5	<5	1	5
3,4-Benzofluoranthene	<10	<10	1	10
Benzo(ghi)Perylene	<20	<20	1	20
Benzo(k)Fluoranthene	<5	<5	1	5
Bis(2-Chloroethoxy)Methane	<10	<10	1	10
Bis(2-Chloroethyl)Ether	<10	<10	1	10
Bis(2-Chloroisopropyl)Ether	<10	<10	1	10
Bis(2-Ethylhexyl)Phthalate	<10	<10	1	10
4-Bromophenyl Phenyl Ether	<10	<10	1	10
Butyl benzyl Phthalate	<10	<10	1	10
2-Chloronaphthalene	<10	<10	1	10
4-Chlorophenyl phenyl ether	<10	<10	1	10
Chrysene	<5	<5	1	5
Dibenzo(a,h)Anthracene	<5	<5	1	5
1,2-(o)Dichlorobenzene	<10	<10	1	10
1,3-(m)Dichlorobenzene	<10	<10	1	10
1,4-(p)Dichlorobenzene	<10	<10	1	10
3,3-Dichlorobenzidine	<5	<5	1	5
Diethyl Phthalate	<10	<10	1	10
Dimethyl Phthalate	<10	<10	1	10
Di-n-Butyl Phthalate	<10	<10	1	10
2,4-Dinitrotoluene	<10	<10	1	10
2,6-Dinitrotoluene	<10	<10	1	10
Di-n-Octyl Phthalate	<10	<10	1	10
1,2-Diphenylhydrazine (as Azo- benzene)	<20	<20	1	20
Fluoranthene	<10	<10	1	10

Table 4.0(2)D – Base/Neutral Compounds

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Fluorene	<10	<10	1	10
Hexachlorobenzene	<5	<5	1	5
Hexachlorobutadiene	<10	<10	1	10
Hexachlorocyclo-pentadiene	<10	<10	1	10
Hexachloroethane	<20	<20	1	20
Indeno(1,2,3-cd)pyrene	<5	<5	1	5
Isophorone	<10	<10	1	10
Naphthalene	<10	<10	1	10
Nitrobenzene	<10	<10	1	10
N-Nitrosodimethylamine	<50	<50	1	50
N-Nitrosodi-n-Propylamine	<20	<20	1	20
N-Nitrosodiphenylamine	<20	<20	1	20
Phenanthrene	<10	<10	1	10
Pyrene	<10	<10	1	10
1,2,4-Trichlorobenzene	<10	<10	1	10

Table 4.0(2)E - Pesticides

Pollutant	AVG Effluent Conc. (µg/l)	MAX Effluent Conc. (µg/l)	Number of Samples	MAL (µg/l)
Aldrin	< 0.01	< 0.01	1	0.01
alpha-BHC (Hexachlorocyclohexane)	< 0.05	< 0.05	1	0.05
beta-BHC (Hexachlorocyclohexane)	< 0.05	< 0.05	1	0.05
gamma-BHC (Hexachlorocyclohexane)	<0.05	<0.05	1	0.05
delta-BHC (Hexachlorocyclohexane)	< 0.05	< 0.05	1	0.05
Chlordane	<0.2	<0.2	1	0.2
4,4-DDT	<0.02	<0.02	1	0.02
4,4-DDE	<0.1	<0.1	1	0.1
4,4,-DDD	<0.1	<0.1	1	0.1
Dieldrin	< 0.02	< 0.02	1	0.02
Endosulfan I (alpha)	< 0.01	< 0.01	1	0.01
Endosulfan II (beta)	<0.02	<0.02	1	0.02
Endosulfan Sulfate	<0.1	<0.1	1	0.1
Endrin	< 0.02	< 0.02	1	0.02
Endrin Aldehyde	<0.1	<0.1	1	0.1
Heptachlor	< 0.01	< 0.01	1	0.01
Heptachlor Epoxide	< 0.01	< 0.01	1	0.01
PCB-1242	<0.2	<0.2	1	0.2
PCB-1254	<0.2	<0.2	1	0.2
PCB-1221	<0.2	<0.2	1	0.2
PCB-1232	<0.2	<0.2	1	0.2
PCB-1248	<0.2	<0.2	1	0.2
PCB-1260	<0.2	<0.2	1	0.2
PCB-1016	<0.2	<0.2	1	0.2
Toxaphene	<0.3	<0.3	1	0.3

* For PCBS, if all are non-detects, enter the highest non-detect preceded by a "<".

Section 3. Dioxin/Furan Compounds

A. Indicate which of the following compounds from may be present in the influent from a contributing industrial user or significant industrial user. Check all that apply.

2,4,5-trichlorophenoxy acetic acid
Common Name 2,4,5-T, CASRN 93-76-5
2-(2,4,5-trichlorophenoxy) propanoic acid
Common Name Silvex or 2,4,5-TP, CASRN 93-72-1
2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate
Common Name Erbon, CASRN 136-25-4
0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate
Common Name Ronnel, CASRN 299-84-3
2,4,5-trichlorophenol
Common Name TCP, CASRN 95-95-4
hexachlorophene
Common Name HCP, CASRN 70-30-4

For each compound identified, provide a brief description of the conditions of its/their presence at the facility.

N<u>/A</u>

B. Do you know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin (TCDD) or any congeners of TCDD may be present in your effluent?

🗆 Yes 🗆 No

If **yes**, provide a brief description of the conditions for its presence.

N<u>/A</u>

C. If any of the compounds in Subsection A **or** B are present, complete Table 4.0(2)F.

For pollutants identified in Table 4.0(2)F, indicate the type of sample.

Grab □ Composite □

Date and time sample(s) collected: <u>N/A</u>

Compound	Toxic Equivalenc y Factors	Wastewater Concentration (ppq)	Wastewater Equivalents (ppq)	Sludge Concentration (ppt)	Sludge Equivalents (ppt)	MAL (ppq)
2,3,7,8 TCDD	1	N/A	N/A	N/A	N/A	10
1,2,3,7,8 PeCDD	0.5	N/A	N/A	N/A	N/A	50
2,3,7,8 HxCDDs	0.1	N/A	N/A	N/A	N/A	50
1,2,3,4,6,7,8 HpCDD	0.01	N/A	N/A	N/A	N/A	50
2,3,7,8 TCDF	0.1	N/A	N/A	N/A	N/A	10
1,2,3,7,8 PeCDF	0.05	N/A	N/A	N/A	N/A	50
2,3,4,7,8 PeCDF	0.5	N/A	N/A	N/A	N/A	50
2,3,7,8 HxCDFs	0.1	N/A	N/A	N/A	N/A	50
2,3,4,7,8 HpCDFs	0.01	N/A	N/A	N/A	N/A	50
OCDD	0.0003	N/A	N/A	N/A	N/A	100
OCDF	0.0003	N/A	N/A	N/A	N/A	100
PCB 77	0.0001	N/A	N/A	N/A	N/A	0.5
PCB 81	0.0003	N/A	N/A	N/A	N/A	0.5
PCB 126	0.1	N/A	N/A	N/A	N/A	0.5
PCB 169	0.03	N/A	N/A	N/A	N/A	0.5
Total		N/A	N/A	N/A	N/A	

Table 4.0(2)F – Dioxin/Furan Compounds

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 5.0: TOXICITY TESTING REQUIREMENTS

The following **is required** for facilities with a current operating design flow of**1.0 MGD or greater**, with an EPA-approved **pretreatment** program (or those required to have one under 40 CFR Part 403), or are required to perform Whole Effluent Toxicity testing. See instructions for further details.

This worksheet is not required minor amendments without renewal.

Section 1. Required Tests (Instructions Page 88)

Indicate the number of 7-day chronic or 48-hour acute Whole Effluent Toxicity (WET) tests performed in the four and one-half years prior to submission of the application.

7-day Chronic: 7

48-hour Acute: <u>Click to enter text.</u>

Section 2. Toxicity Reduction Evaluations (TREs)

Has this facility completed a TRE in the past four and a half years? Or is the facility currently performing a TRE?

🗆 Yes 🖾 No

If yes, describe the progress to date, if applicable, in identifying and confirming the toxicant.

<u>N/A</u>

Section 3. Summary of WET Tests

If the required biomonitoring test information has not been previously submitted via both the Discharge Monitoring Reports (DMRs) and the Table 1 (as found in the permit), provide a summary of the testing results for all valid and invalid tests performed over the past four and one-half years. Make additional copies of this table as needed.

Table 5.0(1) Summary of WET Tests

Test Date	Test Species	NOEC Survival	NOEC Sub-lethal
Submitted via DMR			

DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 6.0: INDUSTRIAL WASTE CONTRIBUTION

The following is required for all publicly owned treatment works.

Section 1. All POTWs (Instructions Page 89)

A. Industrial users (IUs)

Provide the number of each of the following types of industrial users (IUs) that discharge to your POTW and the daily flows from each user. See the Instructions for definitions of Categorical IUs, Significant IUs – non-categorical, and Other IUs.

If there are no users, enter 0 (zero).

Categorical IUs: Number of IUs: <u>o</u> Average Daily Flows, in MGD: <u>o</u> Significant IUs – non-categorical: Number of IUs: <u>o</u> Average Daily Flows, in MGD: <u>o</u> Other IUs:

Number of IUs: o

Average Daily Flows, in MGD: o

B. Treatment plant interference

In the past three years, has your POTW experienced treatment plant interference (see instructions)?

🗆 Yes 🖾 No

If yes, identify the dates, duration, description of interference, and probable cause(s) and possible source(s) of each interference event. Include the names of the IUs that may have caused the interference.

<u>N/A</u>

C. Treatment plant pass through

In the past three years, has your POTW experienced pass through (see instructions)?

🗆 Yes 🖂 No

If yes, identify the dates, duration, a description of the pollutants passing through the treatment plant, and probable cause(s) and possible source(s) of each pass through event. Include the names of the IUs that may have caused pass through.

<u>N/A</u>

D. Pretreatment program

Does your POTW have an approved pretreatment program?

🖾 Yes 🗆 No

If yes, complete Section 2 only of this Worksheet.

Is your POTW required to develop an approved pretreatment program?

🖾 Yes 🗆 No

If yes, complete Section 2.c. and 2.d. only, and skip Section 3.

If no to either question above, skip Section 2 and complete Section 3 for each significant industrial user and categorical industrial user.

E. Service Area Map

Attach a map indicating the service area of the POTW. The map should include the applicant's service area boundaries and the location of any known industrial users discharging to the POTW. Please see the instructions for guidance.

Attachment: Click to enter text.

Section 2. POTWs with Approved Programs or Those Required to Develop a Program (Instructions Page 90)

A. Substantial modifications

Have there been any **substantial modifications** to the approved pretreatment program that have not been submitted to the TCEQ for approval according to *40 CFR §403.18*?

🗆 Yes 🖾 No

If yes, identify the modifications that have not been submitted to TCEQ, including the purpose of the modification.

<u>N/A</u>

B. Non-substantial modifications

Have there been any **non-substantial modifications** to the approved pretreatment program that have not been submitted to TCEQ for review and acceptance?

🗆 Yes 🗵 No

If yes, identify all non-substantial modifications that have not been submitted to TCEQ, including the purpose of the modification.

<u>N/A</u>

C. Effluent parameters above the MAL

In Table 6.0(1), list all parameters measured above the MAL in the POTW's effluent monitoring during the last three years. Submit an attachment if necessary.

Table 6.0(1) – Parameters Above the MAL

Pollutant	Concentration	MAL	Units	Date

D. Industrial user interruptions

Has any SIU, CIU, or other IU caused or contributed to any problems (excluding interferences or pass throughs) at your POTW in the past three years?

🗆 Yes 🖾 No

If yes, identify the industry, describe each episode, including dates, duration, description of the problems, and probable pollutants.

<u>N/A</u>

Section 3. Significant Industrial User (SIU) Information and Categorical Industrial User (CIU) (Instructions Page 90)

A. General information

Company Name: <u>N/A</u> SIC Code: <u>N/A</u> Contact name: <u>N/A</u> Address: <u>N/A</u> City, State, and Zip Code: <u>N/A</u> Telephone number: <u>N/A</u> Email address: <u>N/A</u>

B. Process information

Describe the industrial processes or other activities that affect or contribute to the SIU(s) or CIU(s) discharge (i.e., process and non-process wastewater).

<u>N/A</u>

C. Product and service information

Provide a description of the principal product(s) or services performed.

<u>N/A</u>

D. Flow rate information

See the Instructions for definitions of "process" and "non-process wastewater."

Process Wastewater:

Discharge, in gallons/day: <u>N/A</u>								
Discharge Type: 🗆	Continuous		Batch		Intermittent			
Non-Process Wastewater:								
Discharge, in gallons/day: <u>N/A</u>								
Discharge Type: 🗆	Continuous		Batch		Intermittent			

E. Pretreatment standards

Is the SIU or CIU subject to technically based local limits as defined in the *instructions*?

🗆 Yes 🗆 No

Is the SIU or CIU subject to categorical pretreatment standards found in *40 CFR Parts 405-471*?

🗆 Yes 🗆 No

If subject to categorical pretreatment standards, indicate the applicable category and subcategory for each categorical process.

Category: Subcategories: N/A

Subcategories: <u>N/A</u>

F. Industrial user interruptions

Has the SIU or CIU caused or contributed to any problems (e.g., interferences, pass through, odors, corrosion, blockages) at your POTW in the past three years?

🗆 Yes 🗆 No

If yes, identify the SIU, describe each episode, including dates, duration, description of problems, and probable pollutants.

<u>N/A</u>