#### **ATTACHMENT I**

#### **EFFLUENT ANALYSIS RESULTS**

# NEW BRAUNFELS UTILITIES GRUENE ROAD WATER RECLAMATION FACILITY

#### **APRIL 2025**





## **Report of Sample Analysis**

| Client Information                                                                     | Sample Information                                                                                                                       |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131 | Project Name: Gruene TCEQ Major Permit<br>Sample ID: Effluent 02112536<br>Matrix: Non-Potable Water<br>Date/Time Taken: 02/11/2025 08:00 |

| PCS Sample #:  | 791258     | Page 1 | of 2  |
|----------------|------------|--------|-------|
| Date/Time Rece | ived: 02/1 | 1/2025 | 10:16 |
| D 4 D 4 O      | 2/20/2025  |        |       |

**Laboratory Information** 

Report Date: 03/20/2025

Approved by: 

| Chuck Wallgren, President

| Test Description      | Result       | Units        | RL   | Analysis Date/Time | Method    | Analyst |
|-----------------------|--------------|--------------|------|--------------------|-----------|---------|
| Chloride IC           | 259          | mg/L         | 2    | 02/11/2025 13:39   | EPA 300.0 | JAS     |
| Nitrate-N IC          | 16.0         | mg/L         | 0.2  | 02/11/2025 13:39   | EPA 300.0 | JAS     |
| Sulfate IC            | 76           | mg/L         | 2    | 02/11/2025 13:39   | EPA 300.0 | JAS     |
| Fluoride IC           | 0.26         | mg/L         | 0.20 | 02/11/2025 13:39   | EPA 300.0 | JAS     |
| Pesticides 617        | •            | See Attached |      |                    | DHL       |         |
| 604.1 Hexachlorophene | See Attached |              |      |                    | DHL       |         |
| Semi Volatiles 625    | See Attached |              |      |                    |           |         |
| Pesticides 608        | 9            | See Attached |      |                    | DHL       |         |

| Test Description      | Precision                                             | Quality Ass<br>Limit | surance Sumn<br>LCL | nary<br>MS | MSD        | UCL    | LCS | LCS Limit | Blank |
|-----------------------|-------------------------------------------------------|----------------------|---------------------|------------|------------|--------|-----|-----------|-------|
| Chloride IC           | <1                                                    | 10                   | 95                  | 96         | 96         | 102    | 100 | 85 - 115  |       |
| Nitrate-N IC          | I                                                     | 20                   | 70                  | 99         | 98         | 130    | 104 | 85 - 115  |       |
| Sulfate IC            | <1                                                    | 10                   | 94                  | 97         | 97         | 101    | 101 | 85 - 115  |       |
| Fluoride IC           | 3                                                     | 10                   | 87                  | 100        | 98         | 105    | 100 | 85 - 115  |       |
| Pesticides 617        | See Attached Report for Quality Assurance Information |                      |                     |            |            |        |     |           |       |
| 604.1 Hexachlorophene | See Attacl                                            | ned Report           | t for Qualit        | ty Assura  | nce Inforn | nation |     |           |       |
| Semi Volatiles 625    | See Attached Report for Quality Assurance Information |                      |                     |            |            |        |     |           |       |
| Pesticides 608        | See Attacl                                            | ned Report           | t for Qualit        | ty Assura  | nce Inform | nation |     |           |       |

Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.

These analytical results relate only to the sample tested. All data is reported on an 'As Is' basis unless designated as 'Dry Wt'.

RL = Reporting Limits

www.pcslab.net chuck@pcslab.net 1532 Universal City Blvd Universal City, TX 78148-3318 Main: 210-340-0343 Fax: 210-658-7903



## **Report of Sample Analysis**

| Client Information                                                                     | Sample Information                                                                                                                       | Laboratory Information                                                                              |  |  |  |  |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|
| Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131 | Project Name: Gruene TCEQ Major Permit<br>Sample ID: Effluent 02112536<br>Matrix: Non-Potable Water<br>Date/Time Taken: 02/11/2025 08:00 | PCS Sample #: 791258 Page 2 of 2<br>Date/Time Received: 02/11/2025 10:16<br>Report Date: 03/20/2025 |  |  |  |  |

| Test Description | Result Units RL | Analysis Date/Time Method | <u>Analyst</u> |
|------------------|-----------------|---------------------------|----------------|
| Pesticides 632   | See Attached    | DHL                       |                |
| Pesticide 1657   | See Attached    | DHL                       |                |
| Herbicides 615   | See Attached    | SPL                       |                |

| Test Description                 | Precision Limit LCL MS MSD UCL LCS LCS Limit Blank                                                          |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------|--|
| Pesticides 632                   | See Attached Report for Quality Assurance Information                                                       |  |
| Pesticide 1657<br>Herbicides 615 | See Attached Report for Quality Assurance Information See Attached Report for Quality Assurance Information |  |
|                                  |                                                                                                             |  |

Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.

These analytical results relate only to the sample tested.

All data is reported on an 'As Is' basis unless designated as 'Dry Wt',

RL = Reporting Limits

www.pcslab.net chuck@pcslab.net 1532 Universal City Blvd Universal City, TX 78148-3318 Main: 210-340-0343 Fax: 210-658-7903



### **Report of Sample Analysis**

| Client Information                                                                     | Sample Information                                                                                                                     | Laboratory Information                                                                                                              |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131 | Project Name: Gruene TCEQ Major Permit<br>Sample ID: Effluent 02112537<br>Matrix: Non-Potable Water<br>Date/Time Taken: 2/11/2025 0800 | PCS Sample #: 791259 Page 1 of 1 Date/Time Received: 2/11/2025 10:16 Report Date: 2/26/2025  Approved by: Linck Wallgren, President |

| Test Description  | Result | Units | RL  | Analysis Date/Time | Method        | Analyst |
|-------------------|--------|-------|-----|--------------------|---------------|---------|
| Ammonia-N (ISE)   | <0.1   | mg/L  | 0.1 | 02/13/2025 10:45   | SM 4500-NH3 D | CLH     |
| Kjeldahl-N, Total | 2      | mg/L  | 1   | 02/21/2025 11:00   | SM 4500-N B/C | PML     |

| Test Description  | Precision | Quality As<br>Limit | surance Sumn<br>LCL | nary<br>MS | MSD | UCL | LCS | LCS Limit | Blank |
|-------------------|-----------|---------------------|---------------------|------------|-----|-----|-----|-----------|-------|
| Ammonia-N (ISE)   | <1        | 10                  | 80                  | 88         | 88  | 120 | 89  | 85 - 115  |       |
| Kjeldahl-N, Total | 2         | 10                  | 90                  | 99         | 97  | 109 | 106 | 85 - 115  | <1    |

Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.

These analytical results relate only to the sample tested.
All data is reported on an 'As Is' basis unless designated as 'Dry Wt'.
RL = Reporting Limits



### **Report of Sample Analysis**

| Client Information                                                                     | Sample Information                                                                                                                      | Laboratory Information                                                                                      |  |  |  |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|
| Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131 | Project Name: Gruene TCEQ Major Permit<br>Sample ID: Effluent 02112538<br>Matrix: Non-Potable Water<br>Date/Time Taken: 02/11/2025 0800 | PCS Sample #: 791260 Page 1 of 2 Date/Time Received: 02/11/2025 10:16 Report Date: 03/21/2025  Approved by: |  |  |  |

| <b>Test Description</b> | Result    | Units               | RL                    | Analysis D | ate/Time | Method           | Analyst    |
|-------------------------|-----------|---------------------|-----------------------|------------|----------|------------------|------------|
| Arsenic/ICP MS          | < 0.0005  | mg/L                | 0.0005                | 02/17/2025 | 5 11:05  | EPA 200.8        | DJL        |
| Barium/ICP (Total)      | 0.006     | mg/L                | 0.003                 | 03/19/2025 | 5 10:08  | EPA 200.7 / 6010 | B DJL      |
| Cadmium/ICP (Total)     | < 0.001   | mg/L                | 0.001                 | 03/19/2025 | 5 10:08  | EPA 200.7 / 6010 | B DJL      |
| Chromium/ICP (Total)    | < 0.003   | mg/L                | 0.003                 | 03/19/2025 | 5 10:08  | EPA 200.7 / 6010 | B DJL      |
| Copper/ICP (Total)      | 0.011     | mg/L                | 0.002                 | 03/19/2025 | 5 10:08  | EPA 200.7 / 6010 | B DJL      |
| Lead/ICP MS             | < 0.0005  | mg/L                | 0.0005                | 02/17/2025 | 5 11:05  | EPA 200.8        | DJL        |
| Aluminum/ICP (Total)    | 0.096     | mg/L                | 0.0025                | 03/19/2025 | 5 12:37  | EPA 200.7 / 6010 | B DJL      |
| Beryllium/ICP (Total)   | < 0.0005  | mg/L                | 0.0005                | 03/19/2025 | 5 10:08  | EPA 200.7 / 6010 | B DJL      |
| Test Description        | Precision | Quality As<br>Limit | ssurance Summa<br>LCL | MS MS      | D UCL    | LCS LCS L        | imit Blank |
| Arsenic/ICP MS          | 2         | 20                  | 70                    | 96 97      | 130      | 98 85 - 11       | 5          |

| Test Description      | Precision | Quality As<br>Limit | surance Sumn<br>LCL | nary<br>MS | MSD | UCL | LCS | LCS Limit | Blank |  |
|-----------------------|-----------|---------------------|---------------------|------------|-----|-----|-----|-----------|-------|--|
| Arsenic/ICP MS        | 2         | 20                  | 70                  | 96         | 97  | 130 | 98  | 85 - 115  |       |  |
| Barium/ICP (Total)    | 1         | 20                  | 75                  | 92         | 91  | 125 | 105 | 85 - 115  |       |  |
| Cadmium/ICP (Total)   | 1         | 20                  | 75                  | 96         | 95  | 125 | 100 | 85 - 115  |       |  |
| Chromium/ICP (Total)  | 1         | 20                  | 75                  | 95         | 94  | 125 | 105 | 85 - 115  |       |  |
| Copper/ICP (Total)    | <1        | 20                  | 75                  | 100        | 100 | 125 | 105 | 85 - 115  |       |  |
| Lead/ICP MS           | 1         | 20                  | 70                  | 102        | 103 | 130 | 103 | 85 - 115  |       |  |
| Aluminum/ICP (Total)  | <1        | 20                  | 75                  | 102        | 102 | 125 | 95  | 85 - 115  |       |  |
| Beryllium/ICP (Total) | 1         | 20                  | 75                  | 98         | 97  | 125 | 100 | 85 - 115  |       |  |

Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.

These analytical results relate only to the sample tested. All data is reported on an 'As Is' basis unless designated as 'Dry Wt'.  $RL = Reporting\ Limits$ 



## **Report of Sample Analysis**

| Client Information                                                                     | Sample Information                                                                                                                      | Laboratory Information                                                                              |  |  |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|
| Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131 | Project Name: Gruene TCEQ Major Permit<br>Sample ID: Effluent 02112538<br>Matrix: Non-Potable Water<br>Date/Time Taken: 02/11/2025 0800 | PCS Sample #: 791260 Page 2 of 2<br>Date/Time Received: 02/11/2025 10:16<br>Report Date: 03/21/2025 |  |  |

| Test Description   | Result                    | Units | RL     | Analysis Date/Time | Method             | Analyst |  |  |
|--------------------|---------------------------|-------|--------|--------------------|--------------------|---------|--|--|
| Trivalent Chromium | < 0.003                   | mg/L  | N/A    | 03/19/2025 10:08   | Calculation        | DJL     |  |  |
| Hexavalent Chrome  | < 0.003                   | mg/L  | 0.003  | 02/11/2025 16:00   | SM 3500-Cr B       | DJL     |  |  |
| Nickel/ICP (Total) | < 0.002                   | mg/L  | 0.002  | 03/19/2025_10:08   | EPA 200.7 / 6010 B | DJL     |  |  |
| Zinc/ICP (Total)   | 0.009                     | mg/L  | 0.005  | 03/19/2025 10:08   | EPA 200.7 / 6010 B | DJL     |  |  |
| Antimony/ICP MS    | < 0.005                   | mg/L  | 0.005  | 02/17/2025 11:05   | EPA 200.8          | DJL     |  |  |
| Thallium/ICP MS    | 0.0007                    | mg/L  | 0.0005 | 02/17/2025 11:05   | EPA 200.8          | DJL     |  |  |
| Selenium/ICP MS    | < 0.005                   | mg/L  | 0.005  | 02/17/2025 11:05   | EPA 200.8          | DJL     |  |  |
| Silver/ICP MS      | < 0.0005                  | mg/L  | 0.0005 | 02/17/2025 11:05   | EPA 200.8          | DJL     |  |  |
|                    | Quality Assurance Summary |       |        |                    |                    |         |  |  |

| Test Description   | Precisio | Quality A<br>n Limit | ssurance Sum<br>LCL | mary<br>MS | MSD  | UCL | LCS | LCS Limit | Blank |
|--------------------|----------|----------------------|---------------------|------------|------|-----|-----|-----------|-------|
| Trivalent Chromium | N/A      | N/A                  | N/A                 |            |      | N/A |     |           |       |
| Hexavalent Chrome  | <1       | 20                   | 75                  | 84         | 84   | 125 | 99  | 85 - 115  |       |
| Nickel/ICP (Total) | 2        | 20                   | 75                  | 90         | 89   | 125 | 105 | 85 - 115  |       |
| Zinc/ICP (Total)   | 10       | 20                   | 75                  | 99         | 90   | 125 | 105 | 85 - 115  |       |
| Antimony/ICP MS    | <1       | 20                   | 70                  | 95         | 95   | 130 | 95  | 85 - 115  |       |
| Thallium/ICP MS    | 2        | 20                   | 70                  | 100        | 102  | 130 | 99  | 85 - 115  |       |
| Selenium/ICP MS    | 2        | 20                   | 70                  | *N/C       | *N/C | 130 | 99  | 85 - 115  |       |
| Silver/ICP MS      | <1       | 20                   | 70                  | *N/C       | *N/C | 130 | 99  | 85 - 115  |       |

Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.

\*Approved for release per QA Plan, Exception to Limits - QAM Section 13-4

These analytical results relate only to the sample tested.

All data is reported on an 'As Is' basis unless designated as 'Dry Wt'.

RL = Reporting Limits

\*N/C = Not Calculated, Sample Concentration Greater than 5 times the Spike Level

www.pcslab.net chuck@pcslab.net 1532 Universal City Blvd Universal City, TX 78148-3318 Main: 210-340-0343 Fax: 210-658-7903



## **Report of Sample Analysis**

| Client Information                                                                     | Sample Information                                                                                                                     | Laboratory Information                                                                                                              |  |  |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131 | Project Name: Gruene TCEQ Major Permit<br>Sample ID: Effluent 02112539<br>Matrix: Non-Potable Water<br>Date/Time Taken: 2/11/2025 0810 | PCS Sample #: 791261 Page 1 of 1 Date/Time Received: 2/11/2025 10:16 Report Date: 2/19/2025  Approved by: Chuck Wallgren, President |  |  |

| Test Description        | Result | Units | RL | Analysis Date/Time | Method       | Analyst |
|-------------------------|--------|-------|----|--------------------|--------------|---------|
| Oil and Grease (H.E.M.) | <5.0   | mg/L  | 5  | 02/17/2025 11:00   | EPA 1664 Rev | EMV     |

|                         |           | Quality As | surance Sumi | nary |     |     |     |           |       |
|-------------------------|-----------|------------|--------------|------|-----|-----|-----|-----------|-------|
| Test Description        | Precision | Limit      | LCL          | MS   | MSD | UCL | LCS | LCS Limit | Blank |
| Oil and Grease (H.E.M.) | <1        | 18         | N/A          | N/A  | N/A | N/A | 100 | 78 - 114  |       |

Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.

These analytical results relate only to the sample tested.
All data is reported on an 'As Is' basis unless designated as 'Dry Wt'.
RL = Reporting Limits

1532 Universal City Blvd Universal City, TX 78148-3318 Main: 210-340-0343 Fax: 210-658-7903



**Report of Sample Analysis** 

| Client Information                                                                     | Sample Information                                                                                                                     | Laboratory Information                                                                                                             |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131 | Project Name: Gruene TCEQ Major Permit<br>Sample ID: Effluent 02112540<br>Matrix: Non-Potable Water<br>Date/Time Taken: 2/11/2025 0811 | PCS Sample #: 791262 Page 1 of 1 Date/Time Received: 2/11/2025 10:16 Report Date: 2/20/2025 Approved by: Chuck Wallgren, Plesident |

| Test Description                                                                             | Result Un                                                | its RL                                    | Analysis Date/Time                                                                        | Method                                                      | Analyst          |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------|
| Volatiles 624                                                                                | See Attached                                             | IIIS KL                                   | Analysis Date: Time                                                                       | DHL                                                         | z mary st        |
|                                                                                              |                                                          |                                           |                                                                                           |                                                             |                  |
| Quality Statement: All supporting quality data exceptions or in a case narrative attachment. | adhered to data quality d<br>Reports with full quality d | objectives and tes<br>lata deliverables d | t results meet the requirement<br>are available on request.                               | s of NELAC unless otherwise                                 | noted as flagged |
|                                                                                              |                                                          |                                           | These analytical results relate of All data is reported on an 'As I RL = Reporting Limits | only to the sample tested. s' basis unless designated as 'D | ry Wt'.          |

Web Site: www.pcslab.net eMail: chuck@pcslab.net

Result

Flag



Analyst

## **Report of Sample Analysis**

**Analysis Date/Time** 

| Client Information                                                                     | Sample Information                                                                                                                     | Laboratory Information                                                                                                              |  |  |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131 | Project Name: Gruene TCEQ Major Permit<br>Sample ID: Effluent 02112541<br>Matrix: Non-Potable Water<br>Date/Time Taken: 2/11/2025 0812 | PCS Sample #: 791263 Page 1 of 1 Date/Time Received: 2/11/2025 10:16 Report Date: 2/20/2025  Approved by: Chuck Wallgren, President |  |  |

RL

Units

| Cyanide, Amenable                                                                                                                                                                                                                                                                       | + See Attached | DHL                                                                                                                                                      |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                         |                |                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                         |                |                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                         | *              |                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                         |                |                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                         |                |                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                         |                |                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                         |                |                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                         |                |                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                         |                |                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                         |                |                                                                                                                                                          |  |  |  |  |  |  |
| Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request. |                |                                                                                                                                                          |  |  |  |  |  |  |
| + Subcontract Work - NELAP Certifi                                                                                                                                                                                                                                                      | ed Lab         | These analytical results relate only to the sample tested. All data is reported on an 'As Is' basis unless designated as 'Dry Wt'. RL = Reporting Limits |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                         |                |                                                                                                                                                          |  |  |  |  |  |  |

Web Site: www.pcslab.net eMail: chuck@pcslab.net

**Test Description** 

Method

Result

Unite



Analyst

**Report of Sample Analysis** 

Analysis Date/Time

| Client Information                                                                     | Sample Information                                                                                                                     | Laboratory Information                                                                                                               |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131 | Project Name: Gruene TCEQ Major Permit<br>Sample ID: Effluent 02112542<br>Matrix: Non-Potable Water<br>Date/Time Taken: 2/11/2025 0813 | PCS Sample #: 791264 Page 1 of 1 Date/Time Received: 2/11/2025 10:16 Report Date: 2/27/2025  Approved by:  Chuck Wallgren, President |

RI.

| Phenols, Distillable                                                   | See Attached                                                                                             | SPL                                                                                                                                                      |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                        |                                                                                                          |                                                                                                                                                          |
| 587                                                                    |                                                                                                          |                                                                                                                                                          |
|                                                                        |                                                                                                          |                                                                                                                                                          |
|                                                                        |                                                                                                          |                                                                                                                                                          |
|                                                                        |                                                                                                          |                                                                                                                                                          |
|                                                                        |                                                                                                          |                                                                                                                                                          |
|                                                                        |                                                                                                          |                                                                                                                                                          |
|                                                                        |                                                                                                          |                                                                                                                                                          |
|                                                                        |                                                                                                          |                                                                                                                                                          |
|                                                                        |                                                                                                          |                                                                                                                                                          |
| 046                                                                    |                                                                                                          |                                                                                                                                                          |
|                                                                        |                                                                                                          |                                                                                                                                                          |
| Quality Statement: All supporting exceptions or in a case narrative at | quality data adhered to data quality objectives ar<br>ttachment. Reports with full quality data delivera | nd test results meet the requirements of NELAC unless otherwise noted as flagged bles are available on request.                                          |
|                                                                        |                                                                                                          | These analytical results relate only to the sample tested. All data is reported on an 'As Is' basis unless designated as 'Dry Wt'. RL = Reporting Limits |
|                                                                        |                                                                                                          |                                                                                                                                                          |

Web Site: www.pcslab.net eMail: chuck@pcslab.net

Test Description

Method



## **Report of Sample Analysis**

| Client Information                                                                     | Sample Information                                                                                                                     | Laboratory Information                                                                                                              |  |  |  |  |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Trish Soechting (WWTP) New Braunfels Utilities P.O. Box 310289 New Braunfels, TX 78131 | Project Name: Gruene TCEQ Major Permit<br>Sample ID: Effluent 02112543<br>Matrix: Non-Potable Water<br>Date/Time Taken: 2/11/2025 0814 | PCS Sample #: 791265 Page 1 of 1 Date/Time Received: 2/11/2025 10:16 Report Date: 2/28/2025  Approved by: Chuck Wallgren, President |  |  |  |  |

| Test Description | Result     | Units | RL       | <b>Analysis Date/Time</b> | Method    | <u>Analyst</u> |
|------------------|------------|-------|----------|---------------------------|-----------|----------------|
| Mercury/CVAFS    | < 0.000005 | mg/L  | 0.000005 | 02/27/2025 08:35          | EPA 245.7 | DJL            |

| Test Description | Precision | Quality As<br>Limit | Surance Summ<br>LCL | MS MS | MSD | UCL | LCS | LCS Limit | Blank    |
|------------------|-----------|---------------------|---------------------|-------|-----|-----|-----|-----------|----------|
| Mercury/CVAFS    | 6         | 20                  | 70                  | 91    | 98  | 130 | 103 | 70 - 130  | <1.8ng/L |

Quality Statement: All supporting quality data adhered to data quality objectives and test results meet the requirements of NELAC unless otherwise noted as flagged exceptions or in a case narrative attachment. Reports with full quality data deliverables are available on request.

These analytical results relate only to the sample tested.
All data is reported on an 'As Is' basis unless designated as 'Dry Wt'.
RL = Reporting Limits

Chain of Custody Number

791258

MULTIPLE SAMPLE ANALYSIS REQUEST AND CHAIN OF CUSTODY FORM

Stamp 1<sup>st</sup> sample and COC as same number

| CUSTOMER INFORMA           | TION              |                   |                                 |                      |                                  | INI              | OR        | MATION                                                                                                            |                             |           |             |           |          |        |               |             |                                                                        |
|----------------------------|-------------------|-------------------|---------------------------------|----------------------|----------------------------------|------------------|-----------|-------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------|-------------|-----------|----------|--------|---------------|-------------|------------------------------------------------------------------------|
| Name: New Braunfels Uti    | ilities           |                   |                                 |                      | Attention                        | Tris             | h So      | echting                                                                                                           |                             | Pho       | ne: (8      | 30) 6     | 08-89    | 00     |               | Fax         | x: (830) 626-1361                                                      |
| SAMPLE INFORMATIO          | N                 |                   |                                 |                      |                                  |                  |           |                                                                                                                   | Reg                         | ueste     | d Ana       | lysis     |          |        |               |             |                                                                        |
| Project Information:       |                   |                   | Collec                          | ted By               | · Smun Bc                        | 5,0              | sk        |                                                                                                                   | ex.<br>625                  |           | 10          |           |          |        |               |             | Instructions/Comments:                                                 |
| Gruene TCEQ Major Perm     | it Renewal        |                   |                                 |                      | Matrix                           |                  | Container |                                                                                                                   | 604 1 H                     |           | 23          |           |          |        | st)           | Hg          | *Al, Ba, Be, Cd, Cr, Cu, Ni, Zn, SbMS,<br>AsMS, PbMS, SeMS, AgMS, TIMS |
| Report "Soils" As Is Dry   | Wt.               |                   | Field Chlorine<br>Residual mg/L | e or                 | DW-Drinking<br>Water; NPW-Non-   |                  | h         |                                                                                                                   | 608, 617, 63                | NH3N, TKN | Hero        | FOG (HEM) | 624      |        | Phenol (Dist) | Level       | Asivio, Polvio, Selvio, Agivio, Tilvio                                 |
|                            | Colle             | cted              | E CF                            | posit                | potable water;<br>WW-Wastewater; | Type             | Number    | Preservative                                                                                                      | 3N, F.                      | z         | *s          | 7         | 9.2      | A      | loc           | , Ľ         |                                                                        |
| Client / Field Sample ID   | Date              | Time              | Field<br>Resid                  | Composite or<br>Grab | LW-Liquid Waste                  |                  |           |                                                                                                                   | SO4, C1, NO<br>Herb 615, Pe | NH3       | Metals*     | FOG       | VOC      | CN-A   | Phe           | Low         | PCS Sample Number                                                      |
| Effluent                   | Start:            | Start:            |                                 | <b>■</b> C<br>□G     | DW NPW Soil                      | ☑P<br>☑G<br>□O   | 8         | □ H <sub>2</sub> SO <sub>4</sub> □ HNO <sub>3</sub><br>□ H <sub>3</sub> PO <sub>4</sub> □ NaOH<br>☑ ICE □         | $\setminus$                 |           |             |           |          |        |               |             | 791258                                                                 |
| 02112536                   | End:              | End:              |                                 |                      | ☐ Sludge ☐ LW<br>☐ Other         | 0                | w         | ☑ICE □                                                                                                            | ^ \                         |           |             |           |          |        |               |             | □S □B □N □HEM Other:                                                   |
| Effluent                   | 7 1/1 . 5         | Start:<br>ರಿಶ್ರಿಂ |                                 | ■C<br>□G             | ☐ DW ■ NPW<br>☐ WW ☐ Soil        | ☑P<br>□G         |           | ☐ H <sub>2</sub> SO <sub>4</sub> ☐ HNO <sub>3</sub><br>☐ H <sub>3</sub> PO <sub>4</sub> ☐ NaOH                    |                             | X         |             |           |          |        |               |             | 791259                                                                 |
| 02112537                   | End: 2-11-25      | End:              |                                 |                      | ☐ Sludge ☐ LW<br>☐ Other         | <b>0</b> 0       | 1         | ☑ ICE □                                                                                                           |                             | ^ \       |             |           |          |        |               |             | □S □B □N □HEM Other:                                                   |
| Effluent                   | Start:            | Start:            |                                 | ■C<br>□G             | DW NPW Soil                      | <b>⊡</b> P<br>□G | 2         | □H <sub>2</sub> SO <sub>4</sub> □HNO <sub>3</sub><br>□H <sub>3</sub> PO <sub>4</sub> □NaOH                        |                             |           | $\setminus$ |           |          |        |               |             | 791260                                                                 |
| 02112538                   | End:              | End:              |                                 |                      | Sludge LW                        |                  | 1         | ☑ICE □                                                                                                            |                             |           |             |           |          |        |               |             | □S □B □N □HEM Other:                                                   |
| Effluent                   | Start: 2.11.75    | Start:            |                                 | □C<br><b>•</b> G     | ☐ DW ■ NPW<br>☐ WW ☐ Soil        | □P<br>☑G         | 1         | ☐ H <sub>2</sub> SO <sub>4</sub> ☐ HNO <sub>3</sub> ☐ H <sub>3</sub> PO <sub>4</sub> ☐ NaOH                       |                             |           |             | $\times$  |          |        |               |             | 791261                                                                 |
| 02112539                   | End:              | End:              |                                 |                      | ☐ Sludge ☐ LW<br>☐ Other         | <b>□</b> 0       | 1         | □ ICE □                                                                                                           |                             |           |             |           |          |        |               |             | □S □B □N □HEM Other:                                                   |
| Effluent                   |                   | Start:            |                                 | □C<br><b>•</b> G     | ☐ DW ■ NPW<br>☐ WW ☐ Soil        | □P<br>☑G         | _         | □H <sub>2</sub> SO <sub>4</sub> □HNO <sub>3</sub><br>□H <sub>3</sub> PO <sub>4</sub> □NaOH                        |                             |           |             |           | $\times$ |        |               |             | 791262                                                                 |
| 02112540                   | End:              | End:              |                                 |                      | ☐ Sludge ☐ LW<br>☐ Other         | ПО               | 4         | □ ICE □                                                                                                           |                             |           |             |           |          |        |               |             | □S □B □N □HEM Other:                                                   |
| Effluent                   | Start: 2.11-24    | Start:            |                                 | □с                   | ☐ DW ■ NPW<br>☐ WW ☐ Soil        | ☑P<br>□G         |           | ☐ H <sub>2</sub> SO <sub>4</sub> ☐ HNO <sub>3</sub><br>☐ H <sub>3</sub> PO <sub>4</sub> ☑ NaOH                    |                             |           |             |           |          | $\vee$ |               |             | 791263                                                                 |
| 02112541                   | End:              | End:              |                                 | ■G                   | ☐ Sludge ☐ LW<br>☐ Other         | <b>□</b> 0       | l         | □ ICE □                                                                                                           |                             |           |             |           |          |        | 8             |             | □S □B □N □HEM Other:                                                   |
| Effluent                   |                   | Start:<br>OSI3    |                                 | □C<br>■G             | ☐ DW ■ NPW<br>☐ WW ☐ Soil        | □P<br>☑G         | ,         | <ul> <li>☐ H<sub>2</sub>SO<sub>4</sub> ☐ HNO<sub>3</sub></li> <li>☐ H<sub>3</sub>PO<sub>4</sub> ☐ NaOH</li> </ul> |                             |           |             |           |          |        | $\setminus$   |             | 791264                                                                 |
| 02112542                   | End:              | End:              |                                 |                      | Sludge LW Other                  | <b>□</b> 0       | 1         | ☑ICE □                                                                                                            |                             |           |             |           |          |        |               |             | □S □B □N □HEM Other:                                                   |
| Effluent                   | Start: 2-11-25    | Start:            |                                 | □C<br>■G             | □DW ■NPW<br>□WW □Soil            | □P<br>□G         | _         | □ H <sub>2</sub> SO <sub>4</sub> □ HNO <sub>3</sub><br>□ H <sub>3</sub> PO <sub>4</sub> □ NaOH                    |                             |           |             |           |          |        |               | $\setminus$ | 791265                                                                 |
| 02112543                   | End:              | End:              |                                 |                      | ☐ Sludge ☐LW<br>☐ Other          | Ξō               | 4         | OICE —                                                                                                            |                             |           |             |           |          |        |               |             | □S □B □N □HEM Other:                                                   |
| Required Turnaround: 🗹 🛭   | Loutine (6-10 day | s) <b>EXPEDI</b>  | <i>TE</i> : (S                  | ee Surc              | harge Schedule)                  | □ <              | 8 Hrs     | s. □ < 16 Hrs. □ < 24 H                                                                                           | rs. 🗆 :                     | 5 days    | □ Oth       | er:       |          | Rush ( | Charge        | s Auth      | orized by:                                                             |
| Sample Archive/Disposal: □ | l Laboratory Sta  | ndard 🗆 Holo      | for cli                         | ent picl             | k up Co                          | ntain            | er T      | ype: P = Plastic, G = Glass                                                                                       | i, O=                       | Other     |             |           |          |        | Carrier ID:   |             |                                                                        |
| Relinquished By: Sec       | ,Lrook            |                   | Date                            | : 2-                 | (1-25 Time:                      | 10               | (%        | Received By:                                                                                                      |                             |           |             |           |          |        | Date          | :           | Time:                                                                  |
| Relinquished By:           |                   |                   | Date                            | i:                   | Time:                            |                  |           | Received By:                                                                                                      | m                           | 0         | guni        | llon      | ~        |        | Date          | 2           | -11-25 Time: 10/6                                                      |

Rev. Multiple Sample COC\_20180628

1532 Universal City Blvd., Ste. 100, Universal City, Texas 78148

P (210) 340-0343 or (800) 880-4616 - F (210) 658-7903

 $Z: \label{lem:condition} Z: \label{lem:condi$ 

1

POLLUTION CONTROL SERVICES

1532 Universal City Blvd, Suite 100
Universal City, TX 78148-3318
Facsimilie 210.658.7903
210.340.0343

|         |        | CHAIN                                    | OF CUS     | STODY &              | SUBCONT     | RACT TE   | RACKING  | S SHEET                        |          |
|---------|--------|------------------------------------------|------------|----------------------|-------------|-----------|----------|--------------------------------|----------|
| TO:     | SPI    | LAB Cor                                  | р          |                      | Relinqu     | ished by: | Lauren ( | Clay TOFE                      | DEX      |
|         | 260    | 0 Dudley F                               | Road       |                      | Da          | ate/Time: | 02/11/20 | 025 @ 1500                     |          |
|         | Kil    | gore, TX 75                              | 5662       |                      | Rec         | eived by: | man      | - From F                       | EDEX     |
|         | _      |                                          |            |                      | D           | ate/Time: | 2/142    | from F<br>15, 1030             |          |
| PCS#    | ŧ      | Date                                     | Time       | Analysis<br>Requeste |             |           |          | Pres                           | T. A. T. |
| 7912    |        | 02/11/2025                               | 08:00      | Herbicid             |             | 23810     | 2b       | Ice                            | Std      |
| 7912    | 64     | 02/11/2025                               | 0813       | Phenols,             | Distillable | 40        |          | H <sub>2</sub> SO <sub>4</sub> | Std      |
|         |        |                                          |            |                      |             |           |          |                                |          |
|         |        |                                          |            |                      |             |           |          |                                |          |
|         |        |                                          |            |                      |             |           |          |                                |          |
|         |        |                                          |            |                      |             |           |          | -                              |          |
|         | _      |                                          |            |                      |             |           |          |                                |          |
|         |        |                                          |            |                      |             |           |          | -                              |          |
|         |        |                                          |            |                      |             |           |          | 1                              | -        |
|         |        | /0 : 17                                  |            |                      |             | -         |          |                                | 1        |
| Com     | ment   | s/Special Ir                             | istruction | .s:                  |             |           |          |                                |          |
|         |        |                                          |            |                      |             |           |          |                                |          |
| Unle    | ss oth | nerwise req                              | uested, se | end results          | and invoice | to:       |          |                                |          |
|         | Pol    | ick Wallgre<br>lution Cont<br>2 Universa | rol Servi  |                      | 00          |           |          |                                |          |
|         |        | versal City                              |            |                      | JU          |           |          |                                |          |
| -1بيد ٨ |        |                                          | d          | $\bigcap Q_{\alpha}$ | 15. 27. =   |           | D-4      | 2:11:2                         |          |
| Auth    | orize  | d by:                                    | Jam        |                      |             |           | Date: _  | ~112                           | J        |



Page 1 of 1



Printed

02/27/2025 7:09

#### **PCSL-C**

Pollution Control Services Laboratories Chuck Wallgren 1532 Universal City Blvd. Suite 100 Universal City, TX 78148

### **TABLE OF CONTENTS**

#### This report consists of this Table of Contents and the following pages:

| Report Name                   | <u>Description</u>                                                           | <u>Pages</u> |
|-------------------------------|------------------------------------------------------------------------------|--------------|
| 1135969_r02_01_ProjectSamples | SPL Kilgore Project P:1135969 C:PCSL Project Sample<br>Cross Reference t:304 | 1            |
| 1135969_r03_03_ProjectResults | SPL Kilgore Project P:1135969 C:PCSL Project Results t:304                   | 3            |
| 1135969_r10_05_ProjectQC      | SPL Kilgore Project P:1135969 C:PCSL Project Quality<br>Control Groups       | 2            |
| 1135969_r99_09_CoC1_of_1      | SPL Kilgore CoC PCSL 1135969_1_of_1                                          | 2            |
|                               | Total Pages:                                                                 | 8            |

Email: Kilgore.ProjectManagement@spllabs.com





### SAMPLE CROSS REFERENCE



Printed

2/27/2025

Page 1 of 1

ww

Pollution Control Services Laboratories

Chuck Wallgren 1532 Universal City Blvd.

Suite 100

Universal City, TX 78148

| Sample  | Sample ID | Taken      | Time     | Received   |
|---------|-----------|------------|----------|------------|
| 2381026 | 791258    | 02/11/2025 | 08:00:00 | 02/12/2025 |

Bottle 01 Client Supplied Amber Glass

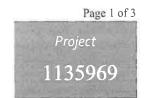
Bottle 02 Prepared Bottle: 2 mL Autosampler Vial (Batch 1161589) Volume: 10.00000 mL <= Derived from 01 ( 944 ml )

|         | Method<br>EPA 615 | Bottle<br>02 | PrepSet 1161589 | Preparation 02/19/2025 | <b>QcGroup</b> 1162608 | Analytical<br>02/26/2025 |
|---------|-------------------|--------------|-----------------|------------------------|------------------------|--------------------------|
| Sample  | Sample ID         | Taken        | Time            |                        | Received               |                          |
| 2381029 | 791264            | 02/11/2025   | 08:13:00        |                        | 02/12/2025             |                          |

Bottle 01 Client supplied H2SO4 Amber Glass

Bottle~02~Prepared~Bottle:~Phenol~TRAACS~Autosampler~Vial~(Batch~1160863)~Volume:~6.00000~mL <== Derived~from~01~(~6~ml~)~1200000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.000000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~Volume:~1.00000~mL~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(100863)~ML~(1

| Method      | Bottle | PrepSet | Preparation | QcGroup | Analytical |
|-------------|--------|---------|-------------|---------|------------|
| EPA 420.4 1 | 02     | 1160863 | 02/14/2025  | 1161351 | 02/18/2025 |


Email: Kilgore.ProjectManagement@spllabs.com

Office: 903-984-0551 \* Fax: 903-984-5914



#### PCSL-C

Pollution Control Services Laboratories Chuck Wallgren 1532 Universal City Blvd. Suite 100 Universal City, TX 78148



Printed:

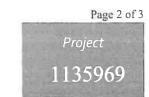
02/27/2025

#### **RESULTS**

|                                                                    |                                        | Sample Results                   |                           |                           | ,            |
|--------------------------------------------------------------------|----------------------------------------|----------------------------------|---------------------------|---------------------------|--------------|
| 2381026 791258 Non-Potable Water                                   | Collected by: Client Taken: 02/11/2025 | Pollution Control Se<br>08:00:00 | PO:                       | Received:                 | 02/12/2025   |
| EPA 615                                                            | Prepared:                              | 1161589 02/19/2025               | 14:30:00 Analyzed 1162608 | 02/26/2025                | 03:02:00 KAI |
| Parameter  2,4 Dichlorophenoxyacetic acid  NELAC 2,4,5-TP (Silvex) | Results<br><0.530<br><0.300            | Units RL ug/L 0.530 ug/L 0.300   | Flags<br>X                | CAS<br>94-75-7<br>93-72-1 | Bottle 02 02 |
| 2381029 791264<br>Non-Potable Water                                | Collected by: Client Taken: 02/11/2025 | Pollution Control Se<br>08:13:00 | PO:                       | Received:                 | 02/12/2025   |
| EPA 420.4 I                                                        | Prepared:                              | 1160863 02/14/2025               | 09:56:55 Analyzed 1161351 | 02/18/2025                | 11:02:00 MEG |
| Parameter  NELAC Phenolics, Total Recoverable                      | Results<br>0.010                       | Units RL<br>mg/L 0.005           | Flags                     | CAS                       | Bottle<br>02 |
|                                                                    | S                                      | ample Preparation                |                           |                           |              |
| 2381026 791258                                                     |                                        |                                  |                           | Received:                 | 02/12/2025   |
|                                                                    | 02/11/2025                             |                                  |                           |                           |              |
| EPA 615                                                            | Prepared:                              | 1161589 02/19/2025               | 14:30:00 Analyzed 1161589 | 02/19/2025                | 14:30:00 CRS |
| NELAC Esterification of Sample                                     | 10/944                                 | ml                               |                           |                           | 01           |



Report Page 3 of 9


Office: 903-984-0551 \* Fax: 903-984-5914



Received:

#### PCSL-C

Pollution Control Services Laboratories Chuck Wallgren 1532 Universal City Blvd. Suite 100 Universal City, TX 78148



Printed:

02/27/2025

02/12/2025

**2381026 791258** Received: 02/12/2025

02/11/2025

 EPA 615
 Prepared: 1161589 02/19/2025 14:30:00 Analyzed 1162608 02/26/2025 03:02:00 KAP

 NELAC
 Herbicides by GC
 Entered
 02

02/11/2025

EPA 420.4 1 Prepared: 1160863 02/14/2025 09:56:55 Analyzed 1160863 02/14/2025 09:56:55 MEG

ELAC Phenol Distillation 6/6 ml 01

#### Qualifiers:

2381029

X - Standard reads higher than desired.

We report results on an As Received (or Wet) basis unless marked Dry Weight.

Unless otherwise noted, testing was performed at SPL, Inc.- Kilgore laboratory which holds International, Federal, and state accreditations. Please see our Websites for details.

(N)ELAC - Covered in our NELAC scope of accreditation z -- Not covered by our NELAC scope of accreditation

791264

These analytical results relate to the sample tested. This report may NOT be reproduced EXCEPT in FULL without written approval of SPL Kilgore. Unless otherwise specified, these test results meet the requirements of NELAC.

RL is the Reporting Limit (sample specific quantitation limit) and is at or above the Method Detection Limit (MDL). CAS is Chemical Abstract Service number. RL is our Reporting Limit, or Minimum Quantitation Level. The RL takes into account the Instrument Detection Limit (IDL), Method Detection Limit (MDL), and Practical Quantitation Limit (PQL), and any dilutions and/or concentrations performed during sample preparation (EQL). Our analytical result must be above this RL before we report a value in the 'Results' column of our report (without a 'J' flag). Otherwise, we report ND (Not Detected above RL), because the result is "<" (less than) the number in the RL column, MAL is Minimum Analytical Level and is typically from regulatory agencies. Unless we report a result in the result column, or interferences prevent it, we work to have our RL at or below the MAL.



Report Page 4 of 9

Office: 903-984-0551 \* Fax: 903-984-5914

#### **PCSL-C**

**Pollution Control Services Laboratories** Chuck Wallgren 1532 Universal City Blvd. Suite 100 Universal City, TX 78148



Bill Peery, MS, VP Technical Services



Page 3 of 3

Project 1135969

Printed:

02/27/2025



### **QUALITY CONTROL**



### **PCSL-C**

Pollution Control Services Laboratories Chuck Wallgren 1532 Universal City Blvd. Suite 100 Universal City, TX 78148

Page 1 of 2



Printed 02/27/2025

| Analytical Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1161351 |         |         |         |          |             |            |           |       | EPA  | A 420.4 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|----------|-------------|------------|-----------|-------|------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |         | ВІ      | ank      |             |            |           |       |      |         |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PrepSet | Reading | MDL     | MQL     | Units    |             |            | File      |       |      |         |
| henolics, Total Recoverable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1160863 | ND      | 0.003   | 0.005   | mg/L     |             |            | 127321808 |       |      |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |         | C       | :cv      |             |            |           |       |      |         |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | Reading | Known   | Units   | Recover% | Limits%     |            | File      |       |      |         |
| Phenolics, Total Recoverable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 0.199   | 0.200   | mg/L    | 99.5     | 90.0 - 110  |            | 127321807 |       |      |         |
| Phenolics, Total Recoverable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 0.193   | 0.200   | mg/L    | 96.5     | 90.0 - 110  |            | 127321816 |       |      |         |
| Phenolics, Total Recoverable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 0.192   | 0.200   | mg/L    | 96.0     | 90.0 - 110  |            | 127321827 |       |      |         |
| Phenolics, Total Recoverable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 0.196   | 0.200   | mg/L    | 98.0     | 90.0 - 110  |            | 127321829 |       |      |         |
| Phenolics, Total Recoverable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 0.186   | 0.200   | mg/L    | 93.0     | 90.0 - 110  |            | 127321840 |       |      |         |
| Phenolics, Total Recoverable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 0.183   | 0.200   | mg/L    | 91.5     | 90.0 - 110  |            | 127321851 |       |      |         |
| Phenolics, Total Recoverable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 0.192   | 0.200   | mg/L    | 96.0     | 90.0 - 110  |            | 127321860 |       |      |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |         | Dup     | olicate  |             |            |           |       |      |         |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample  |         | Result  | Unknown | 7        |             | Unit       |           | RPD   |      | Limit   |
| Phenolics, Total Recoverable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2379961 |         | 0.055   | 0.052   |          |             | mg/L       |           | 5.61  |      | 20.0    |
| Phenolics, Total Recoverable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2380619 |         | 0.052   | 0.055   |          |             | mg/L       |           | 5.61  |      | 20.0    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |         | ı       | CV       |             |            |           |       |      |         |
| Parameter Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | Reading | Known   | Units   | Recover% | Limits%     |            | Filc      |       |      |         |
| Phenolics, Total Recoverable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 0.202   | 0.200   | mg/L    | 101      | 90.0 - 110  |            | 127321806 |       |      |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |         | LCS     | S Dup    |             |            |           |       |      |         |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PrepSet | LCS     | LCSD    |         | Known    | Limits%     | LCS%       | LCSD%     | Units | RPD  | Limit   |
| Phenolics, Total Recoverable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1160863 | 0.188   | 0.193   |         | 0.200    | 90.0 - 110  | 94.0       | 96.5      | mg/L  | 2.62 | 20.0    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |         | Mat     | . Spike  |             |            |           |       |      |         |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample  | Spike   | Unknown | Кпошп   | Units    | Recovery %  | Limits %   | File      |       |      |         |
| Phenolics, Total Recoverable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2379961 | 0.197   | 0.052   | 0.200   | mg/L     | 72.5        | 90.0 - 110 | 127321813 |       | *    |         |
| Phenolics, Total Recoverable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2380619 | 0.191   | 0.055   | 0.200   | mg/L     | 68.0        | 90.0 - 110 | 127321817 |       |      |         |
| Analytical Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1162608 |         |         |         |          |             |            |           |       |      | EPA 6   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |         | В       | lank     |             |            |           |       |      |         |
| Parameter Parame | PrepSet | Reading | MDL     | MQL     | Units    |             |            | File      |       |      |         |
| 2,4 Dichlorophenoxyacetic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1161589 | ND      | 15.9    | 50.0    | ug/L     |             |            | 127345575 |       |      |         |
| 2,4,5-TP (Silvex)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1161589 | ND      | 8.93    | 30.0    | ug/L     |             |            | 127345575 |       |      |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |         | (       | CCV      |             |            |           |       |      |         |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | Reading | Клошп   | Units   | Recover% | Limits%     |            | File      |       |      |         |
| 2,4 Dichlorophenoxyacetic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | 152     | 150     | ug/L    | 101      | 80.0 - 115  |            | 127345571 |       |      |         |
| 2,4 Dichlorophenoxyacetic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | 177     | 150     | ug/L    | 118      | 80.0 - 115  | •          | 127345579 |       |      |         |
| 2,4,5-TP (Silvex)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 152     | 150     | ug/L    | 101      | 80.0 - 115  |            | 127345571 |       |      |         |
| 2,4,5-TP (Silvex)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 143     | 150     | ug/L    | 95.5     | 80.0 - 115  |            | 127345579 |       |      |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |         | LC      | S Dup    |             |            |           |       |      |         |
| Parameter Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PrepSet | LCS     | LCSD    |         | Known    | Limits%     | LCS%       | LCSD%     | Units | RPD  | Limit   |
| 2,4 Dichlorophenoxyacetic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1161589 | 57.2    | 56.6    |         | 100      | 0.100 - 319 | 57.2       | 56.6      | ug/L  | 1.05 | 30.0    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |         |         |          |             |            |           |       |      |         |

Email: Kilgore.ProjectManagement@spllabs.com



Report Page 6 of 9

### **QUALITY CONTROL**



Page 2 of 2



Printed 02/27/2025

#### PCSL-C

Pollution Control Services Laboratories Chuck Wallgren 1532 Universal City Blvd. Suite 100 Universal City, TX 78148

#### LCS Dup

| Parameter<br>2,4,5-TP (Silvex) | PrepSet<br>1161589 | LCS<br><b>54.7</b> | LCSD<br><b>54.4</b> |       | Known<br>100 | <i>Limits%</i> 0.100 - 244 | LCS%<br>54.7 | LCSD%<br>54.4 | <i>Units</i><br>ug/L | <i>RPD</i> 0.550 | <i>Limit%</i> 30.0 |
|--------------------------------|--------------------|--------------------|---------------------|-------|--------------|----------------------------|--------------|---------------|----------------------|------------------|--------------------|
|                                |                    |                    |                     | Surr  | ogate        |                            |              |               |                      |                  |                    |
| Parameter                      | Sample             | Type               | Reading             | Кпошп | Units        | Recover%                   | Limits%      | File          |                      |                  |                    |
| 2,4-Dichlorophenylacetic Acid  |                    | CCV                | 151                 | 200   | ug/L         | 75.5                       | 0.100 - 313  | 127345571     |                      |                  |                    |
| 2,4-Dichlorophenylacetic Acid  |                    | CCV                | 179                 | 200   | ug/L         | 89.5                       | 0.100 - 313  | 127345579     |                      |                  |                    |
| 2,4-Dichlorophenylacetic Acid  | 1161589            | Blank              | 104                 | 200   | ug/L         | 52.0                       | 0.100 - 313  | 127345575     |                      |                  |                    |
| 2,4-Dichlorophenylacetic Acid  | 1161589            | LCS                | 118                 | 200   | ug/L         | 59.0                       | 0.100 - 313  | 127345576     |                      |                  |                    |
| 2,4-Dichlorophenylacetic Acid  | 1161589            | LCS Dup            | 112                 | 200   | ug/L         | 56.0                       | 0.100 - 313  | 127345577     |                      |                  |                    |
| 2,4-Dichlorophenylacetic Acid  | 2381026            | Unknown            | 0.836               | 2.12  | ug/L         | 39.4                       | 0.100 - 313  | 127345578     |                      |                  |                    |

<sup>\*</sup> Out RPD is Relative Percent Difference: abs(r1-r2) / mean(r1,r2) \* 100%

Recover% is Recovery Percent: result / known \* 100%

Blank - Method Blank (reagent water or other blank matrices that contains all reagents except standard(s) and is processed simultaneously with and under the same conditions as samples; carried through preparation and analytical procedures exactly like a sample; monitors); CCV - Continuing Calibration Verification

(same standard

used to prepare the curve; typically a mid-range concentration; verifies the continued validity of the calibration curve); ICV - Initial Calibration Verification; LCS Dup -Laboratory Control Sample Duplicate

(replicate LCS; analyzed when there is insufficient sample for duplicate or MSD; quantifies accuracy and precision.); Surrogate -

Surrogate (mimics the analyte of interest but is unlikely to be found in environmental samples; added to analytical samples for QC purposes. \*\*ANSI/ASQC E4 1994 Ref #4 TRADE QA Resources Guide,)



ORIGIN ID:NIRA CHUCK WALLGREN (210) 340-0343

1532 UNIVERSAL CITY BLVD. #100

UNIVERSAL CITY, TX 78148 UNITED STATES US ACTWGT: 19:00 LB CAD: 112447368/INET453/ DIMS: 16x14x13 IN

TO SPL LAB KILGORE SPL LAB KILGORE

2600 DUDLEY ROAD

ILGORE TX 75662




WED - 12 FEB 10:30A PRIORITY OVERNIGHT

TRK# 7720 1615 8326

75662

TX-US SHV

XS GGGA



Date Time Tech
Temp: 2.9112.7

Therm#: 6205 Corr Fact: -0.6 C

1532 Universal City Blvd, Suite 100 Universal City, TX 78148-3318 Facsimilie 210.658.7903 210.340.0343

2502117

### CHAIN OF CUSTODY & SUBCONTRACT TRACKING SHEET

|    | TO:   | DH     | L Analytic   | al                | Relinquished by: Lau      | ren Clay      |          |
|----|-------|--------|--------------|-------------------|---------------------------|---------------|----------|
|    |       | 230    | 00 Double (  | Creek Dr          | Date/Time: 02/2           | 1/2025 @ 1500 |          |
|    |       | Rou    | and Rock,    | ΓX 78664          | Received by:              |               |          |
|    |       |        |              |                   | Date/Time: 2/1            | 2/25 10:17    |          |
|    |       |        |              |                   | Analysis                  |               |          |
|    | PCS#  |        | Date         | Time              | Requested                 | Pres          | T. A. T. |
| 01 | 7912  | 58     | 02/11/2025   | 08:00             | 604.1 Hexachlorophene     | Ice           | Std      |
|    | 7912  | 58     |              | i <del>land</del> | Semi Volatiles 625        |               |          |
|    | 7912  | 58     |              | N <del>ama</del>  | Pesticide 1657            |               |          |
|    | 7912  | 58     | CARRAGECTANA |                   | Pesticides 608            |               |          |
|    | 7912: | 58     |              | 2000              | Pesticides 617            |               |          |
|    | 7912: | 58     |              | ****              | Pesticides 632            |               |          |
| 02 | 7912  | 62     | 02/11/2025   | 0811              | Volatiles 624             | Ice           | Std      |
| 03 | 7912  | 63     | 02/11/2025   | 0812              | Cyanide, Amenable         | NaOH          | Std      |
|    |       |        |              |                   | 2.3949                    |               |          |
|    |       |        |              |                   |                           |               |          |
|    | Com   | nents  | s/Special Ir | structions        | 5.0°C, Thera # 78, no     | "UST Seel     |          |
|    | Vie   | · Fe   | I Ere Gro    | isi dellott.      | oro Cluthing to           | -000 3000     |          |
|    |       |        |              |                   |                           |               |          |
|    | Unles | ss oth | erwise req   | uested, se        | d results and invoice to: |               |          |
|    |       | Chu    | ick Wallgre  | en                |                           |               |          |
|    |       | Poll   | lution Cont  | rol Servic        | S                         |               |          |
|    |       |        | 2 Universa   | -                 |                           |               |          |
|    |       | Uni    | versal City  | , TX 781          | 3-3318                    |               |          |
|    | Autho | orize  | d by:        | Land              | Date Date                 | 2.11.26       | >        |
|    |       |        | 1            | V                 |                           |               |          |



February 19, 2025

Chuck Wallgren
Pollution Control Services
1532 Universal City Blvd. #100
Universal City, TX 78148

TEL: (210) 394-4570

FAX: Order No.: 2502117

RE: PCS 791258, 791262-791263

Dear Chuck Wallgren:

DHL Analytical, Inc. received 3 samples on 02/12/2025 for the analyses presented in the following report.

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative and all estimated uncertainties of results are within method specifications.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Karyn Lane

Laboratory Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211 - TX-C24-00120



## Table of Contents

| AnalyticalQCSummaryReport 2502117 1 | 15 |
|-------------------------------------|----|
| Analytical Report 2502117           | 8  |
| WorkOrderSampleSummary 2502117      | 7  |
| CaseNarrative 2502117               | 6  |
| Miscellaneous Documents             | 3  |

FROM: (210) 340-0343 SHIP DATE: 11FEB25
Chuck Walgren (210) 340-0343 GATWG1: 47 00 LB
1532 Universal City Blvd. #100
Universal City TX 78148

TO DHL Analytical
Canonic Creek

TO DHL Analytical
Canonic Creek

Canonic Company Compan

78664

3 2054

S. Fold the principal page along the individual line.
3. Fold the principal page along the individual line.
3. Fold the principal pour and are along the individual page and scanned.
3. Fold the principal pour is and strike it to your shipment so that have the selection of the label in shipming pour and are along the principal pour page.

Wearing: WPORTART TRANSMIT YOUR SHIPPING DEATH of Servind End of the Charles procedure to transmit your shipping data to

After printing this label: - Use the 'Print' bullon on Ilnis page to print your label to your laser or inkiet printer. - Set the critical programme after the programme and the printing of th

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Suide and applicable tailf. available upon request. FedEx will not be responsible for any dalam in because of \$100 per peckage, whether the result of loss, damage, delay, non-delivery, or misinformation, unless you declare a higher value, pay an additional charge, delay, non-delivery, or misinformation, unless you declare a higher value, pay an additional charge delay. The constraint evalue is a fund any delay and the suit of the

At the end of seath shipping day, you should perform the FeelEx Ground End of Day Close procedure to transmit your shipping day, you should perform the Ground End of Day Close Button, if the pickup manifest that appears A printed manifest is required to be tendered along with your packages if they are being picked up by FedEx Ground, If you are dropping your packages off at a FedEx drop off location, the manifest is not required.

4

|                                                               | Sample              | Receipt Check                           | list         | æ                             |
|---------------------------------------------------------------|---------------------|-----------------------------------------|--------------|-------------------------------|
| Client Name: Pollution Control Services                       |                     |                                         | Date Receive | ed: 2/12/2025                 |
| Work Order Number: 2502117                                    |                     |                                         | Received by  | EL                            |
| Checklist completed by: Signature                             | 2/12/202<br>Date    | 5                                       | Reviewed by  | : 2/12/2025<br>Initials Date  |
|                                                               | Carrier name:       | FedEx Ground                            |              |                               |
| Shipping container/cooler in good condition?                  |                     | Yes 🔽                                   | No 🗌         | Not Present                   |
| Custody seals intact on shipping container/coole              | er?                 | Yes                                     | No 🗌         | Not Present 🗹                 |
| Custody seals intact on sample bottles?                       |                     | Yes                                     | No 🗌         | Not Present 🗹                 |
| Chain of custody present?                                     |                     | Yes 🗹                                   | No 🗆         |                               |
| Chain of custody signed when relinquished and                 | received?           | Yes 🗸                                   | No 🗆         |                               |
| Chain of custody agrees with sample labels?                   |                     | Yes 🗸                                   | No 🗌         | *                             |
| Samples in proper container/bottle?                           |                     | Yes 🗹                                   | No 🗌         |                               |
| Sample containers intact?                                     |                     | Yes 🗹                                   | No 🗌         |                               |
| Sufficient sample volume for indicated test?                  |                     | Yes 🗹                                   | No 🗆         |                               |
| All samples received within holding time?                     |                     | Yes 🗹                                   | No 🗆         |                               |
| Water - VOA vials have zero headspace?                        |                     | Yes 🗸                                   | No 🗌 💮 I     | No VOA vials submitted 🔲 NA 🗌 |
| Water - pH<2 acceptable upon receipt?                         |                     | Yes                                     | No 🗌 💮       | NA ☑ LOT#                     |
|                                                               |                     | Adjusted?                               |              | Checked by                    |
| Water - ph>9 (S) or ph>10 (CN) acceptable upor                | n receipt?          | Yes ✓<br>Adjusted?                      | No □   I     | NA DLOT# 12798 Checked by     |
| Container/Temp Blank temperature in compliand                 | ce?                 | Yes 🗹                                   | No 🗌         |                               |
| Cooler# 1                                                     |                     |                                         |              |                               |
| Temp °C 5.0                                                   |                     |                                         |              | Si.                           |
| Seal Intact NP  Any No response must be detailed in the comme | ents section below. |                                         |              |                               |
| Client contacted:                                             | Date contacted:     | = = = = = = = = = = = = = = = = = = = = | Pers         | on contacted:                 |
| Contacted by:                                                 | Regarding:          |                                         |              |                               |
| Comments:                                                     |                     |                                         |              |                               |
| Corrective Action:                                            |                     |                                         |              | 10-0-0-0                      |

Page 1 of 1

CLIENT:

Pollution Control Services

Project:

PCS 791258, 791262-791263

Lab Order:

2502117

**CASE NARRATIVE** 

Date: 19-Feb-25

Samples were analyzed using the methods outlined in the following references:

EPA, ASTM and Standard Methods.

Compounds Diuron and Hexachlorophene Analysis by LCMS are not NELAP Certified.

Several compounds for Pesticides Analysis are not NELAP Certified.

Dicofol and Nonylphenol in Water Analysis are not NELAP Certified.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objectives except where noted in the following.

For Volatiles Analysis, there was no recovery of 2-Chloroethylvinylether for the Matrix Spike and Matrix Spike Duplicate (2502126-08 MS/MSD), due to reaction of the preservation of the sample. Additionally, the RPD of Acrolein for the Matrix Spike Duplicate (2502126-08 /MSD) was above the method control limit. These are flagged accordingly in the QC Summary Report. These compounds were within method control limits in the associated LCS. No further corrective action was taken.

For Pesticides Analysis, the recoveries/RPDs of up to three compounds for the Laboratory Control Spike Duplicate (LCSD-119141) were outside of the method control limits. These are flagged accordingly in the QC Summary Report. These compounds were within method control limits in the associated ICV/LCS. No further corrective action was taken.

For Semivolatiles Analysis, the recovery of Di-n-butyl phthalate for the Laboratory Control Spike Duplicate (LCSD-119140) was slightly above the method control limits. This is flagged accordingly in the QC Summary Report. This compound was within method control limits in the associated ICV/LCS. No further corrective action was taken.

Date: 19-Feb-25

**CLIENT:** 

Pollution Control Services

Project:

PCS 791258, 791262-791263

Lab Order:

2502117

Work Order Sample Summary

| Lab Smp ID | Client Sample ID | Tag Number | Date Collected    | Date Recved |
|------------|------------------|------------|-------------------|-------------|
| 2502117-01 | 791258           |            | 02/11/25 08:00 AM | 02/12/2025  |
| 2502117-02 | 791262           |            | 02/11/25 08:11 AM | 02/12/2025  |
| 2502117-03 | 791263           |            | 02/11/25 08:12 AM | 02/12/2025  |

**CLIENT:** Pollution Control Services

**Project:** PCS 791258, 791262-791263

Project No: Lab Order:

2502117

Date: 19-Feb-25

Client Sample ID: 791258

Lab ID: 2502117-01

Collection Date: 02/11/25 08:00 AM

Matrix: AQUEOUS

| Analyses                   | Result      | MDL       | RL        | Qual | Units | DF | Date Analyzed       |
|----------------------------|-------------|-----------|-----------|------|-------|----|---------------------|
| DIURON-HEXACHLOROPHENE     | BY LCMS     | E         | 332       |      |       |    | Analyst: <b>RA</b>  |
| Diuron                     | <0.0000298  | 0.0000298 | 0.0000795 | N    | mg/L  | 1  | 02/18/25 01:26 PM   |
| Hexachlorophene            | < 0.000994  | 0.000994  | 0.00497   | N    | mg/L  | 1  | 02/18/25 01:26 PM   |
| Surr: Carbazole            | 71.2        | 0         | 35-145    |      | %REC  | 1  | 02/18/25 01:26 PM   |
| 625.1 PCB BY GC/MS         |             | E6:       | 25.1      |      |       |    | Analyst: <b>DEW</b> |
| Aroclor 1016               | < 0.0000970 | 0.0000970 | 0.000194  |      | mg/L  | 1  | 02/17/25 04:28 PM   |
| Aroclor 1221               | < 0.0000970 | 0.0000970 | 0.000194  |      | mg/L  | 1  | 02/17/25 04:28 PM   |
| Aroclor 1232               | < 0.0000970 | 0.0000970 | 0.000194  |      | mg/L  | 1  | 02/17/25 04:28 PM   |
| Aroclor 1242               | < 0.0000970 | 0.0000970 | 0.000194  |      | mg/L  | 1  | 02/17/25 04:28 PM   |
| Aroclor 1248               | <0.0000970  | 0.0000970 | 0.000194  |      | mg/L  | 1  | 02/17/25 04:28 PM   |
| Aroclor 1254               | < 0.0000970 | 0.0000970 | 0.000194  |      | mg/L  | 1  | 02/17/25 04:28 PM   |
| Aroclor 1260               | <0.0000970  | 0.0000970 | 0.000194  |      | mg/L  | 1  | 02/17/25 04:28 PM   |
| Total PCBs                 | <0.0000970  | 0.0000970 | 0.000194  |      | mg/L  | 1  | 02/17/25 04:28 PM   |
| Surr: 2-Fluorobiphenyl     | 58.0        | 0         | 43-116    |      | %REC  | 1  | 02/17/25 04:28 PM   |
| Surr: 4-Terphenyl-d14      | 72.3        | 0         | 33-141    |      | %REC  | 1  | 02/17/25 04:28 PM   |
| 625.1 SEMIVOLATILE WATER   |             | E6:       | 25.1      |      |       |    | Analyst: <b>DEW</b> |
| Anthracene                 | <0.000982   | 0.000982  | 0.00196   |      | mg/L  | 1  | 02/17/25 08:29 PM   |
| Benzidine                  | <0.000982   | 0.000982  | 0.00393   |      | mg/L  | 1  | 02/17/25 08:29 PM   |
| Benzo[a]anthracene         | <0.000982   | 0.000982  | 0.00196   |      | mg/L  | 1  | 02/17/25 08:29 PM   |
| Benzo[a]pyrene             | <0.000982   | 0.000982  | 0.00196   |      | mg/L  | 1  | 02/17/25 08:29 PM   |
| Bis(2-chloroethyl)ether    | <0.000982   | 0.000982  | 0.00196   |      | mg/L  | 1  | 02/17/25 08:29 PM   |
| Bis(2-ethylhexyl)phthalate | < 0.00295   | 0.00295   | 0.00589   |      | mg/L  | 1  | 02/17/25 08:29 PM   |
| Chrysene                   | <0.000982   | 0.000982  | 0.00196   |      | mg/L  | 1  | 02/17/25 08:29 PM   |
| 4,6-Dinitro-o-cresol       | < 0.00196   | 0.00196   | 0.00393   |      | mg/L  | 1  | 02/17/25 08:29 PM   |
| o-Cresol                   | < 0.00196   | 0.00196   | 0.00393   |      | mg/L  | 1  | 02/17/25 08:29 PM   |
| p-Chloro-m-Cresol          | < 0.00196   | 0.00196   | 0.00393   |      | mg/L  | 1  | 02/17/25 08:29 PM   |
| m,p-Cresols                | < 0.00196   | 0.00196   | 0.00393   |      | mg/L  | 1  | 02/17/25 08:29 PM   |
| 3,3'-Dichlorobenzidine     | <0.000982   | 0,000982  | 0.00491   |      | mg/L  | 1  | 02/17/25 08:29 PM   |
| 2,4-Dimethylphenol         | <0.000982   | 0.000982  | 0.00196   |      | mg/L  | 1  | 02/17/25 08:29 PM   |
| Di-n-butyl phthalate       | < 0.00295   | 0.00295   | 0.00589   |      | mg/L  | 1  | 02/17/25 08:29 PM   |
| Hexachlorobenzene          | <0.000982   | 0.000982  | 0.00196   |      | mg/L  | 1  | 02/17/25 08:29 PM   |
| Hexachlorobutadiene        | <0.000982   | 0.000982  | 0.00196   |      | mg/L  | 1  | 02/17/25 08:29 PM   |
| Hexachlorocyclopentadiene  | < 0.000982  | 0.000982  | 0.00196   |      | mg/L  | 1  | 02/17/25 08:29 PM   |
| Hexachloroethane           | <0.000982   | 0.000982  | 0.00196   |      | mg/L  | 1  | 02/17/25 08:29 PM   |
| Nitrobenzene               | <0.000982   | 0.000982  | 0.00196   |      | mg/L  | 1  | 02/17/25 08:29 PM   |
| N-Nitrosodiethylamine      | < 0.00196   | 0.00196   | 0.00393   |      | mg/L  | 1  | 02/17/25 08:29 PM   |
| N-Nitrosodi-n-butylamine   | <0.000982   | 0.000982  | 0.00393   |      | mg/L  | 1  | 02/17/25 08:29 PM   |
| Pentachlorobenzene         | <0.000982   | 0.000982  | 0.00196   |      | mg/L  | 1  | 02/17/25 08:29 PM   |

- Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAP certified

Pollution Control Services **CLIENT:** 

Project: PCS 791258, 791262-791263

Project No: Lab Order:

2502117

Client Sample ID: 791258

Lab ID: 2502117-01

Date: 19-Feb-25

Collection Date: 02/11/25 08:00 AM

Matrix: AQUEOUS

| Analyses                    | Result     | MDL      | RL      | Qual Units | DF | Date Analyzed       |
|-----------------------------|------------|----------|---------|------------|----|---------------------|
| 625.1 SEMIVOLATILE WATER    |            | E62      | 5.1     |            |    | Analyst: <b>DEW</b> |
| Pentachlorophenol           | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| Phenanthrene                | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| Pyridine                    | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| 1,2,4,5-Tetrachlorobenzene  | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| 2,4,5-Trichlorophenol       | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| 2-Chlorophenol              | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| 2,4-Dichlorophenol          | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| 2,4-Dinitrophenol           | < 0.00196  | 0.00196  | 0.00393 | mg/L       | 1  | 02/17/25 08:29 PM   |
| 2-Nitrophenol               | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| 4-Nitrophenol               | <0.00196   | 0.00196  | 0.00393 | mg/L       | 1  | 02/17/25 08:29 PM   |
| Phenol                      | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| 2,4,6-Trichlorophenol       | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| Acenaphthene                | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| Acenaphthylene              | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| Benzo[b]fluoranthene        | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| Benzo[g,h,i]perylene        | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| Benzo[k]fluoranthene        | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| Bis(2-chloroethoxy)methane  | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| Bis(2-chloroisopropyl)ether | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| 4-Bromophenyl phenyl ether  | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| Butyl benzyl phthalate      | < 0.00295  | 0.00295  | 0.00589 | mg/L       | 1  | 02/17/25 08:29 PM   |
| 2-Chloronaphthalene         | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| 4-Chlorophenyl phenyl ether | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| Dibenz[a,h]anthracene       | < 0.000982 | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| Diethyl phthalate           | < 0.00295  | 0.00295  | 0.00589 | mg/L       | 1  | 02/17/25 08:29 PM   |
| Dimethyl phthalate          | < 0.00295  | 0.00295  | 0.00589 | mg/L       | 9  | 02/17/25 08:29 PM   |
| 2,4-Dinitrotoluene          | < 0.000982 | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| 2,6-Dinitrotoluene          | < 0.000982 | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| Di-n-octyl phthalate        | < 0.00295  | 0.00295  | 0.00589 | mg/L       | 1  | 02/17/25 08:29 PM   |
| 1,2-Diphenylhydrazine       | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| Fluoranthene                | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| Fluorene                    | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| Indeno[1,2,3-cd]pyrene      | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| Isophorone                  | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| Naphthalene                 | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| N-Nitrosodimethylamine      | < 0.000982 | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| N-Nitrosodi-n-propylamine   | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |
| N-Nitrosodiphenylamine      | <0.000982  | 0.000982 | 0.00196 | mg/L       | 1  | 02/17/25 08:29 PM   |

- Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- Spike Recovery outside control limits

- Sample Result or QC discussed in the Case Narrative
- TPH pattern not Gas or Diesel Range Pattern Е
- MDL Method Detection Limit
- Reporting Limit
- Parameter not NELAP certified

Date: 19-Feb-25

**CLIENT:** 

Pollution Control Services

Project:

PCS 791258, 791262-791263

Project No:

Lab Order:

2502117

Client Sample ID: 791258

Lab ID: 2502117-01

Collection Date: 02/11/25 08:00 AM

Matrix: AQUEOUS

| Analyses                             | Result       | MDL        | RL         | Qual | Units | DF | Date Analyzed       |
|--------------------------------------|--------------|------------|------------|------|-------|----|---------------------|
| 625.1 SEMIVOLATILE WATER             |              | E6         | 25.1       |      |       |    | Analyst: <b>DEW</b> |
| Pyrene                               | <0.000982    | 0.000982   | 0.00196    |      | mg/L  | 1  | 02/17/25 08:29 PM   |
| 1,2,4-Trichlorobenzene               | <0.000982    | 0.000982   | 0.00196    |      | mg/L  | 1  | 02/17/25 08:29 PM   |
| Surr: 2,4,6-Tribromophenol           | 93.3         | 0          | 10-123     |      | %REC  | 1  | 02/17/25 08:29 PM   |
| Surr: 2-Fluorobiphenyl               | 84.3         | 0          | 43-116     |      | %REC  | 1  | 02/17/25 08:29 PM   |
| Surr: 2-Fluorophenol                 | 47.5         | 0          | 21-100     |      | %REC  | 1  | 02/17/25 08:29 PM   |
| Surr: 4-Terphenyl-d14                | 80.5         | 0          | 33-141     |      | %REC  | 1  | 02/17/25 08:29 PM   |
| Surr: Nitrobenzene-d5                | 89.0         | 0          | 35-115     |      | %REC  | 1  | 02/17/25 08:29 PM   |
| Surr: Phenol-d5                      | 29.3         | 0          | 10-94      |      | %REC  | 1  | 02/17/25 08:29 PM   |
| 625.1 PESTICIDE BY GC/MS             |              | E6         | 25.1       |      |       |    | Analyst: <b>DEW</b> |
| 4,4´-DDD                             | <0.00000970  | 0.00000970 | 0.0000194  |      | mg/L  | 1  | 02/17/25 10:26 PM   |
| 4,4´-DDE                             | <0.00000970  | 0.00000970 | 0.0000194  |      | mg/L  | 1  | 02/17/25 10:26 PM   |
| 4,4´-DDT                             | <0.00000970  | 0.00000970 | 0.0000194  |      | mg/L  | 1  | 02/17/25 10:26 PM   |
| Aldrin                               | <0.00000970  | 0.00000970 | 0.00000970 |      | mg/L  | 1  | 02/17/25 10:26 PM   |
| alpha-BHC<br>(Hexachlorocyclohexane) | <0.00000970  | 0.00000970 | 0.0000194  |      | mg/L  | 1  | 02/17/25 10:26 PM   |
| beta-BHC (Hexachlorocyclohexane)     | <0.00000970  | 0.00000970 | 0.0000194  |      | mg/L  | 1  | 02/17/25 10:26 PM   |
| Carbaryl                             | <0.00000970  | 0.00000970 | 0.0000291  | N    | mg/L  | 1  | 02/17/25 10:26 PM   |
| Chlordane                            | <0.0000582   | 0.0000582  | 0.000194   | N    | mg/L  | 1  | 02/17/25 10:26 PM   |
| Chlorpyrifos                         | < 0.00000970 | 0.00000970 | 0.0000291  | N    | mg/L  | 3. | 02/17/25 10:26 PM   |
| delta-BHC<br>(Hexachlorocyclohexane) | <0.00000970  | 0.00000970 | 0.0000194  |      | mg/L  | 1  | 02/17/25 10:26 PM   |
| Diazinon                             | <0.00000970  | 0.00000970 | 0.0000291  | N    | mg/L  | 1  | 02/17/25 10:26 PM   |
| Dieldrin                             | < 0.00000970 | 0.00000970 | 0.0000194  |      | mg/L  | 1  | 02/17/25 10:26 PM   |
| Endosulfan I                         | <0.00000970  | 0.00000970 | 0.00000970 |      | mg/L  | 1  | 02/17/25 10:26 PM   |
| Endosulfan II                        | < 0.00000970 | 0.00000970 | 0.0000194  |      | mg/L  | 1  | 02/17/25 10:26 PM   |
| Endosulfan sulfate                   | < 0.00000970 | 0,00000970 | 0.0000194  |      | mg/L  | 1  | 02/17/25 10:26 PM   |
| Endrin                               | <0.00000970  | 0.00000970 | 0.0000194  |      | mg/L  | 1  | 02/17/25 10:26 PM   |
| Endrin aldehyde                      | <0.00000970  | 0.00000970 | 0.0000194  |      | mg/L  | 1  | 02/17/25 10:26 PM   |
| gamma-BHC (Lindane)                  | < 0.00000970 | 0.00000970 | 0.0000194  |      | mg/L  | 1  | 02/17/25 10:26 PM   |
| Guthion (Azinphosmethyl)             | < 0.00000970 | 0.00000970 | 0.0000291  | N    | mg/L  | 1  | 02/17/25 10:26 PM   |
| Heptachlor                           | <0.00000970  | 0.00000970 | 0.00000970 |      | mg/L  | 1  | 02/17/25 10:26 PM   |
| Heptachlor epoxide                   | <0.00000970  | 0.00000970 | 0.00000970 |      | mg/L  | 1  | 02/17/25 10:26 PM   |
| Malathion                            | <0.00000970  | 0.00000970 | 0.0000291  | N    | mg/L  | 1  | 02/17/25 10:26 PM   |
| Methoxychlor                         | < 0.0000194  | 0.0000194  | 0.0000194  | N    | mg/L  | 1  | 02/17/25 10:26 PM   |
| Mirex                                | <0.00000970  | 0.00000970 | 0.0000194  | N    | mg/L  | 1  | 02/17/25 10:26 PM   |
| Parathion, ethyl                     | <0.00000970  | 0.00000970 | 0.0000291  | N    | mg/L  | 1  | 02/17/25 10:26 PM   |
| Toxaphene                            | <0.000291    | 0.000291   | 0.000291   |      | mg/L  | 1  | 02/17/25 10:26 PM   |
| Demeton (O & S)                      | <0.0000207   | 0.00000970 | 0.0000291  | N    | mg/L  | 1  | 02/17/25 10:26 PM   |

- Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- Spike Recovery outside control limits

- Sample Result or QC discussed in the Case Narrative
- TPH pattern not Gas or Diesel Range Pattern Е
- MDL Method Detection Limit
- Reporting Limit
- Parameter not NELAP certified

**CLIENT:** 

Pollution Control Services

2502117

Project:

Project No: Lab Order: PCS 791258, 791262-791263

Client Sample ID: 791258

Lab ID: 2502117-01

Date: 19-Feb-25

Collection Date: 02/11/25 08:00 AM

Matrix: AQUEOUS

| Analyses                    | Result    | MDL      | RL       | Qual | Units | DF | Date Analyzed       |
|-----------------------------|-----------|----------|----------|------|-------|----|---------------------|
| 625.1 PESTICIDE BY GC/MS    |           | E62      | 25.1     |      |       |    | Analyst: <b>DEW</b> |
| Surr: 2-Fluorobiphenyl      | 59.0      | 0        | 43-116   |      | %REC  | 1  | 02/17/25 10:26 PM   |
| Surr: 4-Terphenyl-d14       | 80.1      | 0        | 33-141   |      | %REC  | 1  | 02/17/25 10:26 PM   |
| DICOFOL IN WATER BY ASTM ME | THOD      | D5812-   | 96MOD    |      |       |    | Analyst: <b>DEW</b> |
| Dicofol                     | <0.000194 | 0,000194 | 0.000388 | N    | mg/L  | 1  | 02/17/25 10:26 PM   |
| NONYLPHENOL IN WATER BY AS  |           | D706     |          |      |       |    | Analyst: <b>DEW</b> |
| Nonylphenol                 | <0.0687   | 0.0687   | 0.0982   | N    | mg/L  | 1  | 02/17/25 08:29 PM   |

#### Qualifiers:

- Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL  $\mbox{.}$
- ND Not Detected at the Method Detection Limit
- Spike Recovery outside control limits

- Sample Result or QC discussed in the Case Narrative
- TPH pattern not Gas or Diesel Range Pattern Е

MDL Method Detection Limit

- Reporting Limit
- Parameter not NELAP certified

CLIENT:

Pollution Control Services

Project:

PCS 791258, 791262-791263

Project No: Lab Order:

2502117

**Date:** 19-Feb-25

Client Sample ID: 791262

Lab ID: 2502117-02

Collection Date: 02/11/25 08:11 AM

Matrix: AQUEOUS

| Analyses                     | Result     | MDL      | RL      | Qual | Units | DF | Date Analyzed       |
|------------------------------|------------|----------|---------|------|-------|----|---------------------|
| 624.1 VOLATILES WATER        |            | E62      | 4.1     |      |       |    | Analyst: <b>JVR</b> |
| Acrylonitrile                | <0.00100   | 0.00100  | 0.00300 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| Benzene                      | <0.000300  | 0.000300 | 0.00100 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| Bromodichloromethane         | <0.000300  | 0.000300 | 0.00100 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| Bromoform                    | <0.000300  | 0.000300 | 0.00100 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| Carbon tetrachloride         | <0.000300  | 0.000300 | 0.00100 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| Chlorobenzene                | <0.000300  | 0.000300 | 0.00100 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| Chlorodibromomethane         | <0.000300  | 0.000300 | 0.00100 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| Chloroform                   | <0.000300  | 0.000300 | 0.00100 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| 1,2-Dibromoethane            | <0.000300  | 0.000300 | 0.00100 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| 1,3-Dichlorobenzene          | <0.000300  | 0.000300 | 0.00100 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| 1,2-Dichlorobenzene          | <0.000300  | 0.000300 | 0.00100 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| 1,4-Dichlorobenzene          | <0.000300  | 0.000300 | 0.00100 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| 1,2-Dichloroethane           | <0.000300  | 0.000300 | 0.00100 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| 1,1-Dichloroethene           | <0.000300  | 0.000300 | 0.00100 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| Methylene chloride (DCM)     | < 0.00250  | 0.00250  | 0.00500 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| 1,2-Dichloropropane          | <0.000300  | 0.000300 | 0.00100 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| 1,3-Dichloropropene (cis)    | <0.000300  | 0.000300 | 0.00100 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| 1,3-Dichloropropene (trans)  | <0.000300  | 0.000300 | 0.00100 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| Ethylbenzene                 | <0.000300  | 0.000300 | 0.00100 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| Methyl ethyl ketone          | <0.00500   | 0.00500  | 0.0150  |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| 1,1,2,2-Tetrachloroethane    | <0.000300  | 0.000300 | 0.00100 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| Tetrachloroethene            | <0.000600  | 0.000600 | 0.00200 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| Toluene                      | <0.000600  | 0.000600 | 0.00200 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| 1,1,1-Trichloroethane        | <0.000300  | 0.000300 | 0.00100 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| 1,1,2-Trichloroethane        | <0.000300  | 0.000300 | 0.00100 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| Trichloroethene              | <0.000600  | 0.000600 | 0.00100 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| TTHM (Total Trihalomethanes) | <0.000300  | 0.000300 | 0.00100 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| Vinyl chloride               | <0.000300  | 0.000300 | 0.00100 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| Acrolein                     | < 0.00500  | 0.00500  | 0.0150  |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| Chloroethane                 | < 0.00100  | 0.00100  | 0.00500 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| 2-Chloroethylvinylether      | <0.00600   | 0.00600  | 0.0100  |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| 1,1-Dichloroethane           | < 0.000300 | 0.000300 | 0.00100 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| Methyl bromide               | <0.00100   | 0.00100  | 0.00500 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| Methyl chloride              | <0.00100   | 0.00100  | 0.00500 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| trans-1,2-Dichloroethylene   | <0.000300  | 0.000300 | 0.00200 |      | mg/L  | 1  | 02/12/25 02:04 PM   |
| Surr: 1,2-Dichloroethane-d4  | 101        | 0        | 72-119  |      | %REC  | 1  | 02/12/25 02:04 PM   |
| Surr: 4-Bromofluorobenzene   | 103        | 0        | 76-119  |      | %REC  | 1  | 02/12/25 02:04 PM   |
| Surr: Dibromofluoromethane   | 99.7       | 0        | 85-115  |      | %REC  | 1  | 02/12/25 02:04 PM   |

- \* Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAP certified

CLIENT:

Pollution Control Services

Project:

PCS 791258, 791262-791263

Project No: Lab Order: , ,

2502117

Date: 19-Feb-25

Client Sample ID: 791262

**Lab ID:** 2502117-02

Collection Date: 02/11/25 08:11 AM

Matrix: AQUEOUS

| E624. | •             | W DE0                  | 2 | Analyst: <b>JVR</b><br>02/12/25 02:04 PM |
|-------|---------------|------------------------|---|------------------------------------------|
|       | <b>E624</b> . | <b>E624.1</b> 0 81-120 |   |                                          |

Qualifiers:

- Value exceeds TCLP Maximum Concentration Level
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAP certified

**Date:** 19-Feb-25

**CLIENT:** 

Pollution Control Services

Project:

PCS 791258, 791262-791263

Project No: Lab Order:

2502117

Client Sample ID: 791263

Lab ID: 2502117-03

Collection Date: 02/11/25 08:12 AM

Matrix: AQUEOUS

| Analyses                              | Result  | MDL                     | RL             | Qual | Units | DF | Date Analyzed                            |
|---------------------------------------|---------|-------------------------|----------------|------|-------|----|------------------------------------------|
| CYANIDE - WATER SAMPLE Cyanide, Total | <0.0100 | <b>M4500-</b><br>0.0100 | CN E<br>0.0200 |      | mg/L  | Ť  | Analyst: <b>SMA</b><br>02/18/25 02:06 PM |

Qualifiers:

\* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAP certified

Date: 19-Feb-25

**CLIENT:** 

Pollution Control Services

Work Order:

2502117

### ANALYTICAL QC SUMMARY REPORT

| <b>Project:</b> PCS 791     | 1258, 791262-79126       | 3                                   |                                 |         | RunII | <b>):</b> ]                              | LCMS2_25        | 0218A       |          |
|-----------------------------|--------------------------|-------------------------------------|---------------------------------|---------|-------|------------------------------------------|-----------------|-------------|----------|
| The QC data in batch 119155 | applies to the following | samples: 2502                       | 2117-01A                        |         |       |                                          |                 |             |          |
| Sample ID: <b>MB-119155</b> | Batch ID: 119155         | i                                   | TestNo:                         | E632    |       |                                          | Units:          | mg/L        |          |
| SampType: <b>MBLK</b>       | Run ID: LCMS2_250218A    |                                     | Analysis Date: 2/18/2025 12:53  |         |       | 3:02 PM                                  | Prep Date:      | 2/17/2025   |          |
| Analyte                     | Result                   | RL                                  | SPK value                       | Ref Val | %REC  | LowLin                                   | nit HighLimit % | RPD RPDLim  | iit Qual |
| Diuron                      | <0.0000300               | 0.0000800                           |                                 |         |       |                                          |                 |             | N        |
| Hexachlorophene             | <0.00100                 | 0.00500                             |                                 |         |       |                                          |                 |             | N        |
| Surr: Carbazole             | 3.22                     |                                     | 5.000                           |         | 64.3  | 35                                       | 145             |             |          |
| Sample ID: LCS-119155       | Batch ID: 119155         | 3                                   | TestNo:                         | E632    |       |                                          | Units:          | mg/L        |          |
| SampType: LCS               | Run ID: LCMS2_250218A    |                                     | Analysis Date: 2/18/2025 1:04:1 |         |       | <b>19 PM</b> Prep Date: <b>2/17/20</b> : |                 |             |          |
| Analyte                     | Result                   | RL                                  | SPK value                       | Ref Val | %REC  | LowLin                                   | nit HighLimit % | 6RPD RPDLim | iit Qual |
| Diuron                      | 0.000916                 | 0.0000800                           | 0.00200                         | 0       | 45.8  | 35                                       | 145             |             | N        |
| Hexachlorophene             | 0.00155                  | 0.00500                             | 0.00200                         | 0       | 77,4  | 35                                       | 145             |             | N        |
| Surr: Carbazole             | 3.56                     |                                     | 5.000                           |         | 71.2  | 35                                       | 145             |             |          |
| Sample ID: LCSD-119155      | Batch ID: 119155         | 5                                   | TestNo:                         | E632    |       |                                          | Units:          | mg/L        |          |
| SampType: LCSD              | Run ID: LCMS:            | Analysis Date: 2/18/2025 1:15:37 PM |                                 |         |       | Prep Date:                               | 2/17/2025       |             |          |
|                             |                          |                                     |                                 |         |       |                                          |                 |             |          |

| Sample ID: LCSD-119155 | Batch ID:   | 119155  |           | TestNo                             | ): E(   | 632  |          | Units:    | mg/l          | _        |        |
|------------------------|-------------|---------|-----------|------------------------------------|---------|------|----------|-----------|---------------|----------|--------|
| SampType: LCSD         | Run ID: LCM |         | _250218A  | Analysis Date: 2/18/2025 1:15:37 F |         |      | 37 PM    | Prep Date | : <b>2/17</b> | /2025    |        |
| Analyte                |             | Result  | RL        | SPK value                          | Ref Val | %REC | LowLimit | HighLimit | %RPD          | RPDLimit | t Qual |
| Diuron                 | 0           | .000868 | 0.0000800 | 0,00200                            | 0       | 43.4 | 35       | 145       | 5.41          | 30       | N      |
| Hexachlorophene        | C           | .00147  | 0.00500   | 0.00200                            | 0       | 73.6 | 35       | 145       | 5.10          | 30       | N      |
| Surr: Carbazole        |             | 3.43    |           | 5,000                              |         | 68.6 | 35       | 145       | 0             | 0        |        |

Qualifiers:

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits R

Spike Recovery outside control limits

N Parameter not NELAP certified Page 1 of 18

Pollution Control Services

Work Order:

2502117

Project:

#### ANALYTICAL QC SUMMARY REPORT

28

43

33

114

69.3

80.9

154

116

141

RunID: GCMS10 250217A PCS 791258, 791262-791263 The QC data in batch 119141 applies to the following samples: 2502117-01C Sample ID: LCS-119141 Batch ID: 119141 TestNo: E625.1 Units: mg/L SampType: LCS Run ID: GCMS10\_250217A Analysis Date: 2/17/2025 5:42:00 PM Prep Date: 2/14/2025 Analyte LowLimit HighLimit %RPD RPDLimit Qual Result RI SPK value Ref Val %REC 4,4'-DDD 0.000338 0.0000200 0.000400 0 84.4 135 4,4'-DDE 0 120 0.000374 0.0000200 0.000400 93.6 19 4,4'-DDT 0.000353 0.0000200 0.000400 0 88.3 0.1 171 Aldrin 0.000310 0.0000100 0.000400 0 77.5 7 152 alpha-BHC (Hexachlorocyclohexane) 0.0000200 0 87.9 42 108 0.000352 0.000400 beta-BHC (Hexachlorocyclohexane) 0.000357 0.0000200 0.000400 0 89.3 42 131 Carbaryl 0.000431 0.0000300 0.000400 0 108 38 168 N Chlorpyrifos 0.0000300 0 0.000419 0.000400 105 42 131 Ν delta-BHC (Hexachlorocyclohexane) 0.000334 0.0000200 0.000400 0 83.4 0.1 120 Diazinon 0.000415 0.0000300 0.000400 0 104 52 120 Ν Dieldrin 0.000354 0.0000200 0.000400 0 88.5 44 119 Endosulfan I 0.000323 0.0000100 0.000400 0 80.7 47 128 Endosulfan II 0.000322 0.0000200 0.000400 0 80.4 52 125 Endosulfan sulfate 0.000357 0.0000200 0.000400 0 89.3 0.1 120 Endrin 0.000432 0.0000200 0.000400 0 108 50 151 Endrin aldehyde 0.00000124 0.0000200 0.000400 0 0.310 0.1 189 0 gamma-BHC (Lindane) 0.000332 0.0000200 0.000400 83.0 41 111 Guthion (Azinphosmethyl) 0.000481 0.0000300 0 193 N 0.000400 120 44 0.000322 0.0000100 0 80.4 172 Heptachlor 0.000400 0.1 Heptachlor epoxide 0.0000100 0 120 0.000293 0.000400 73.2 71 Malathion 0.000535 0.0000300 0.000400 0 134 56 161 N Methoxychlor 0.000386 0.0000200 0.000400 0 96.5 38 156 N 27 N 0.0000200 0.000400 0 61.0 131 Mirex 0.000244 0.000571 0.0000300 0.000400 0 143 13 184 N Parathion, ethyl

| DOM:                            |         |         |           |                                     |         |      |          |                      | _    | L       |        |
|---------------------------------|---------|---------|-----------|-------------------------------------|---------|------|----------|----------------------|------|---------|--------|
| SampType: LCSD F                | Run ID: | GCMS1   | 0_250217A | Analysis Date: 2/17/2025 6:18:00 PM |         |      |          | Prep Date: 2/14/2025 |      | /2025   |        |
| Analyte                         |         | Result  | RL        | SPK value                           | Ref Val | %REC | LowLimit | HighLimit            | %RPD | RPDLimi | t Qual |
| 4,4´-DDD                        | 0.      | .000202 | 0:0000200 | 0.000400                            | 0       | 50.4 | 0.1      | 135                  | 50.5 | 50      |        |
| 4,4´-DDE                        | 0.      | .000293 | 0.0000200 | 0.000400                            | 0       | 73.2 | 19       | 120                  | 24.4 | 50      |        |
| 4,4´-DDT                        | 0.      | .000209 | 0.0000200 | 0.000400                            | 0       | 52.2 | 0.1      | 171                  | 51.4 | 50      | R      |
| Aldrin                          | 0.      | .000220 | 0.0000100 | 0.000400                            | 0       | 55.0 | 7        | 152                  | 34.0 | 50      |        |
| alpha-BHC (Hexachlorocyclohexan | e) 0.   | .000278 | 0.0000200 | 0.000400                            | 0       | 69.4 | 42       | 108                  | 23.5 | 50      |        |
| beta-BHC (Hexachlorocyclohexane | ) 0.    | .000300 | 0.0000200 | 0.000400                            | 0       | 74.9 | 42       | 131                  | 17.5 | 50      |        |
| Carbaryl                        | 0.      | .000406 | 0.0000300 | 0.000400                            | 0       | 101  | 38       | 168                  | 6.15 | 50      | Ν      |
| Chlorpyrifos                    | 0       | .000352 | 0.0000300 | 0.000400                            | 0       | 87.9 | 42       | 131                  | 17.4 | 50      | Ν      |

0.000400

4.000

4.000

0

Qualifiers:

Demeton (O & S)

Surr: 2-Fluorobiphenyl

Surr: 4-Terphenyl-d14

Analyte detected in the associated Method Blank

0.000457

2.77

3.24

0.0000300

Analyte detected between MDL and RL J

ND Not Detected at the Method Detection Limit

RI. Reporting Limit

Analyte detected between SDL and RL

Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Parameter not NELAP certified

Page 2 of 18

N

Pollution Control Services

Work Order:

2502117

## ANALYTICAL QC SUMMARY REPORT

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-791263                                                                                                             |                                                                                                                                       |                            |                                       | RunII                       | ): G        | CMS10_            | 25021              | /A               |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------|-----------------------------|-------------|-------------------|--------------------|------------------|--------|
| Sample ID: LCSD-119141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Batch ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 119141                                                                                                               |                                                                                                                                       | TestNo                     | E62                                   | 5.1                         |             | Units:            | mg/L               |                  |        |
| SampType: LCSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Run ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GCMS1                                                                                                                | 0_250217A                                                                                                                             | Analysi                    | s Date: 2/17                          | /2025 6:18:                 | 00 PM       | Prep Date:        | 2/14/              | 2025             |        |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Result                                                                                                               | RL                                                                                                                                    | SPK value                  | Ref Val                               | %REC                        | LowLimit    | t HighLimit       | %RPD               | RPDLimit         | t Qua  |
| delta-BHC (Hexachlorocyclohexai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ne) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .000293                                                                                                              | 0.0000200                                                                                                                             | 0.000400                   | 0                                     | 73.2                        | 0.1         | 120               | 13.0               | 50               |        |
| Diazinon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .000330                                                                                                              | 0.0000300                                                                                                                             | 0.000400                   | 0                                     | 82.6                        | 52          | 120               | 22.7               | 50               | Ν      |
| Dieldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .000265                                                                                                              | 0.0000200                                                                                                                             | 0.000400                   | 0                                     | 66.3                        | 44          | 119               | 28.7               | 50               |        |
| Endosulfan I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .000285                                                                                                              | 0.0000100                                                                                                                             | 0.000400                   | 0                                     | 71.3                        | 47          | 128               | 12:3               | 50               |        |
| Endosulfan II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .000204                                                                                                              | 0.0000200                                                                                                                             | 0.000400                   | 0                                     | 50.9                        | 52          | 125               | 45.0               | 50               | S      |
| Endosulfan sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .000231                                                                                                              | 0.0000200                                                                                                                             | 0.000400                   | 0                                     | 57.8                        | 0.1         | 120               | 42.9               | 50               |        |
| Endrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .000250                                                                                                              | 0.0000200                                                                                                                             | 0.000400                   | 0                                     | 62.5                        | 50          | 151               | 53.4               | 50               | R      |
| Endrin aldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00000600                                                                                                             | 0.0000200                                                                                                                             | 0.000400                   | 0                                     | 0.150                       | 0.1         | 189               | 69.6               | 50               | R      |
| gamma-BHC (Lindane)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .000262                                                                                                              | 0.0000200                                                                                                                             | 0.000400                   | 0                                     | 65.5                        | 41          | 111               | 23.6               | 50               |        |
| Guthion (Azinphosmethyl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .000440                                                                                                              | 0.0000300                                                                                                                             | 0.000400                   | 0                                     | 110                         | 44          | 193               | 8.89               | 50               | Ν      |
| Heptachlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .000259                                                                                                              | 0.0000100                                                                                                                             | 0.000400                   | 0                                     | 64.7                        | 0.1         | 172               | 21.6               | 50               |        |
| Heptachlor epoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .000281                                                                                                              | 0.0000100                                                                                                                             | 0.000400                   | 0                                     | 70.2                        | 71          | 120               | 4.09               | 50               | S      |
| Malathion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .000476                                                                                                              | 0.0000300                                                                                                                             | 0.000400                   | 0                                     | 119                         | 56          | 161               | 11.6               | 50               | Ν      |
| Methoxychlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .000393                                                                                                              | 0.0000200                                                                                                                             | 0.000400                   | 0                                     | 98.3                        | 38          | 156               | 1.82               | 50               | N      |
| Mirex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .000218                                                                                                              | 0.0000200                                                                                                                             | 0.000400                   | 0                                     | 54.5                        | 27          | 131               | 11.3               | 50               | Ν      |
| Parathion, ethyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .000511                                                                                                              | 0.0000300                                                                                                                             | 0.000400                   | 0                                     | 128                         | 13          | 184               | 11.1               | 50               | Ν      |
| Demeton (O & S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .000357                                                                                                              | 0.0000300                                                                                                                             | 0.000400                   | 0                                     | 89.3                        | 28          | 154               | 24.5               | 50               | Ν      |
| 0 0 5 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.38                                                                                                                 |                                                                                                                                       | 4.000                      |                                       | 59.4                        | 40          | 110               | 0                  | 0                |        |
| Surr: 2-Fluorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.30                                                                                                                 |                                                                                                                                       | 4.000                      |                                       | JJ. <del>T</del>            | 43          | 116               | U                  | 0                |        |
| Surr: 2-Fluorobiphenyl<br>Surr: 4-Terphenyl-d14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.36                                                                                                                 |                                                                                                                                       | 4.000                      |                                       | 59.0                        | 33          | 141               | 0                  | 0                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Batch ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                      |                                                                                                                                       |                            | : E62                                 | 59.0                        |             |                   |                    | 0                |        |
| Surr: 4-Terphenyl-d14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Batch ID:<br>Run ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.36<br>119141                                                                                                       | 0_250217A                                                                                                                             | 4.000<br>TestNo            | : <b>E62</b> :<br>s Date: <b>2/17</b> | 59,0<br><b>5.1</b>          | 33          | 141               | 0<br>mg/L          | 0                |        |
| Surr: 4-Terphenyl-d14 Sample ID: MB-119141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.36<br>119141                                                                                                       | 0_250217A<br>RL                                                                                                                       | 4.000<br>TestNo            |                                       | 59,0<br><b>5.1</b>          | 33<br>00 PM | 141<br>Units:     | 0<br>mg/L<br>2/14/ | 0<br><b>2025</b> | t Qual |
| Surr: 4-Terphenyl-d14 Sample ID: MB-119141 SampType: MBLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Run ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.36<br>119141<br>GCMS1                                                                                              |                                                                                                                                       | 4.000<br>TestNo<br>Analysi | s Date: <b>2/17</b>                   | 59.0<br>5.1<br>7/2025 9:15: | 33<br>00 PM | Units: Prep Date: | 0<br>mg/L<br>2/14/ | 0<br><b>2025</b> | t Qual |
| Surr: 4-Terphenyl-d14 Sample ID: MB-119141 SampType: MBLK Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Run ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.36<br>119141<br>GCMS10<br>Result                                                                                   | RL                                                                                                                                    | 4.000<br>TestNo<br>Analysi | s Date: <b>2/17</b>                   | 59.0<br>5.1<br>7/2025 9:15: | 33<br>00 PM | Units: Prep Date: | 0<br>mg/L<br>2/14/ | 0<br><b>2025</b> | t Qua  |
| Surr: 4-Terphenyl-d14 Sample ID: MB-119141 SampType: MBLK Analyte 4,4'-DDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Run ID: <0 <0 <0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,36<br>119141<br>GCMS10<br>Result                                                                                   | RL<br>0,0000200                                                                                                                       | 4.000<br>TestNo<br>Analysi | s Date: <b>2/17</b>                   | 59.0<br>5.1<br>7/2025 9:15: | 33<br>00 PM | Units: Prep Date: | 0<br>mg/L<br>2/14/ | 0<br><b>2025</b> | t Qua  |
| Surr: 4-Terphenyl-d14  Sample ID: MB-119141  SampType: MBLK  Analyte  4,4'-DDD  4,4'-DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Run ID: <0 <0 <0 <0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,36<br>119141<br>GCMS10<br>Result                                                                                   | RL<br>0,0000200<br>0.0000200                                                                                                          | 4.000<br>TestNo<br>Analysi | s Date: <b>2/17</b>                   | 59.0<br>5.1<br>7/2025 9:15: | 33<br>00 PM | Units: Prep Date: | 0<br>mg/L<br>2/14/ | 0<br><b>2025</b> | t Qua  |
| Surr: 4-Terphenyl-d14  Sample ID: MB-119141  SampType: MBLK  Analyte  4,4'-DDD  4,4'-DDE  4,4'-DDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Run ID: <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,36<br>119141<br>GCMS10<br>Result<br>.0000100<br>.0000100                                                           | RL<br>0,0000200<br>0.0000200<br>0.0000200                                                                                             | 4.000<br>TestNo<br>Analysi | s Date: <b>2/17</b>                   | 59.0<br>5.1<br>7/2025 9:15: | 33<br>00 PM | Units: Prep Date: | 0<br>mg/L<br>2/14/ | 0<br><b>2025</b> | t Qua  |
| Surr: 4-Terphenyl-d14  Sample ID: MB-119141  SampType: MBLK  Analyte  4,4'-DDD  4,4'-DDE  4,4'-DDT  Aldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Run ID:  <0 <0 <0 <0 anne) <0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,36  119141 GCMS10  Result .0000100 .0000100 .0000100                                                               | RL<br>0.0000200<br>0.0000200<br>0.0000200<br>0.0000100                                                                                | 4.000<br>TestNo<br>Analysi | s Date: <b>2/17</b>                   | 59.0<br>5.1<br>7/2025 9:15: | 33<br>00 PM | Units: Prep Date: | 0<br>mg/L<br>2/14/ | 0<br><b>2025</b> | t Qua  |
| Surr: 4-Terphenyl-d14  Sample ID: MB-119141  SampType: MBLK  Analyte  4,4'-DDD  4,4'-DDE  4,4'-DDT  Aldrin alpha-BHC (Hexachlorocyclohexa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Run ID:  <0 <0 <0 <a href="mailto:color: blue;">&lt;0</a> <a href="mailto:color: blue;"></a>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,36  119141 GCMS10  Result .0000100 .0000100 .0000100 .0000100                                                      | RL<br>0,0000200<br>0.0000200<br>0.0000200<br>0,0000100<br>0.0000200                                                                   | 4.000<br>TestNo<br>Analysi | s Date: <b>2/17</b>                   | 59.0<br>5.1<br>7/2025 9:15: | 33<br>00 PM | Units: Prep Date: | 0<br>mg/L<br>2/14/ | 0<br><b>2025</b> | t Qua  |
| Surr: 4-Terphenyl-d14  Sample ID: MB-119141  SampType: MBLK  Analyte  4,4'-DDD  4,4'-DDE  4,4'-DDT  Aldrin alpha-BHC (Hexachlorocyclohexarbeta-BHC (Hexachlo | Run ID:  <0 <0 <0 ane) <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,36  119141 GCMS10 Result .0000100 .0000100 .0000100 .0000100 .0000100                                              | RL<br>0,0000200<br>0.0000200<br>0.0000200<br>0,0000100<br>0.0000200<br>0.0000200                                                      | 4.000<br>TestNo<br>Analysi | s Date: <b>2/17</b>                   | 59.0<br>5.1<br>7/2025 9:15: | 33<br>00 PM | Units: Prep Date: | 0<br>mg/L<br>2/14/ | 0<br><b>2025</b> |        |
| Surr: 4-Terphenyl-d14  Sample ID: MB-119141 SampType: MBLK  Analyte  4,4'-DDD  4,4'-DDE  4,4'-DDT  Aldrin alpha-BHC (Hexachlorocyclohexar beta-BHC (Hexachlorocyclohexar Carbaryl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Run ID:  <0 <0 <0 <0 <a href="mailto:color: blue">&lt;0</a> ane) <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,36 119141 GCMS10 Result .0000100 .0000100 .0000100 .0000100 .0000100 .0000100                                      | RL<br>0.0000200<br>0.0000200<br>0.0000200<br>0.0000100<br>0.0000200<br>0.0000200<br>0.0000300                                         | 4.000<br>TestNo<br>Analysi | s Date: <b>2/17</b>                   | 59.0<br>5.1<br>7/2025 9:15: | 33<br>00 PM | Units: Prep Date: | 0<br>mg/L<br>2/14/ | 0<br><b>2025</b> | N      |
| Surr: 4-Terphenyl-d14  Sample ID: MB-119141  SampType: MBLK  Analyte  4,4'-DDD  4,4'-DDE  4,4'-DDT  Aldrin alpha-BHC (Hexachlorocyclohexar Carbaryl Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Run ID:  <0 <0 <0 <0 <a href="mailto:color: blue;">&lt;0</a> <a blue;"="" href="mailto:color: blue&lt;/td&gt;&lt;td&gt;2.36 119141 GCMS10 Result .0000100 .0000100 .0000100 .0000100 .0000100 .0000100&lt;/td&gt;&lt;td&gt;RL 0,0000200 0.0000200 0.0000200 0.0000100 0.0000200 0.0000200 0.0000300 0.000200&lt;/td&gt;&lt;td&gt;4.000&lt;br&gt;TestNo&lt;br&gt;Analysi&lt;/td&gt;&lt;td&gt;s Date: &lt;b&gt;2/17&lt;/b&gt;&lt;/td&gt;&lt;td&gt;59.0&lt;br&gt;5.1&lt;br&gt;7/2025 9:15:&lt;/td&gt;&lt;td&gt;33&lt;br&gt;00 PM&lt;/td&gt;&lt;td&gt;Units: Prep Date:&lt;/td&gt;&lt;td&gt;0&lt;br&gt;mg/L&lt;br&gt;2/14/&lt;/td&gt;&lt;td&gt;0&lt;br&gt;&lt;b&gt;2025&lt;/b&gt;&lt;/td&gt;&lt;td&gt;N&lt;br&gt;N&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;Surr: 4-Terphenyl-d14  Sample ID: MB-119141 SampType: MBLK  Analyte  4,4'-DDD  4,4'-DDE  4,4'-DDT  Aldrin alpha-BHC (Hexachlorocyclohexar beta-BHC (Hexachlorocyclohexar Carbaryl Chlordane Chlorpyrifos&lt;/td&gt;&lt;td&gt;Run ID:  &lt;0 &lt;0 &lt;0 &lt;a href=" mailto:color:="">&lt;0</a> <a href="mailto:color: blue;">&lt;0</a> <a href="mailto:color: blue;"></a>                                                | 2.36 119141 GCMS10 Result .0000100 .0000100 .0000100 .0000100 .0000100 .0000100 .0000100                             | RL 0.0000200 0.0000200 0.0000200 0.0000100 0.0000200 0.0000200 0.0000200 0.0000300 0.0000300                                          | 4.000<br>TestNo<br>Analysi | s Date: <b>2/17</b>                   | 59.0<br>5.1<br>7/2025 9:15: | 33<br>00 PM | Units: Prep Date: | 0<br>mg/L<br>2/14/ | 0<br><b>2025</b> | N<br>N |
| Surr: 4-Terphenyl-d14  Sample ID: MB-119141  SampType: MBLK  Analyte  4,4'-DDD  4,4'-DDT  Aldrin alpha-BHC (Hexachlorocyclohexar Carbaryl Chlordane Chlorpyrifos delta-BHC (Hexachlorocyclohexar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Run ID:  <0 <0 <0 <a href="mailto:color: blue">&lt;0</a> <a blue;"="" href="mai&lt;/td&gt;&lt;td&gt;2.36 119141 GCMS10 Result .0000100 .0000100 .0000100 .0000100 .0000100 .0000100 .0000100 .0000100 .0000100&lt;/td&gt;&lt;td&gt;RL 0,0000200 0.0000200 0.0000200 0.0000100 0.0000200 0.0000300 0.000200 0.0000300 0.0000300 0.0000300&lt;/td&gt;&lt;td&gt;4.000&lt;br&gt;TestNo&lt;br&gt;Analysi&lt;/td&gt;&lt;td&gt;s Date: &lt;b&gt;2/17&lt;/b&gt;&lt;/td&gt;&lt;td&gt;59.0&lt;br&gt;5.1&lt;br&gt;7/2025 9:15:&lt;/td&gt;&lt;td&gt;33&lt;br&gt;00 PM&lt;/td&gt;&lt;td&gt;Units: Prep Date:&lt;/td&gt;&lt;td&gt;0&lt;br&gt;mg/L&lt;br&gt;2/14/&lt;/td&gt;&lt;td&gt;0&lt;br&gt;&lt;b&gt;2025&lt;/b&gt;&lt;/td&gt;&lt;td&gt;N N&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;Surr: 4-Terphenyl-d14  Sample ID: MB-119141  SampType: MBLK  Analyte  4,4'-DDD  4,4'-DDT  Aldrin alpha-BHC (Hexachlorocyclohexar) Carbaryl Chlordane Chlorpyrifos delta-BHC (Hexachlorocyclohexar) Diazinon&lt;/td&gt;&lt;td&gt;Run ID:  &lt;0 &lt;0 &lt;0 &lt;a href=" mailto:color:="">&lt;0</a> <a href="mailto:color: blue;">&lt;0</a> <a href="mailto:color: blue;"></a> | 2.36 119141 GCMS10 Result .0000100 .0000100 .0000100 .0000100 .0000100 .0000100 .0000100 .0000100 .0000100           | RL 0,0000200 0.0000200 0.0000200 0,0000100 0.0000200 0,0000300 0.0000200 0.0000300 0.0000200 0.0000300                                | 4.000<br>TestNo<br>Analysi | s Date: <b>2/17</b>                   | 59.0<br>5.1<br>7/2025 9:15: | 33<br>00 PM | Units: Prep Date: | 0<br>mg/L<br>2/14/ | 0<br><b>2025</b> | N N    |
| Surr: 4-Terphenyl-d14  Sample ID: MB-119141  SampType: MBLK  Analyte  4,4'-DDD  4,4'-DDT  Aldrin alpha-BHC (Hexachlorocyclohexar) Carbaryl Chlordane Chlorpyrifos delta-BHC (Hexachlorocyclohexar) Diazinon Dieldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Run ID:  <0 <0 <0 <a href="mailto:color: blue;">&lt;0</a> <a href="mailto:color: blue;"></a>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,36  119141 GCMS10 Result .0000100 .0000100 .0000100 .0000100 .0000100 .0000100 .0000100 .0000100 .0000100 .0000100 | RL 0.0000200 0.0000200 0.0000200 0.0000100 0.0000200 0.0000300 0.0000300 0.0000300 0.0000300 0.0000300 0.0000300                      | 4.000<br>TestNo<br>Analysi | s Date: <b>2/17</b>                   | 59.0<br>5.1<br>7/2025 9:15: | 33<br>00 PM | Units: Prep Date: | 0<br>mg/L<br>2/14/ | 0<br><b>2025</b> | N N    |
| Surr: 4-Terphenyl-d14  Sample ID: MB-119141  SampType: MBLK  Analyte  4,4'-DDD  4,4'-DDT  Aldrin alpha-BHC (Hexachlorocyclohexar) Carbaryl Chlordane Chlorpyrifos delta-BHC (Hexachlorocyclohexar) Diazinon Dieldrin Endosulfan I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Run ID:  <0 <0 <0 ane) <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,36  119141 GCMS10 Result .0000100 .0000100 .0000100 .0000100 .0000100 .0000100 .0000100 .0000100 .0000100 .0000100 | RL  0.0000200 0.0000200 0.0000200 0.0000100 0.0000200 0.0000300 0.0000300 0.0000200 0.0000300 0.0000200 0.0000300 0.0000200 0.0000300 | 4.000<br>TestNo<br>Analysi | s Date: <b>2/17</b>                   | 59.0<br>5.1<br>7/2025 9:15: | 33<br>00 PM | Units: Prep Date: | 0<br>mg/L<br>2/14/ | 0<br><b>2025</b> | N N    |
| Surr: 4-Terphenyl-d14  Sample ID: MB-119141  SampType: MBLK  Analyte  4,4'-DDD  4,4'-DDE  4,4'-DDT  Aldrin alpha-BHC (Hexachlorocyclohexar) Carbaryl Chlordane Chlorpyrifos delta-BHC (Hexachlorocyclohexar) Diazinon Dieldrin Endosulfan I Endosulfan II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Run ID:  <0 <0 <0 ane) <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,36  119141 GCMS10 Result .0000100 .0000100 .0000100 .0000100 .0000100 .0000100 .0000100 .0000100 .0000100 .0000100 | RL 0.0000200 0.0000200 0.0000200 0.0000100 0.0000200 0.0000300 0.0000300 0.0000300 0.0000300 0.0000200 0.0000300 0.0000300 0.0000300  | 4.000<br>TestNo<br>Analysi | s Date: <b>2/17</b>                   | 59.0<br>5.1<br>7/2025 9:15: | 33<br>00 PM | Units: Prep Date: | 0<br>mg/L<br>2/14/ | 0<br><b>2025</b> | 2 2 2  |

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

 $\label{eq:J-lambda} J \qquad \text{Analyte detected between SDL and RL}$ 

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 3 of 18

Pollution Control Services

Work Order:

2502117

**Project:** PCS 791258, 791262-791263

#### ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS10\_250217A

| Sample ID: MB-119141     | Batch ID: 11914 | 1           | TestNo    | E625                  | 5.1         |         | Units:      | mg/L       |          |
|--------------------------|-----------------|-------------|-----------|-----------------------|-------------|---------|-------------|------------|----------|
| SampType: MBLK           | Run ID: GCMS    | 310_250217A | Analysi   | s Date: <b>2/17</b> / | /2025 9:15: | 00 PM   | Prep Date   | 2/14/2025  |          |
| Analyte                  | Result          | RL          | SPK value | Ref Val               | %REC        | LowLimi | t HighLimit | %RPD RPDLi | mit Qual |
| gamma-BHC (Lindane)      | <0,000010       | 0 0.0000200 |           |                       |             |         |             |            |          |
| Guthion (Azinphosmethyl) | <0.000010       | 0.0000300   |           |                       |             |         |             |            | N        |
| Heptachlor               | <0.000010       | 0.0000100   |           |                       |             |         |             |            |          |
| Heptachlor epoxide       | < 0.000010      | 0.0000100   |           |                       |             |         |             |            |          |
| Malathion                | <0.000010       | 0.0000300   |           |                       |             |         |             |            | N        |
| Methoxychlor             | <0.000020       | 0.0000200   |           |                       |             |         |             |            | N        |
| Mirex                    | <0.000010       | 0.0000200   |           |                       |             |         |             |            | N        |
| Parathion, ethyl         | <0.000010       | 0.0000300   |           |                       |             |         |             |            | N        |
| Toxaphene                | < 0.000300      | 0.000300    |           |                       |             |         |             |            |          |
| Demeton (O & S)          | <0.000010       | 0.0000300   |           |                       |             |         |             |            | N        |
| Surr: 2-Fluorobiphenyl   | 2.49            |             | 4.000     |                       | 62.3        | 43      | 116         |            |          |
| Surr: 4-Terphenyl-d14    | 2.86            |             | 4.000     |                       | 71.6        | 33      | 141         |            |          |

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 4 of 18

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Pollution Control Services

Work Order:

2502117

**Project:** PCS 791258, 791262-791263

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS10\_250217C

| Sample ID: LCS-119141-DI    | Batch ID: | 119141   |           | TestNo:   | D58        | 12-96mod    |          | Units:                   | mg/L            |      |
|-----------------------------|-----------|----------|-----------|-----------|------------|-------------|----------|--------------------------|-----------------|------|
| SampType: <b>LCS</b>        | Run ID:   | GCMS1    | 0_250217C | Analysis  | Date: 2/17 | /2025 7:28: | 00 PM    | Prep Date:               | 2/14/2025       |      |
| Analyte                     |           | Result   | RL        | SPK value | Ref Val    | %REC        | LowLimit | HighLimit 9              | %RPD RPDLimit(  | Qua  |
| Dicofol                     |           | 0.00102  | 0.000400  | 0.00100   | 0          | 102         | 22       | 180                      |                 | N    |
| Sample ID: <b>MB-119141</b> | Batch ID: | 119141   |           | TestNo:   | D58        | 12-96mod    |          | Units:                   | mg/L            |      |
| SampType: <b>MBLK</b>       | Run ID:   | GCMS1    | 0_250217C | Analysis  | Date: 2/17 | /2025 9:15: | 00 PM    | Prep Date:               | 2/14/2025       |      |
| Analyte                     |           | Result   | RL        | SPK value | Ref Val    | %REC        | LowLimit | t HighLimit <sup>4</sup> | %RPD RPDLimit ( | Qual |
| Dicofol                     | <         | 0.000200 | 0.000400  |           |            |             |          |                          |                 | N    |

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 5 of 18

Pollution Control Services

Work Order:

2502117

**Project:** PCS 791258, 791262-791263

## ANALYTICAL QC SUMMARY REPORT

RunID: GCM

GCMS8\_250217A

| Sample ID: LCS-119141-PCB                            | Batch ID: | 119141   |          | TestNo    | E62                 | 5.1         |        | Units:         | mg/L             |
|------------------------------------------------------|-----------|----------|----------|-----------|---------------------|-------------|--------|----------------|------------------|
| SampType: <b>LCS</b>                                 | Run ID:   | GCMS8    | _250217A | Analysi   | s Date: <b>2/17</b> | /2025 2:58: | 00 PM  | Prep Date:     | 2/14/2025        |
| Analyte                                              |           | Result   | RL       | SPK value | Ref Val             | %REC        | LowLim | it HighLimit % | RPD RPDLimit Qua |
| Aroclor 1016                                         | C         | 0.00320  | 0.000200 | 0.00400   | 0                   | 79.9        | 37     | 130            |                  |
| Aroclor 1260                                         | C         | 0.00345  | 0.000200 | 0.00400   | 0                   | 86.2        | 19     | 130            |                  |
| Total PCBs                                           | C         | 0.00665  | 0.000200 | 0.00800   | 0                   | 83.1        | 19     | 130            |                  |
| Surr: 2-Fluorobiphenyl                               |           | 2.78     |          | 4.000     |                     | 69.4        | 43     | 116            |                  |
| Surr: 4-Terphenyl-d14                                |           | 3.17     |          | 4.000     |                     | 79.2        | 33     | 141            |                  |
| Sample ID: MB-119141                                 | Batch ID: | 119141   |          | TestNo    | : E62               | 5.1         |        | Units:         | mg/L             |
| SampType: <b>MBLK</b>                                | Run ID:   | GCMS8    | _250217A | Analysi   | s Date: <b>2/17</b> | /2025 3:28: | 00 PM  | Prep Date:     | 2/14/2025        |
| Analyte                                              |           | Result   | RL       | SPK value | Ref Val             | %REC        | LowLim | it HighLimit % | RPD RPDLimit Qua |
| Aroclor 1016                                         | <(        | 0.000100 | 0.000200 |           |                     |             |        |                |                  |
| Aroclor 1221                                         | <0        | 0.000100 | 0.000200 |           |                     |             |        |                |                  |
| Aroclor 1232                                         | <0        | 0.000100 | 0.000200 |           |                     |             |        |                |                  |
| Aroclor 1242                                         | <0        | 0.000100 | 0.000200 |           |                     |             |        |                |                  |
| Aroclor 1248                                         | <(        | 0.000100 | 0.000200 |           |                     |             |        |                |                  |
| Aroclor 1254                                         | <(        | 0.000100 | 0.000200 |           |                     |             |        |                |                  |
|                                                      |           | 0.000100 | 0.000200 |           |                     |             |        |                |                  |
| Aroclor 1260                                         | <(        | 0.000100 |          |           |                     |             |        |                |                  |
|                                                      |           | 0.000100 | 0.000200 |           |                     |             |        |                |                  |
| Aroclor 1260<br>Total PCBs<br>Surr: 2-Fluorobiphenyl |           |          | 0.000200 | 4.000     |                     | 67.4        | 43     | 116            |                  |

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 6 of 18

Pollution Control Services

Work Order:

2502117

Project:

PCS 791258, 791262-791263

## ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9\_250217A

| Sample ID: LCS-119140       | Batch ID: | 119140 |          | TestNo    | E62                  | 5.1         |        | Units:         | mg/L  |             |
|-----------------------------|-----------|--------|----------|-----------|----------------------|-------------|--------|----------------|-------|-------------|
| SampType: <b>LCS</b>        | Run ID:   | GCMS9  | _250217A | Analys    | is Date: <b>2/17</b> | /2025 5:31: | 00 PM  | Prep Date:     | 2/14/ | 2025        |
| Analyte                     |           | Result | RL       | SPK value | Ref Val              | %REC        | LowLim | it HighLimit ' | %RPD  | RPDLimit Qu |
| Benzidine                   |           | 0.0211 | 0.00400  | 0.0400    | 0                    | 52.8        | 5      | 125            |       |             |
| Benzo[a]anthracene          | (         | 0.0397 | 0.00200  | 0.0400    | 0                    | 99.2        | 33     | 143            |       |             |
| Benzo[a]pyrene              | (         | 0.0415 | 0.00200  | 0.0400    | 0                    | 104         | 17     | 163            |       |             |
| Chrysene                    | (         | 0.0387 | 0.00200  | 0.0400    | 0                    | 96.9        | 17     | 168            |       |             |
| 2,4-Dimethylphenol          | 1         | 0,0352 | 0.00200  | 0.0400    | 0                    | 88.0        | 32     | 120            |       |             |
| 4,6-Dinitro-o-cresol        |           | 0.0430 | 0.00400  | 0.0400    | 0                    | 107         | 10     | 181            |       |             |
| m,p-Cresols                 |           | 0.0289 | 0.00400  | 0.0400    | 0                    | 72.4        | 10     | 125            |       |             |
| o-Cresol                    |           | 0.0296 | 0.00400  | 0.0400    | 0                    | 73.9        | 25     | 125            |       |             |
| p-Chloro-m-Cresol           |           | 0.0370 | 0.00400  | 0.0400    | 0                    | 92.5        | 22     | 147            |       |             |
| Hexachlorobenzene           |           | 0.0380 | 0.00200  | 0.0400    | 0                    | 95.0        | 10     | 152            |       |             |
| Hexachlorobutadiene         |           | 0.0320 | 0.00200  | 0.0400    | 0                    | 80.1        | 24     | 120            |       |             |
| Hexachloroethane            |           | 0.0328 | 0.00200  | 0.0400    | 0                    | 82.1        | 40     | 120            |       |             |
| Nitrobenzene                |           | 0.0394 | 0.00200  | 0,0400    | 0                    | 98.5        | 35     | 180            |       |             |
| N-Nitrosodiethylamine       |           | 0.0334 | 0,00400  | 0.0400    | 0                    | 83.6        | 20     | 125            |       |             |
| N-Nitrosodi-n-butylamine    |           | 0.0399 | 0,00400  | 0.0400    | 0                    | 99.7        | 20     | 125            |       |             |
| Pentachlorobenzene          |           | 0.0354 | 0.00200  | 0.0400    | 0                    | 88.6        | 40     | 140            |       |             |
| Pentachlorophenol           |           | 0.0319 | 0.00200  | 0.0400    | 0                    | 79.8        | 14     | 176            |       |             |
| Phenanthrene                |           | 0.0359 | 0.00200  | 0.0400    | 0                    | 89.8        | 54     | 120            |       |             |
| Pyridine                    |           | 0.0181 | 0.00200  | 0.0400    | 0                    | 45.2        | 10     | 75             |       |             |
| 1,2,4,5-Tetrachlorobenzene  |           | 0.0342 | 0.00200  | 0.0400    | <sup>37</sup> 0      | 85.5        | 30     | 140            |       |             |
| 2,4,5-Trichlorophenol       |           | 0.0412 | 0.00200  | 0.0400    | 0                    | 103         | 25     | 125            |       |             |
| 2-Chlorophenol              |           | 0.0319 | 0.00200  | 0.0400    | 0                    | 79.7        | 23     | 134            |       |             |
| 2,4-Dichlorophenol          |           | 0.0375 | 0.00200  | 0.0400    | 0                    | 93.6        | 39     | 135            |       |             |
| 2,4-Dinitrophenol           |           | 0.0417 | 0.00400  | 0.0400    | 0                    | 104         | 10     | 191            |       |             |
| 2-Nitrophenol               |           | 0.0380 | 0.00200  | 0.0400    | 0                    | 94.9        | 29     | 182            |       |             |
| 4-Nitrophenol               |           | 0.0290 | 0.00400  | 0.0400    | 0                    | 72.6        | 10     | 132            |       |             |
| Phenol                      |           | 0.0178 | 0.00200  | 0.0400    | 0                    | 44.6        | 5      | 120            |       |             |
| 2,4,6-Trichlorophenol       |           | 0.0401 | 0.00200  | 0.0400    | 0                    | 100         | 37     | 144            |       |             |
| Acenaphthene                |           | 0.0365 | 0.00200  | 0.0400    | 0                    | 91.3        | 47     | 145            |       |             |
| Acenaphthylene              |           | 0.0349 | 0.00200  | 0.0400    | 0                    | 87.2        | 33     | 145            |       |             |
| Anthracene                  |           | 0.0375 | 0.00200  | 0.0400    | 0                    | 93.6        | 27     | 133            |       |             |
| Benzo[b]fluoranthene        |           | 0.0453 | 0.00200  | 0:0400    | 0                    | 113         | 24     | 159            |       |             |
| Benzo[g,h,i]perylene        |           | 0.0436 | 0.00200  | 0.0400    | 0                    | 109         | 10     | 219            |       |             |
| Benzo[k]fluoranthene        |           | 0.0360 | 0.00200  | 0.0400    | 0                    | 89.9        | 11     | 162            |       |             |
| Bis(2-chloroethoxy)methane  |           | 0.0340 | 0.00200  | 0.0400    | 0                    | 85.0        | 33     | 184            |       |             |
| Bis(2-chloroethyl)ether     |           | 0.0305 | 0.00200  | 0.0400    | 0                    | 76.2        | 12     | 158            |       |             |
| Bis(2-chloroisopropyl)ether |           | 0.0310 | 0.00200  | 0.0400    | 0                    | 77.4        | 36     | 166            |       |             |
| Bis(2-ethylhexyl)phthalate  |           | 0.0471 | 0.00600  | 0.0400    | 0                    | 118         | 10     | 158            |       |             |
| 4-Bromophenyl phenyl ether  |           | 0.0383 | 0.00200  | 0.0400    | 0                    | 95.7        | 53     | 127            |       |             |
| Butyl benzyl phthalate      |           | 0.0435 | 0.00600  | 0.0400    | 0                    | 109         | 10     | 152            |       |             |

Qualifiers:

- B Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
  - R RPD outside accepted control limits
  - S Spike Recovery outside control limits
  - N Parameter not NELAP certified

Page 7 of 18

Pollution Control Services

Work Order:

2502117

**Project:** PCS 791258, 791262-791263

#### ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9\_250217A

| Sample ID: LCS-119140       | Batch ID: | 119140 |          | TestNo    | E62                  | 5.1          |        | Units:         | mg/L              |
|-----------------------------|-----------|--------|----------|-----------|----------------------|--------------|--------|----------------|-------------------|
| SampType: <b>LCS</b>        | Run ID:   | GCMS9  | _250217A | Analys    | is Date: <b>2/17</b> | //2025 5:31: | 00 PM  | Prep Date:     | 2/14/2025         |
| Analyte                     |           | Result | RL       | SPK value | Ref Val              | %REC         | LowLim | it HighLimit % | 6RPD RPDLimit Qua |
| 2-Chloronaphthalene         |           | 0.0358 | 0.00200  | 0.0400    | 0                    | 89.6         | 60     | 120            |                   |
| 4-Chlorophenyl phenyl ether | 1         | 0.0391 | 0.00200  | 0.0400    | 0                    | 97.8         | 25     | 158            |                   |
| Dibenz[a,h]anthracene       | 1         | 0.0434 | 0.00200  | 0.0400    | 0                    | 108          | 10     | 125            |                   |
| 3,3'-Dichlorobenzidine      |           | 0.0348 | 0.00500  | 0.0400    | 0                    | 87.0         | 10     | 262            |                   |
| Diethyl phthalate           |           | 0.0416 | 0.00600  | 0.0400    | 0                    | 104          | 10     | 120            |                   |
| Dimethyl phthalate          |           | 0.0397 | 0.00600  | 0.0400    | 0                    | 99.2         | 10     | 120            |                   |
| Di-n-butyl phthalate        |           | 0.0464 | 0.00600  | 0.0400    | 0                    | 116          | 10     | 120            |                   |
| 2,4-Dinitrotoluene          |           | 0.0417 | 0.00200  | 0.0400    | 0                    | 104          | 39     | 139            |                   |
| 2,6-Dinitrotoluene          |           | 0.0406 | 0.00200  | 0.0400    | 0                    | 101          | 50     | 158            |                   |
| Di-n-octyl phthalate        |           | 0.0409 | 0.00600  | 0.0400    | 0                    | 102          | 10     | 146            |                   |
| 1,2-Diphenylhydrazine       |           | 0.0357 | 0,00200  | 0.0400    | 0                    | 89.4         | 40     | 140            |                   |
| Fluoranthene                |           | 0.0441 | 0.00200  | 0.0400    | 0                    | 110          | 26     | 137            |                   |
| Fluorene                    |           | 0.0399 | 0.00200  | 0.0400    | 0                    | 99.8         | 59     | 121            |                   |
| Hexachlorocyclopentadiene   |           | 0.0327 | 0.00200  | 0.0400    | 0                    | 81.8         | 8      | 130            |                   |
| Indeno[1,2,3-cd]pyrene      |           | 0.0425 | 0.00200  | 0.0400    | 0                    | 106          | 10     | 171            |                   |
| Isophorone                  |           | 0.0344 | 0.00200  | 0.0400    | 0                    | 85.9         | 21     | 196            |                   |
| Naphthalene                 |           | 0.0331 | 0.00200  | 0.0400    | 0                    | 82.6         | 21     | 133            |                   |
| N-Nitrosodimethylamine      |           | 0.0169 | 0.00200  | 0.0400    | 0                    | 42.2         | 10     | 125            |                   |
| N-Nitrosodi-n-propylamine   |           | 0.0364 | 0.00200  | 0.0400    | 0                    | 91.0         | 10     | 230            |                   |
| N-Nitrosodiphenylamine      |           | 0.0357 | 0.00200  | 0.0400    | 0                    | 89.2         | 20     | 125            |                   |
| Pyrene                      |           | 0.0379 | 0.00200  | 0.0400    | 0                    | 94.8         | 52     | 120            |                   |
| 1,2,4-Trichlorobenzene      |           | 0.0338 | 0.00200  | 0.0400    | 0                    | 84.5         | 44     | 142            |                   |
| Surr: 2,4,6-Tribromophenol  |           | 73.6   |          | 80.00     |                      | 92.0         | 10     | 123            |                   |
| Surr: 2-Fluorobiphenyl      |           | 66.6   |          | 80.00     |                      | 83.3         | 43     | 116            |                   |
| Surr: 2-Fluorophenol        |           | 48.0   |          | 80.00     |                      | 60.0         | 21     | 100            |                   |
| Surr: 4-Terphenyl-d14       |           | 65.6   |          | 80.00     |                      | 82.0         | 33     | 141            |                   |
| Surr: Nitrobenzene-d5       |           | 70.4   |          | 80.00     |                      | 88.0         | 35     | 115            |                   |
| Surr: Phenol-d5             |           | 33.0   |          | 80.00     |                      | 41.2         | 10     | 94             |                   |
| Sample ID: LCSD-119140      | Batch ID: | 119140 |          | TestNo    | o: <b>E62</b>        | 25.1         |        | Units:         | mg/L              |
| SampType: LCSD              | Pun ID:   | COMO   | 2502174  | Analys    | is Date: 2/1         | 7/2025 5.54  | .00 DM | Pren Date:     | 2/14/2025         |

| Sample ID: LCSD-119140 | Batch ID: | 119140 |          | TestNo    | : <b>E62</b> :       | 5.1         |          | Units:               | mg/l | -             |
|------------------------|-----------|--------|----------|-----------|----------------------|-------------|----------|----------------------|------|---------------|
| SampType: LCSD         | Run ID:   | GCMS9  | _250217A | Analys    | is Date: <b>2/17</b> | /2025 5:54: | 00 PM    | Prep Date: 2/14/2025 |      | /2025         |
| Analyte                |           | Result | RL       | SPK value | Ref Val              | %REC        | LowLimit | HighLimit            | %RPD | RPDLimit Qual |
| Benzidine              | I         | 0.0177 | 0,00400  | 0.0400    | 0                    | 44.2        | 5        | 125                  | 17.8 | 50            |
| Benzo[a]anthracene     | F)        | 0.0422 | 0.00200  | 0.0400    | 0                    | 106         | 33       | 143                  | 6,16 | 50            |
| Benzo[a]pyrene         |           | 0.0430 | 0.00200  | 0.0400    | 0                    | 107         | 17       | 163                  | 3,46 | 50            |
| Chrysene               |           | 0.0415 | 0.00200  | 0.0400    | 0                    | 104         | 17       | 168                  | 6.98 | 50            |
| 2,4-Dimethylphenol     |           | 0.0378 | 0.00200  | 0.0400    | 0                    | 94,6        | 32       | 120                  | 7.23 | 50            |
| 4,6-Dinitro-o-cresol   |           | 0.0464 | 0,00400  | 0.0400    | 0                    | 116         | 10       | 181                  | 7.74 | 50            |
| m,p-Cresols            |           | 0.0304 | 0.00400  | 0.0400    | 0                    | 76.1        | 10       | 125                  | 5.05 | 50            |
| o-Cresol               |           | 0.0320 | 0.00400  | 0.0400    | 0                    | 80.1        | 25       | 125                  | 8.05 | 50            |

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 8 of 18

Pollution Control Services

Work Order:

2502117

**Project:** PCS 791258, 791262-791263

## ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9\_250217A

| Sample ID: LCSD-119140      | Batch ID: 1191 | 40          | TestN     | o: <b>E62</b> 5         | 5.1        |        | Units:         | mg/L  |             |
|-----------------------------|----------------|-------------|-----------|-------------------------|------------|--------|----------------|-------|-------------|
| SampType: <b>LCSD</b>       | Run ID: GCN    | IS9_250217A | Analys    | sis Date: <b>2/17</b> / | 2025 5:54: | 00 PM  | Prep Date:     | 2/14/ | 2025        |
| Analyte                     | Result         | RL          | SPK value | Ref Val                 | %REC       | LowLim | it HighLimit ' | %RPD  | RPDLimit Qu |
| p-Chloro-m-Cresol           | 0.0403         | 0.00400     | 0.0400    | 0                       | 101        | 22     | 147            | 8.64  | 50          |
| Hexachlorobenzene           | 0.0412         | 0.00200     | 0.0400    | 0                       | 103        | 10     | 152            | 8.18  | 50          |
| Hexachlorobutadiene         | 0,0347         | 0.00200     | 0.0400    | 0                       | 86.9       | 24     | 120            | 8.15  | 50          |
| Hexachloroethane            | 0.0364         | 0.00200     | 0.0400    | 0                       | 90.9       | 40     | 120            | 10.2  | 50          |
| Nitrobenzene                | 0.0419         | 0.00200     | 0.0400    | 0                       | 105        | 35     | 180            | 6.05  | 50          |
| N-Nitrosodiethylamine       | 0.0372         | 0.00400     | 0.0400    | 0                       | 92.9       | 20     | 125            | 10.6  | 50          |
| N-Nitrosodi-n-butylamine    | 0.0438         | 0.00400     | 0.0400    | 0                       | 109        | 20     | 125            | 9.33  | 50          |
| Pentachlorobenzene          | 0.0393         | 0.00200     | 0.0400    | 0                       | 98.3       | 40     | 140            | 10.3  | 50          |
| Pentachlorophenol           | 0.0351         | 0.00200     | 0.0400    | 0                       | 87.7       | 14     | 176            | 9.43  | 50          |
| Phenanthrene                | 0.0392         | 0.00200     | 0.0400    | 0                       | 98.0       | 54     | 120            | 8.74  | 39          |
| Pyridine                    | 0.0170         | 0.00200     | 0.0400    | 0                       | 42.5       | 10     | 75             | 6.27  | 50          |
| 1,2,4,5-Tetrachlorobenzene  | 0.0380         | 0.00200     | 0.0400    | 0                       | 94.9       | 30     | 140            | 10.4  | 50          |
| 2,4,5-Trichlorophenol       | 0.0457         | 0.00200     | 0.0400    | 0                       | 114        | 25     | 125            | 10.4  | 50          |
| 2-Chlorophenol              | 0.0347         | 0.00200     | 0.0400    | 0                       | 86.6       | 23     | 134            | 8.36  | 50          |
| 2,4-Dichlorophenol          | 0.0413         | 0.00200     | 0.0400    | 0                       | 103        | 39     | 135            | 9.85  | 50          |
| 2,4-Dinitrophenol           | 0.0428         | 0.00400     | 0.0400    | 0                       | 107        | 10     | 191            | 2.70  | 50          |
| 2-Nitrophenol               | 0.0419         | 0.00200     | 0.0400    | 0                       | 105        | 29     | 182            | 9.82  | 50          |
| 4-Nitrophenol               | 0.0306         | 0.00400     | 0.0400    | 0                       | 76.6       | 10     | 132            | 5.43  | 50          |
| Phenol                      | 0.0191         | 0.00200     | 0.0400    | 0                       | 47.8       | 5      | 120            | 6.93  | 50          |
| 2,4,6-Trichlorophenol       | 0.0441         | 0.00200     | 0.0400    | 0                       | 110        | 37     | 144            | 9.31  | 50          |
| Acenaphthene                | 0.0397         | 0.00200     | 0.0400    | 0                       | 99.2       | 47     | 145            | 8.24  | 48          |
| Acenaphthylene              | 0.0380         | 0.00200     | 0.0400    | 0                       | 95.1       | 33     | 145            | 8.67  | 50          |
| Anthracene                  | 0.0404         | 0.00200     | 0.0400    | 0                       | 101        | 27     | 133            | 7.50  | 50          |
| Benzo[b]fluoranthene        | 0.0477         | 0.00200     | 0.0400    | 0                       | 119        | 24     | 159            | 5.11  | 50          |
| Benzo[g,h,i]perylene        | 0.0462         | 0.00200     | 0.0400    | 0                       | 115        | 10     | 219            | 5.84  | 50          |
| Benzo[k]fluoranthene        | 0.0374         | 0.00200     | 0.0400    | 0                       | 93.5       | 11     | 162            | 3.93  | 50          |
| Bis(2-chloroethoxy)methane  | 0.0378         | 0.00200     | 0.0400    | 0                       | 94.4       | 33     | 184            | 10.5  | 50          |
| Bis(2-chloroethyl)ether     | 0.0339         | 0.00200     | 0.0400    | 0                       | 84.8       | 12     | 158            | 10.7  | 50          |
| Bis(2-chloroisopropyl)ether | 0.0336         | 0.00200     | 0.0400    | 0                       | 84.1       | 36     | 166            | 8.24  | 50          |
| Bis(2-ethylhexyl)phthalate  | 0.0492         | 0.00600     | 0.0400    | 0                       | 123        | 10     | 158            | 4.32  | 50          |
| 4-Bromophenyl phenyl ether  | 0.0420         | 0.00200     | 0.0400    | 0                       | 105        | 53     | 127            | 9.27  | 43          |
| Butyl benzyl phthalate      | 0.0468         | 0.00600     | 0.0400    | 0                       | 117        | 10     | 152            | 7.35  | 50          |
| 2-Chloronaphthalene         | 0.0389         | 0.00200     | 0.0400    | 0                       | 97.3       | 60     | 120            | 8.24  | 24          |
| 4-Chlorophenyl phenyl ether | 0,0422         | 0.00200     | 0.0400    | 0                       | 106        | 25     | 158            | 7.62  | 50          |
| Dibenz[a,h]anthracene       | 0.0457         | 0.00200     | 0.0400    | 0                       | 114        | 10     | 125            | 5,17  | 50          |
| 3,3'-Dichlorobenzidine      | 0.0371         |             | 0.0400    | 0                       | 92.8       | 10     | 262            | 6.40  | 50          |
| Diethyl phthalate           | 0.0449         |             | 0.0400    | 0                       | 112        | 10     | 120            | 7.72  | 50          |
| Dimethyl phthalate          | 0.0430         |             | 0.0400    | 0                       | 107        | 10     | 120            | 7.94  | 50          |
| Di-n-butyl phthalate        | 0.0498         |             | 0.0400    | 0                       | 124        | 10     | 120            | 7.03  | 47          |
| 2,4-Dinitrotoluene          | 0.0450         |             | 0.0400    | 0                       | 112        | 39     | 139            | 7.56  | 42          |
| 2,6-Dinitrotoluene          | 0.0440         |             | 0.0400    | 0                       | 110        | 50     | 158            | 8.18  | 48          |

Qualifiers:

- B Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
  - J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
  - R RPD outside accepted control limits
  - S Spike Recovery outside control limits
- N Parameter not NELAP certified

Page 9 of 18

Project:

Pollution Control Services

Work Order:

2502117

PCS 791258, 791262-791263

## ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9 250217A

| *                          | .50, 171202 |        |          |           |                     |             |        | JCIVIO7_2                  | 0021 | **          |
|----------------------------|-------------|--------|----------|-----------|---------------------|-------------|--------|----------------------------|------|-------------|
| Sample ID: LCSD-119140     | Batch ID:   | 119140 |          | TestNo:   | E62                 | 5.1         |        | Units:                     | mg/l | _           |
| SampType: LCSD             | Run ID:     | GCMS9  | _250217A | Analysi   | s Date: <b>2/17</b> | /2025 5:54: | 00 PM  | Prep Date:                 | 2/14 | /2025       |
| Analyte                    |             | Result | RL       | SPK value | Ref Val             | %REC        | LowLim | nit HighLimit <sup>4</sup> | %RPD | RPDLimit Qu |
| Di-n-octyl phthalate       |             | 0.0427 | 0.00600  | 0.0400    | 0                   | 107         | 10     | 146                        | 4.26 | 50          |
| 1,2-Diphenylhydrazine      |             | 0.0391 | 0.00200  | 0.0400    | 0                   | 97,8        | 40     | 140                        | 8.98 | 50          |
| Fluoranthene               |             | 0.0475 | 0.00200  | 0.0400    | 0                   | 119         | 26     | 137                        | 7.38 | 50          |
| Fluorene                   |             | 0.0432 | 0.00200  | 0.0400    | 0                   | 108         | 59     | 121                        | 7.90 | 38          |
| Hexachlorocyclopentadiene  |             | 0.0350 | 0.00200  | 0.0400    | 0                   | 87.6        | 8      | 130                        | 6.85 | 50          |
| Indeno[1,2,3-cd]pyrene     |             | 0.0448 | 0.00200  | 0.0400    | 0                   | 112         | 10     | 171                        | 5.31 | 50          |
| Isophorone                 |             | 0.0378 | 0.00200  | 0.0400    | 0                   | 94.5        | 21     | 196                        | 9.53 | 50          |
| Naphthalene                |             | 0.0365 | 0.00200  | 0.0400    | 0                   | 91.4        | 21     | 133                        | 10.0 | 50          |
| N-Nitrosodimethylamine     |             | 0.0184 | 0.00200  | 0.0400    | 0                   | 46.1        | 10     | 125                        | 8.83 | 50          |
| N-Nitrosodi-n-propylamine  |             | 0.0395 | 0.00200  | 0.0400    | 0                   | 98.6        | 10     | 230                        | 8.12 | 50          |
| N-Nitrosodiphenylamine     |             | 0.0389 | 0.00200  | 0.0400    | 0                   | 97.2        | 20     | 125                        | 8.48 | 50          |
| Pyrene                     |             | 0.0405 | 0.00200  | 0.0400    | 0                   | 101         | 52     | 120                        | 6.73 | 49          |
| 1,2,4-Trichlorobenzene     |             | 0.0370 | 0.00200  | 0.0400    | 0                   | 92.4        | 44     | 142                        | 8.93 | 50          |
| Surr: 2,4,6-Tribromophenol |             | 80.6   |          | 80.00     |                     | 101         | 10     | 123                        | 0    | 0           |
| Surr: 2-Fluorobiphenyl     |             | 73.2   |          | 80.00     |                     | 91.5        | 43     | 116                        | 0    | 0           |
| Surr: 2-Fluorophenol       |             | 52.2   |          | 80.00     |                     | 65.2        | 21     | 100                        | 0    | 0           |
| Surr: 4-Terphenyl-d14      |             | 69.0   |          | 80.00     |                     | 86.2        | 33     | 141                        | 0    | 0           |
| Surr: Nitrobenzene-d5      |             | 78.4   |          | 80.00     |                     | 98.0        | 35     | 115                        | 0    | 0           |
| Surr: Phenoi-d5            |             | 35.6   |          | 80.00     |                     | 44.5        | 10     | 94                         | 0    | 0           |
| Sample ID: MB-119140       | Batch ID:   | 119140 |          | TestNo    | E62                 | 5.1         |        | Units:                     | mg/l |             |
| SampType: MBLK             | Run ID:     | GCMS9  | _250217A | Analysi   | s Date: <b>2/17</b> | /2025 7:00: | 00 PM  | Prep Date:                 | 2/14 | /2025       |
| Analyte                    |             | Result | RL       | SPK value | Ref Val             | %REC        | LowLin | nit HighLimit (            | %RPD | RPDLimit Qu |

| Sample ID: MB-119140     | Batch ID: 1 | 19140       |         | TestNo:          | E625.1          | Units:            | mg/L                 |
|--------------------------|-------------|-------------|---------|------------------|-----------------|-------------------|----------------------|
| SampType: MBLK           | Run ID: (   | GCMS9_25021 | 7A .    | Analysis Date: : | 2/17/2025 7:00: | 00 PM Prep Dat    | te: <b>2/14/2025</b> |
| Analyte                  | Re          | sult R      | L SPK v | value Ref Va     | al %REC         | LowLimit HighLimi | t %RPD RPDLimit Qual |
| Benzidine                | <0.0        | 0.00        | 400     |                  |                 |                   |                      |
| Benzo[a]anthracene       | <0.0        | 0.00        | 200     |                  |                 |                   |                      |
| Benzo[a]pyrene           | <0.0        | 0.00        | 200     |                  |                 |                   |                      |
| Chrysene                 | <0.0        | 0.00        | 200     |                  |                 |                   |                      |
| 2,4-Dimethylphenol       | <0.0        | 0.00        | 200     |                  |                 |                   |                      |
| 4,6-Dinitro-o-cresol     | <0.0        | 0.00        | 400     |                  |                 |                   |                      |
| m,p-Cresols              | <0.0        | 0.00        | 400     |                  |                 |                   |                      |
| o-Cresol                 | <0.0        | 0.00        | 400     |                  |                 |                   |                      |
| p-Chloro-m-Cresol        | <0.0        | 0.00        | 400     |                  |                 |                   |                      |
| Hexachlorobenzene        | <0.0        | 0.00        | 200     |                  |                 |                   |                      |
| Hexachlorobutadiene      | <0.0        | 0.00        | 200     |                  |                 |                   |                      |
| Hexachloroethane         | <0.0        | 0.00        | 200     |                  |                 |                   |                      |
| Nitrobenzene             | <0.0        | 0.00        | 200     |                  |                 |                   |                      |
| N-Nitrosodiethylamine    | <0.0        | 00200 0.00  | 400     |                  |                 |                   |                      |
| N-Nitrosodi-n-butylamine | <0.0        | 0.00        | 400     |                  |                 |                   |                      |
| Pentachlorobenzene       | <0.0        | 0.00        | 200     |                  |                 |                   |                      |
| Pentachlorophenol        | <0.0        | 0.00        | 200     |                  |                 |                   |                      |

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 10 of 18

Pollution Control Services

Work Order:

2502117

**Project:** PCS 791258, 791262-791263

## ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9\_250217A

| Sample ID: MB-119140        | Batch ID: | 119140  |          | TestNo    | E62          | 5.1         |        | Units:         | mg/L               |
|-----------------------------|-----------|---------|----------|-----------|--------------|-------------|--------|----------------|--------------------|
| SampType: MBLK              | Run ID:   | GCMS9   | _250217A | Analysi   | s Date: 2/17 | /2025 7:00: | 00 PM  | Prep Date:     | 2/14/2025          |
| Analyte                     |           | Result  | RL       | SPK value | Ref Val      | %REC        | LowLim | it HighLimit % | GRPD RPDLimit Qual |
| Phenanthrene                | <(        | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| Pyridine                    | <(        | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| 1,2,4,5-Tetrachlorobenzene  | <(        | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| 2,4,5-Trichlorophenol       | <(        | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| 2-Chlorophenol              | <(        | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| 2,4-Dichlorophenol          | <(        | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| 2,4-Dinitrophenol           | <(        | 0.00200 | 0.00400  |           |              |             |        |                |                    |
| 2-Nitrophenol               | <(        | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| 4-Nitrophenol               | <(        | 0.00200 | 0.00400  |           |              |             |        |                |                    |
| Phenol                      | <(        | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| 2,4,6-Trichlorophenol       | <(        | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| Acenaphthene                | <(        | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| Acenaphthylene              | <(        | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| Anthracene                  | <(        | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| Benzo[b]fluoranthene        | <(        | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| Benzo[g,h,i]perylene        | <(        | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| Benzo[k]fluoranthene        | <(        | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| Bis(2-chloroethoxy)methane  | <(        | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| Bis(2-chloroethyl)ether     | <(        | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| Bis(2-chloroisopropyl)ether | <(        | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| Bis(2-ethylhexyl)phthalate  | <(        | 0.00300 | 0.00600  |           |              |             |        |                |                    |
| 4-Bromophenyl phenyl ether  | <(        | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| Butyl benzyl phthalate      | <(        | 0.00300 | 0.00600  |           |              |             |        |                |                    |
| 2-Chloronaphthalene         | <(        | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| 4-Chlorophenyl phenyl ether | <(        | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| Dibenz[a,h]anthracene       |           | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| 3,3´-Dichlorobenzidine      |           | 0.00100 | 0.00500  |           |              |             |        |                |                    |
| Diethyl phthalate           |           | 0.00300 | 0.00600  |           |              |             |        |                |                    |
| Dimethyl phthalate          |           | 0.00300 | 0,00600  |           |              |             |        |                |                    |
| Di-n-butyl phthalate        |           | 0.00300 | 0.00600  |           |              |             |        |                |                    |
| 2,4-Dinitrotoluene          |           | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| 2,6-Dinitrotoluene          |           | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| Di-n-octyl phthalate        |           | 0.00300 | 0.00600  |           |              |             |        |                |                    |
| 1,2-Diphenylhydrazine       |           | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| Fluoranthene                |           | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| Fluorene                    |           | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| Hexachlorocyclopentadiene   |           | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| Indeno[1,2,3-cd]pyrene      |           | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| Isophorone                  |           | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| Naphthalene                 |           | 0.00100 | 0.00200  |           |              |             |        |                |                    |
| N-Nitrosodimethylamine      | <(        | 0.00100 | 0.00200  |           |              |             |        |                |                    |

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 11 of 18

Pollution Control Services

Work Order:

2502117

Project:

PCS 791258, 791262-791263

# ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9\_250217A

| Sample ID: MB-119140 SampType: MBLK | Batch ID:<br>Run ID: | 119140<br>GCMS9 | 250217A | TestNo<br>Analysi | : <b>E62</b><br>s Date: <b>2/17</b> |      | 00 PM | Units:<br>Prep Date | mg/L<br>: 2/14/2025 |
|-------------------------------------|----------------------|-----------------|---------|-------------------|-------------------------------------|------|-------|---------------------|---------------------|
| Analyte                             |                      | Result          | RL      | SPK value         | Ref Val                             | %REC |       |                     | %RPD RPDLimit Qual  |
| N-Nitrosodi-n-propylamine           | <(                   | 0.00100         | 0.00200 |                   |                                     |      |       |                     |                     |
| N-Nitrosodiphenylamine              | <(                   | 0.00100         | 0.00200 |                   |                                     |      |       |                     |                     |
| Pyrene                              | <(                   | 0.00100         | 0.00200 |                   |                                     |      |       |                     |                     |
| 1,2,4-Trichlorobenzene              | <(                   | 0.00100         | 0.00200 |                   |                                     |      |       |                     |                     |
| Surr: 2,4,6-Tribromophenol          |                      | 73.4            |         | 80.00             |                                     | 91.8 | 10    | 123                 |                     |
| Surr: 2-Fluorobiphenyl              |                      | 66.8            |         | 80.00             |                                     | 83.5 | 43    | 116                 |                     |
| Surr: 2-Fluorophenol                |                      | 41.0            |         | 80.00             |                                     | 51.3 | 21    | 100                 |                     |
| Surr: 4-Terphenyl-d14               |                      | 63.6            |         | 80.00             |                                     | 79.5 | 33    | 141                 |                     |
| Surr: Nitrobenzene-d5               |                      | 67.2            |         | 80.00             |                                     | 84.0 | 35    | 115                 |                     |
| Surr: Phenol-d5                     |                      | 25.4            |         | 80.00             |                                     | 31.8 | 10    | 94                  |                     |

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 12 of 18

Project:

Pollution Control Services

Work Order:

2502117

Pr

PCS 791258, 791262-791263

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9\_250217B

| Sample ID: LCS-119140-NP    | Batch ID: | 119140  |          | TestNo:   | D70               | 65-17       |          | Units:     | mg/L          |      |
|-----------------------------|-----------|---------|----------|-----------|-------------------|-------------|----------|------------|---------------|------|
| SampType: <b>LCS</b>        | Run ID:   | GCMS9   | _250217B | Analysis  | Date: 2/17        | /2025 6:38: | 00 PM    | Prep Date: | 2/14/2025     |      |
| Analyte                     |           | Result  | RL       | SPK value | Ref Val           | %REC        | LowLimit | HighLimit  | %RPD RPDLimit | Qual |
| Nonylphenol                 |           | 0.853   | 0.100    | 1.00      | 0                 | 85.3        | 40       | 140        |               | Ν    |
| Sample ID: <b>MB-119140</b> | Batch ID: | 119140  |          | TestNo:   | D70               | 65-17       |          | Units:     | mg/L          |      |
| SampType: <b>MBLK</b>       | Run ID:   | GCMS9   | _250217B | Analysis  | Date: <b>2/17</b> | /2025 7:00: | 00 PM    | Prep Date: | 2/14/2025     |      |
| Analyte                     |           | Result  | RL       | SPK value | Ref Val           | %REC        | LowLimit | HighLimit  | %RPD RPDLimit | Qual |
| Nonviphenol                 |           | <0.0700 | 0.100    |           |                   |             |          |            |               | N    |

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 13 of 18

Pollution Control Services

Work Order:

2502117

Project:

PCS 791258, 791262-791263

#### ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS5\_250212B

| The QC data in batch 119104 a       |                  | //       |           | · F00         | A 1         |         | Unite          | man II           |
|-------------------------------------|------------------|----------|-----------|---------------|-------------|---------|----------------|------------------|
| Sample ID: LCS-119104               | Batch ID: 119104 |          | TestNo    |               |             |         | Units:         | mg/L             |
| SampType: LCS                       | Run ID: GCMS5    | _250212B | Analys    | is Date: 2/12 | /2025 12:08 | 3:00 PM | Prep Date:     | 2/12/2025        |
| Analyte                             | Result           | RL       | SPK value | Ref Val       | %REC        | LowLim  | it HighLimit ' | %RPD RPDLimit Qu |
| Benzene                             | 0.0215           | 0,00100  | 0.0232    | 0             | 92,5        | 65      | 135            |                  |
| Carbon tetrachloride                | 0.0213           | 0.00100  | 0.0232    | 0             | 91.7        | 70      | 130            |                  |
| Chlorobenzene                       | 0.0222           | 0.00100  | 0.0232    | 0             | 95.6        | 35      | 135            |                  |
| Chloroform                          | 0.0212           | 0.00100  | 0.0232    | 0             | 91.6        | 70      | 135            |                  |
| Chlorodibromomethane                | 0.0210           | 0.00100  | 0.0232    | 0             | 90.6        | 70      | 135            |                  |
| 1,2-Dibromoethane                   | 0,0211           | 0.00100  | 0.0232    | 0             | 91.0        | 60      | 140            |                  |
| 1,2-Dichloroethane                  | 0.0217           | 0.00100  | 0.0232    | 0             | 93.7        | 70      | 130            |                  |
| 1,1-Dichloroethene                  | 0.0214           | 0.00100  | 0.0232    | 0             | 92.3        | 50      | 150            |                  |
| Methyl ethyl ketone                 | 0.105            | 0.0150   | 0.116     | 0             | 90.7        | 60      | 140            |                  |
| Tetrachloroethene                   | 0.0227           | 0.00200  | 0.0232    | 0             | 98.0        | 70      | 130            |                  |
| Trichloroethene                     | 0.0219           | 0.00100  | 0.0232    | 0             | 94.6        | 65      | 135            |                  |
| 1,1,1-Trichloroethane               | 0.0216           | 0.00100  | 0.0232    | 0             | 93,1        | 70      | 130            |                  |
| TTHM (Total Trihalomethanes)        | 0.0829           | 0.00100  | 0.0928    | 0             | 89.3        | 60      | 140            |                  |
| Vinyl chloride                      | 0.0187           | 0.00100  | 0.0232    | 0             | 80.4        | 5       | 195            |                  |
| Acrolein                            | 0.0677           | 0.0150   | 0.0580    | 0             | 117         | 60      | 140            |                  |
| Acrylonitrile                       | 0.0364           | 0.00300  | 0.0464    | 0             | 78.5        | 60      | 140            |                  |
| 1,1,2,2-Tetrachloroethane           | 0.0204           | 0.00100  | 0.0232    | 0             | 88.0        | 60      | 140            |                  |
| Bromoform                           | 0.0196           | 0.00100  | 0.0232    | 0             | 84.4        | 65      | 135            |                  |
| Chloroethane                        | 0.0198           | 0.00500  | 0.0232    | 0             | 85.2        | 40      | 160            |                  |
| 2-Chloroethylvinylether             | 0.0170           | 0.0100   | 0.0232    | 0             | 73.3        | 5       | 225            |                  |
| Bromodichloromethane                | 0.0210           | 0.00100  | 0.0232    | 0             | 90.7        | 65      | 135            |                  |
| 1,1-Dichloroethane                  | 0.0212           | 0.00100  | 0.0232    | 0             | 91.6        | 70      | 130            |                  |
| 1,2-Dichloropropane                 | 0.0211           | 0.00100  | 0.0232    | 0             | 90.9        | 35      | 165            |                  |
| 1,3-Dichloropropene (cis)           | 0.0203           | 0.00100  | 0.0232    | 0             | 87.7        | 25      | 175            |                  |
| 1,3-Dichloropropene (trans)         | 0.0205           | 0.00100  | 0.0232    | 0             | 88.5        | 50      | 150            |                  |
| Ethylbenzene                        | 0.0220           | 0.00100  | 0.0232    | 0             | 94.9        | 60      | 140            |                  |
| Methyl bromide                      | 0.0190           | 0.00500  | 0.0232    | 0             | 81.7        | 15      | 185            |                  |
| Methyl chloride                     | 0,0186           | 0.00500  | 0.0232    | 0             | 80.4        | 5       | 205            |                  |
| •                                   | 0.0223           | 0.00500  | 0.0232    | 0             | 96.3        | 60      | 140            |                  |
| Methylene chloride (DCM)<br>Toluene | 0.0223           | 0.00300  | 0.0232    | 0             | 91.9        | 70      | 130            |                  |
|                                     | 0.0213           | 0.00200  | 0.0232    | 0             | 94.6        | 70      | 130            |                  |
| trans-1,2-Dichloroethylene          | 0.0220           | 0.00200  | 0.0232    | 0             | 90.0        | 70      | 130            |                  |
| 1,1,2-Trichloroethane               | 0.0209           | 0.00100  | 0.0232    | 0             | 96.4        | 65      | 135            |                  |
| 1,2-Dichlorobenzene                 |                  |          |           |               |             | 70      | 130            |                  |
| 1,3-Dichlorobenzene                 | 0,0229           | 0.00100  | 0.0232    | 0             | 98.8        |         |                |                  |
| 1,4-Dichlorobenzene                 | 0.0230           | 0.00100  | 0.0232    | 0             | 99.1        | 65      | 135            |                  |
| Surr: 1,2-Dichloroethane-d4         | 194              |          | 200.0     |               | 97.2        | 72      | 119            |                  |
| Surr: 4-Bromofluorobenzene          | 196              |          | 200.0     |               | 98.0        | 76      | 119            |                  |
| Surr: Dibromofluoromethane          |                  |          | 200.0     |               | 97.9        | 85      | 115            |                  |
| Surr: Toluene-d8                    | 192              |          | 200.0     |               | 96.2        | 81      | 120            |                  |

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 14 of 18

Pollution Control Services

Work Order:

2502117

**Project:** PCS 791258, 791262-791263

## ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS5\_250212B

| Sample ID: MB-119104         | Batch ID: 119104 |          | TestNo    | E624                  | 1.1         |        | Units:         | mg/L              |
|------------------------------|------------------|----------|-----------|-----------------------|-------------|--------|----------------|-------------------|
| SampType: MBLK               | Run ID: GCMS5    | _250212B | Analysi   | s Date: <b>2/12</b> / | /2025 1:11: | 00 PM  | Prep Date:     | 2/12/2025         |
| Analyte                      | Result           | RL       | SPK value | Ref Val               | %REC        | LowLim | it HighLimit S | %RPD RPDLimit Qua |
| Benzene                      | <0.000300        | 0.00100  |           |                       |             |        |                |                   |
| Carbon tetrachloride         | < 0.000300       | 0.00100  |           |                       |             |        |                |                   |
| Chlorobenzene                | <0.000300        | 0.00100  |           |                       |             |        |                |                   |
| Chloroform                   | < 0.000300       | 0.00100  |           |                       |             |        |                |                   |
| Chlorodibromomethane         | <0.000300        | 0.00100  | 8         |                       |             |        |                |                   |
| 1,2-Dibromoethane            | <0.000300        | 0.00100  |           |                       |             |        |                |                   |
| 1,2-Dichloroethane           | <0.000300        | 0.00100  |           |                       |             |        |                |                   |
| 1,1-Dichloroethene           | <0.000300        | 0.00100  |           |                       |             |        |                |                   |
| Methyl ethyl ketone          | < 0.00500        | 0.0150   |           |                       |             |        |                |                   |
| Tetrachloroethene            | <0.000600        | 0.00200  |           |                       |             |        |                |                   |
| Trichloroethene              | <0.000600        | 0.00100  |           |                       |             |        |                |                   |
| 1,1,1-Trichloroethane        | < 0.000300       | 0.00100  |           |                       |             |        |                |                   |
| TTHM (Total Trihalomethanes) | < 0.000300       | 0.00100  |           |                       |             |        |                |                   |
| Vinyl chloride               | < 0.000300       | 0.00100  |           |                       |             |        |                |                   |
| Acrolein                     | <0.00500         | 0.0150   |           |                       |             |        |                |                   |
| Acrylonitrile                | < 0.00100        | 0.00300  |           |                       |             |        |                |                   |
| 1,1,2,2-Tetrachloroethane    | <0.000300        | 0.00100  |           |                       |             |        |                |                   |
| Bromoform                    | < 0.000300       | 0.00100  |           |                       |             |        |                |                   |
| Chloroethane                 | <0.00100         | 0.00500  |           |                       |             |        |                |                   |
| 2-Chloroethylvinylether      | <0.00600         | 0.0100   |           |                       |             |        |                |                   |
| Bromodichloromethane         | <0.000300        | 0.00100  |           |                       |             |        |                |                   |
| 1,1-Dichloroethane           | < 0.000300       | 0.00100  |           |                       |             |        |                |                   |
| 1,2-Dichloropropane          | <0.000300        | 0.00100  |           |                       |             |        |                |                   |
| 1,3-Dichloropropene (cis)    | <0.000300        | 0.00100  |           |                       |             |        |                |                   |
| 1,3-Dichloropropene (trans)  | <0.000300        | 0.00100  |           |                       |             |        |                |                   |
| Ethylbenzene                 | < 0.000300       | 0.00100  |           |                       |             |        |                |                   |
| Methyl bromide               | <0.00100         | 0,00500  |           |                       |             |        |                |                   |
| Methyl chloride              | < 0.00100        | 0.00500  |           |                       |             |        |                |                   |
| Methylene chloride (DCM)     | < 0.00250        | 0.00500  |           |                       |             |        |                |                   |
| Toluene                      | <0.000600        | 0.00200  |           |                       |             |        |                |                   |
| trans-1,2-Dichloroethylene   | <0.000300        | 0.00200  |           |                       |             |        |                |                   |
| 1,1,2-Trichloroethane        | < 0.000300       | 0.00100  |           |                       |             |        |                |                   |
| 1,2-Dichlorobenzene          | <0.000300        | 0.00100  |           |                       |             |        |                |                   |
| 1,3-Dichlorobenzene          | <0.000300        | 0.00100  |           |                       |             |        |                |                   |
| 1,4-Dichlorobenzene          | <0.000300        | 0.00100  |           |                       |             |        |                |                   |
| Surr: 1,2-Dichloroethane-d4  | 199              |          | 200.0     |                       | 99.5        | 72     | 119            |                   |
| Surr: 4-Bromofluorobenzene   | 204              |          | 200.0     |                       | 102         | 76     | 119            |                   |
| Surr: Dibromofluoromethane   | 197              |          | 200.0     |                       | 98.7        | 85     | 115            |                   |
| Surr: Toluene-d8             | 194              |          | 200.0     |                       | 97.2        | 81     | 120            |                   |

| o |   | _ | 1: |   |   |   |
|---|---|---|----|---|---|---|
| u | u | и | ш  | ш | œ | п |

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 15 of 18

Pollution Control Services

Work Order:

2502117

**Project:** PCS 791258, 791262-791263

## ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS5\_250212B

| Sample ID: <b>2502126-08AMS</b> | Batch ID: 119104 |          | TestNo    | E62                  | 4.1         |        | Units:         | mg/L              |
|---------------------------------|------------------|----------|-----------|----------------------|-------------|--------|----------------|-------------------|
| SampType: <b>MS</b>             | Run ID: GCMS5    | _250212B | Analys    | is Date: <b>2/12</b> | /2025 9:34: | 00 PM  | Prep Date:     | 2/12/2025         |
| Analyte                         | Result           | RL       | SPK value | Ref Val              | %REC        | LowLim | it HighLimit % | GRPD RPDLimit Qua |
| Benzene                         | 0,0210           | 0.00100  | 0.0232    | 0                    | 90.7        | 37     | 151            |                   |
| Carbon tetrachloride            | 0.0203           | 0.00100  | 0.0232    | 0                    | 87.4        | 70     | 140            |                   |
| Chlorobenzene                   | 0.0218           | 0.00100  | 0.0232    | 0                    | 93.8        | 37     | 160            |                   |
| Chloroform                      | 0.0211           | 0.00100  | 0.0232    | 0                    | 91.0        | 51     | 138            |                   |
| Chlorodibromomethane            | 0.0206           | 0.00100  | 0.0232    | 0                    | 88.7        | 53     | 149            |                   |
| 1,2-Dibromoethane               | 0.0209           | 0.00100  | 0.0232    | 0                    | 90.2        | 40     | 160            |                   |
| 1,2-Dichloroethane              | 0.0219           | 0.00100  | 0.0232    | 0                    | 94.6        | 49     | 155            |                   |
| 1,1-Dichloroethene              | 0.0205           | 0.00100  | 0.0232    | 0                    | 88.2        | 10     | 234            |                   |
| Methyl ethyl ketone             | 0.0915           | 0.0150   | 0.116     | 0                    | 78.9        | 40     | 160            |                   |
| Tetrachloroethene               | 0.0217           | 0.00200  | 0.0232    | 0                    | 93.3        | 64     | 148            |                   |
| Trichloroethene                 | 0.0211           | 0.00100  | 0.0232    | 0                    | 91.2        | 70     | 157            |                   |
| 1,1,1-Trichloroethane           | 0.0211           | 0.00100  | 0:0232    | 0                    | 90.8        | 52     | 162            |                   |
| TTHM (Total Trihalomethanes)    | 0.0816           | 0.00100  | 0.0928    | 0                    | 88.0        | 40     | 160            |                   |
| Vinyl chloride                  | 0.0181           | 0.00100  | 0.0232    | 0                    | 77.9        | 10     | 251            |                   |
| Acrolein                        | 0.0310           | 0.0150   | 0.0580    | 0                    | 53.5        | 40     | 160            |                   |
| Acrylonitrile                   | 0.0358           | 0.00300  | 0.0464    | 0                    | 77.2        | 40     | 160            |                   |
| 1,1,2,2-Tetrachloroethane       | 0.0203           | 0.00100  | 0.0232    | 0                    | 87.4        | 46     | 157            |                   |
| Bromoform                       | 0.0188           | 0.00100  | 0.0232    | 0                    | 81.2        | 45     | 169            |                   |
| Chloroethane                    | 0.0196           | 0.00500  | 0.0232    | 0                    | 84.4        | 14     | 230            |                   |
| 2-Chloroethylvinylether         | <0.00600         | 0.0100   | 0.0232    | 0                    | 0           | 5      | 273            | S                 |
| Bromodichloromethane            | 0.0211           | 0.00100  | 0.0232    | 0                    | 90.9        | 35     | 155            |                   |
| 1,1-Dichloroethane              | 0.0212           | 0.00100  | 0.0232    | 0                    | 91.6        | 59     | 155            |                   |
| 1,2-Dichloropropane             | 0.0211           | 0.00100  | 0.0232    | 0                    | 90.9        | 10     | 210            |                   |
| 1,3-Dichloropropene (cis)       | 0.0198           | 0.00100  | 0.0232    | 0                    | 85.5        | 10     | 227            |                   |
| 1,3-Dichloropropene (trans)     | 0.0197           | 0.00100  | 0.0232    | 0                    | 85.0        | 17     | 183            |                   |
| Ethylbenzene                    | 0.0217           | 0.00100  | 0.0232    | 0                    | 93.3        | 37     | 162            |                   |
| Methyl bromide                  | 0.0158           | 0.00500  | 0.0232    | 0                    | 68.1        | 10     | 242            |                   |
| Methyl chloride                 | 0.0183           | 0.00500  | 0.0232    | 0                    | 78.9        | 5      | 273            |                   |
| Methylene chloride (DCM)        | 0.0222           | 0.00500  | 0.0232    | 0                    | 95.7        | 10     | 221            |                   |
| Toluene                         | 0.0212           | 0.00200  | 0.0232    | 0                    | 91.5        | 47     | 150            |                   |
| trans-1,2-Dichloroethylene      | 0.0207           | 0.00200  | 0.0232    | 0                    | 89.3        | 54     | 156            |                   |
| 1,1,2-Trichloroethane           | 0.0213           | 0.00100  | 0.0232    | 0                    | 91.6        | 52     | 150            |                   |
| 1,2-Dichlorobenzene             | 0.0215           | 0.00100  | 0.0232    | 0                    | 92.6        | 18     | 190            |                   |
| 1,3-Dichlorobenzene             | 0.0215           | 0.00100  | 0.0232    | 0                    | 92.5        | 59     | 156            |                   |
| 1,4-Dichlorobenzene             | 0.0219           | 0.00100  | 0.0232    | 0                    | 94.3        | 18     | 190            |                   |
| Surr: 1,2-Dichloroethane-d4     | 196              |          | 200.0     |                      | 98.1        | 72     | 119            |                   |
| Surr: 4-Bromofluorobenzene      | 192              |          | 200.0     |                      | 95.9        | 76     | 119            |                   |
| Surr: Dibromofluoromethane      | 197              |          | 200.0     |                      | 98.4        | 85     | 115            |                   |
| Surr: Toluene-d8                | 192              |          | 200.0     |                      | 96.1        | 81     | 120            |                   |

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 16 of 18

Pollution Control Services

Work Order:

2502117

**Project:** PCS 791258, 791262-791263

## ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS5\_250212B

| Sample ID: <b>2502126-08AMSD</b> | Batch ID: 1191 | 04         | TestN     | o: <b>E62</b>         | 4.1          |         | Units:       | mg/  | L              |      |
|----------------------------------|----------------|------------|-----------|-----------------------|--------------|---------|--------------|------|----------------|------|
| SampType: <b>MSD</b>             | Run ID: GCM    | S5_250212B | Analy     | sis Date: <b>2/12</b> | 2/2025 10:00 | ):00 PM | Prep Date    | 2/12 | /2025          |      |
| Analyte                          | Result         | RL         | SPK value | Ref Val               | %REC         | LowLim  | it HighLimit | %RPD | RPDLimit       | Qual |
| Benzene                          | 0.0220         | 0.00100    | 0.0232    | 0                     | 94.8         | 37      | 151          | 4.45 | 40             |      |
| Carbon tetrachloride             | 0.0214         | 0.00100    | 0.0232    | 0                     | 92.3         | 70      | 140          | 5.49 | 40             |      |
| Chlorobenzene                    | 0.0225         | 0.00100    | 0.0232    | 0                     | 96.8         | 37      | 160          | 3.10 | 40             |      |
| Chloroform                       | 0.0217         | 0.00100    | 0.0232    | 0                     | 93.6         | 51      | 138          | 2.83 | 40             |      |
| Chlorodibromomethane             | 0.0210         | 0.00100    | 0.0232    | 0                     | 90.4         | 53      | 149          | 1.82 | 40             |      |
| 1,2-Dibromoethane                | 0.0221         | 0.00100    | 0.0232    | 0                     | 95.3         | 40      | 160          | 5.48 | 40             |      |
| 1,2-Dichloroethane               | 0.0225         | 0.00100    | 0.0232    | 0                     | 97.1         | 49      | 155          | 2.64 | 40             |      |
| 1,1-Dichloroethene               | 0.0218         | 0.00100    | 0.0232    | 0                     | 94.0         | 10      | 234          | 6.33 | 32             |      |
| Methyl ethyl ketone              | 0.0980         | 0.0150     | 0.116     | 0                     | 84.5         | 40      | 160          | 6.88 | 40             |      |
| Tetrachloroethene                | 0.0226         | 0.00200    | 0.0232    | 0                     | 97.4         | 64      | 148          | 4.27 | 39             |      |
| Trichloroethene                  | 0.0222         | 0.00100    | 0.0232    | 0                     | 95.5         | 70      | 157          | 4.67 | 40             |      |
| 1,1,1-Trichloroethane            | 0.0218         | 0.00100    | 0.0232    | 0                     | 94.0         | 52      | 162          | 3.44 | 36             |      |
| TTHM (Total Trihalomethanes)     | 0.0841         | 0.00100    | 0.0928    | 0                     | 90.6         | 40      | 160          | 2.94 | 40             |      |
| Vinyl chloride                   | 0.0192         | 0.00100    | 0.0232    | 0                     | 82.7         | 10      | 251          | 5.92 | 40             |      |
| Acrolein                         | 0.0525         | 0.0150     | 0.0580    | 0                     | 90.5         | 40      | 160          | 51.3 | 40             | R    |
| Acrylonitrile                    | 0.0392         | 0.00300    | 0.0464    | 0                     | 84.5         | 40      | 160          | 9.02 | 40             |      |
| 1,1,2,2-Tetrachloroethane        | 0.0222         | 0.00100    | 0.0232    | 0                     | 95.6         | 46      | 157          | 9.00 | 40             |      |
| Bromoform                        | 0.0198         | 0.00100    | 0.0232    | 0                     | 85.2         | 45      | 169          | 4.90 | 40             |      |
| Chloroethane                     | 0.0201         | 0.00500    | 0.0232    | 0                     | 86.6         | 14      | 230          | 2.63 | 40             |      |
| 2-Chloroethylvinylether          | < 0.0060       | 0.0100     | 0.0232    | 0                     | 0            | 5       | 273          | 0    | 40             | S    |
| Bromodichloromethane             | 0.0216         | 0.00100    | 0.0232    | 0                     | 93.1         | 35      | 155          | 2.36 | 40             |      |
| 1,1-Dichloroethane               | 0.0218         | 0.00100    | 0.0232    | 0                     | 93.8         | 59      | 155          | 2.42 | 40             |      |
| 1,2-Dichloropropane              | 0.0218         | 0.00100    | 0.0232    | 0                     | 94.2         | 10      | 210          | 3.57 | 40             |      |
| 1,3-Dichloropropene (cis)        | 0.0202         | 0.00100    | 0.0232    | 0                     | 87.0         | 10      | 227          | 1.71 | 40             |      |
| 1,3-Dichloropropene (trans)      | 0.0204         | 0.00100    | 0.0232    | 0                     | 87.9         | 17      | 183          | 3.35 | 40             |      |
| Ethylbenzene                     | 0.0223         | 0.00100    | 0.0232    | 0                     | 96.2         | 37      | 162          | 2.97 | 40             |      |
| Methyl bromide                   | 0.0177         | 0.00500    | 0.0232    | 0                     | 76.4         | 10      | 242          | 11.5 | 40             |      |
| Methyl chloride                  | 0.0194         | 0.00500    | 0.0232    | 0                     | 83.5         | 5       | 273          | 5.73 | 40             |      |
| Methylene chloride (DCM)         | 0.0225         | 0.00500    | 0.0232    | 0                     | 97.0         | 10      | 221          | 1.34 | 28             |      |
| Toluene                          | 0.0218         | 0.00200    | 0.0232    | 0                     | 93.9         | 47      | 150          | 2.62 | 40             |      |
| trans-1,2-Dichloroethylene       | 0.0222         | 0.00200    | 0.0232    | 0                     | 95.8         | 54      | 156          | 6.96 | 40             |      |
| 1,1,2-Trichloroethane            | 0.0219         | 0.00100    | 0.0232    | 0                     | 94.5         | 52      | 150          | 3.08 | 40             |      |
| 1,2-Dichlorobenzene              | 0.0228         | 0.00100    | 0.0232    | 0                     | 98.3         | 18      | 190          | 5.91 | 40             |      |
| 1,3-Dichlorobenzene              | 0.0227         | 0.00100    | 0.0232    | 0                     | 98.0         | 59      | 156          | 5.84 | 40             |      |
| 1,4-Dichlorobenzene              | 0.0230         | 0.00100    | 0.0232    | 0                     | 98.9         | 18      | 190          | 4.76 | 40             |      |
| Surr: 1,2-Dichloroethane-d4      | 198            |            | 200.0     |                       | 99.2         | 72      | 119          | 0    | <sub>2</sub> 0 |      |
| Surr: 4-Bromofluorobenzene       | 196            |            | 200.0     |                       | 97.9         | 76      | 119          | 0    | 0              |      |
| Surr: Dibromofluoromethane       | 196            |            | 200.0     |                       | 97.8         | 85      | 115          | 0    | 0              |      |
| Surr: Toluene-d8                 | 191            |            | 200.0     |                       | 95.7         | 81      | 120          | 0    | 0              |      |

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 17 of 18

Pollution Control Services

Work Order:

2502117

Project:

PCS 791258, 791262-791263

#### ANALYTICAL QC SUMMARY REPORT

RunID: UV/VIS 2 250217C The QC data in batch 119170 applies to the following samples: 2502117-03A Sample ID: MB-119170 Batch ID: 119170 TestNo: M4500-CN E Units: mg/L SampType: MBLK Run ID: UV/VIS 2 250217C Analysis Date: 2/18/2025 1:46:00 PM Prep Date: 2/17/2025 Analyte RL LowLimit HighLimit %RPD RPDLimit Qual Result SPK value Ref Val %REC Cyanide, Total < 0.0100 0.0200 Sample ID: LCS-119170 Batch ID: 119170 TestNo: M4500-CN E Units: mg/L SampType: LCS Run ID: UV/VIS\_2\_250217C Analysis Date: 2/18/2025 1:46:00 PM Prep Date: 2/17/2025 LowLimit HighLimit %RPD RPDLimit Qual Analyte Result RL SPK value Ref Val %REC Cyanide, Total 0.198 0.2000 0 0.0200 99.2 85 115 Sample ID: 2502099-01AMS M4500-CN E Units: Batch ID: 119170 TestNo: mg/L SampType: MS Run ID: UV/VIS\_2\_250217C Analysis Date: 2/18/2025 1:48:00 PM Prep Date: 2/17/2025 LowLimit HighLimit %RPD RPDLimit Qual Analyte Result RL SPK value Ref Val %REC Cyanide, Total 0.193 0.0200 0.2000 0 96.7 79 114 Sample ID: 2502099-01AMSD Batch ID: 119170 TestNo: M4500-CN E Units: mg/L SampType: MSD Run ID: UV/VIS\_2\_250217C Analysis Date: 2/18/2025 1:49:00 PM Prep Date: 2/17/2025

SPK value

0.2000

Ref Val

0

%REC

98.9

79

LowLimit HighLimit %RPD RPDLimit Qual

2.23

20

114

| 0 | ualif | iers: |
|---|-------|-------|

Analyte

Cyanide, Total

Analyte detected in the associated Method Blank

Result

0.198

RL

0.0200

Analyte detected between MDL and RL J

ND Not Detected at the Method Detection Limit

Reporting Limit RI.

Analyte detected between SDL and RL

Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits R

Spike Recovery outside control limits

Parameter not NELAP certified

Page 18 of 18

# DOMESTIC WASTEWATER PERMIT APPLICATION WORKSHEET 4.0: POLLUTANT ANALYSIS REQUIREMENTS

The following **is required** for facilities with a permitted or proposed flow of **1.0 MGD** or **greater**, facilities with an approved **pretreatment** program, or facilities classified as a **major** facility. See instructions for further details.

This worksheet is not required minor amendments without renewal.

#### Section 1. Toxic Pollutants (Instructions Page 78)

For pollutants identified in Table 4.0(1), indicate the type of sample.

Grab Composite

Date and time sample(s) collected: Feb 11, 2025 @ 0814 - Grab; 0800 Composite

#### Table 4.0(1) - Toxics Analysis

| Pollutant                  | AVG<br>Effluent<br>Conc. (µg/l) | MAX<br>Effluent<br>Conc. (μg/l) | Number of<br>Samples | MAL<br>(μg/l) |
|----------------------------|---------------------------------|---------------------------------|----------------------|---------------|
| Acrylonitrile              | <50                             |                                 | 1                    | 50            |
| Aldrin                     | <0.01                           |                                 | 1                    | 0.01          |
| Aluminum                   | 96                              |                                 | 1                    | 2.5           |
| Anthracene                 | <10                             |                                 | 1                    | 10            |
| Antimony                   | <5                              |                                 | 1                    | 5             |
| Arsenic                    | <0.5                            |                                 | 1                    | 0.5           |
| Barium                     | <3                              |                                 | 1                    | 3             |
| Benzene                    | <10                             |                                 | 1                    | 10            |
| Benzidine                  | <50                             |                                 | 1                    | 50            |
| Benzo(a)anthracene         | <5                              |                                 | 1                    | 5             |
| Benzo(a)pyrene             | <5                              |                                 | 1                    | 5             |
| Bis(2-chloroethyl)ether    | <10                             |                                 | 1                    | 10            |
| Bis(2-ethylhexyl)phthalate | <10                             |                                 | 1                    | 10            |
| Bromodichloromethane       | <10                             |                                 | 1                    | 10            |
| Bromoform                  | <10                             |                                 | 1                    | 10            |
| Cadmium                    | <1                              |                                 | 1                    | 1             |
| Carbon Tetrachloride       | <2                              |                                 | 1                    | 2             |
| Carbaryl                   | <5                              |                                 | 1                    | 5             |
| Chlordane*                 | <0.2                            |                                 | 1                    | 0.2           |
| Chlorobenzene              | <10                             |                                 | 1                    | 10            |
| Chlorodibromomethane       | <10                             |                                 | 1                    | 10            |

| Pollutant              | AVG<br>Effluent<br>Conc. (µg/l) | MAX<br>Effluent<br>Conc. (μg/l) | Number of<br>Samples | MAL<br>(μg/l) |
|------------------------|---------------------------------|---------------------------------|----------------------|---------------|
| Chloroform             | <10                             |                                 | 1                    | 10            |
| Chlorpyrifos           | < 0.05                          |                                 | 1                    | 0.05          |
| Chromium (Total)       | <3                              |                                 | 1                    | 3             |
| Chromium (Tri) (*1)    | <3                              |                                 | 1                    | N/A           |
| Chromium (Hex)         | <3                              |                                 | 1                    | 3             |
| Copper                 | 11                              |                                 | 1                    | 2             |
| Chrysene               | <5                              |                                 | 1                    | 5             |
| p-Chloro-m-Cresol      | <10                             |                                 | 1                    | 10            |
| 4,6-Dinitro-o-Cresol   | <50                             |                                 | 1                    | 50            |
| p-Cresol               | <10                             |                                 | 1                    | 10            |
| Cyanide (*2)           | <10                             |                                 | 1                    | 10            |
| 4,4'- DDD              | <0.1                            |                                 | 1                    | 0.1           |
| 4,4'- DDE              | <0.1                            |                                 | 1                    | 0.1           |
| 4,4'- DDT              | <0.02                           |                                 | 1                    | 0.02          |
| 2,4-D                  | <0.7                            |                                 | 1                    | 0.7           |
| Demeton (O and S)      | <0.20                           |                                 | 1                    | 0.20          |
| Diazinon               | <0.5                            |                                 | 1                    | 0.5/0.1       |
| 1,2-Dibromoethane      | <10                             |                                 | 1                    | 10            |
| m-Dichlorobenzene      | <10                             |                                 | 1                    | 10            |
| o-Dichlorobenzene      | <10                             |                                 | 1                    | 10            |
| p-Dichlorobenzene      | <10                             |                                 | 1                    | 10            |
| 3,3'-Dichlorobenzidine | <5                              |                                 | 1                    | 5             |
| 1,2-Dichloroethane     | <10                             |                                 | 1                    | 10            |
| 1,1-Dichloroethylene   | <10                             |                                 | 1                    | 10            |
| Dichloromethane        | <20                             |                                 | 1                    | 20            |
| 1,2-Dichloropropane    | <10                             |                                 | 1                    | 10            |
| 1,3-Dichloropropene    | <10                             |                                 | 1                    | 10            |
| Dicofol                | <1                              |                                 | 1                    | 1             |
| Dieldrin               | <0.02                           |                                 | 1                    | 0.02          |
| 2,4-Dimethylphenol     | <10                             |                                 | 1                    | 10            |
| Di-n-Butyl Phthalate   | <10                             |                                 | 1                    | 10            |
| Diuron                 | <0.09                           |                                 | 1                    | 0.09          |
| Endosulfan I (alpha)   | <0.01                           |                                 | 1                    | 0.01          |

| Pollutant                     | AVG<br>Effluent<br>Conc. (μg/l) | MAX<br>Effluent<br>Conc. (μg/l) | Number of<br>Samples | MAL<br>(μg/l) |
|-------------------------------|---------------------------------|---------------------------------|----------------------|---------------|
| Endosulfan II (beta)          | <0.02                           |                                 | 1                    | 0.02          |
| Endosulfan Sulfate            | <0.1                            |                                 | 1                    | 0.1           |
| Endrin                        | <0.02                           |                                 | 1                    | 0.02          |
| Ethylbenzene                  | <10                             |                                 | 1                    | 10            |
| Fluoride                      | 260                             |                                 | 1                    | 200           |
| Guthion                       | <0.1                            |                                 | 1                    | 0.1           |
| Heptachlor                    | <0.01                           |                                 | 1                    | 0.01          |
| Heptachlor Epoxide            | <0.01                           |                                 | 1                    | 0.01          |
| Hexachlorobenzene             | <5                              |                                 | 1                    | 5             |
| Hexachlorobutadiene           | <10                             |                                 | 1                    | 10            |
| Hexachlorocyclohexane (alpha) | <0.05                           |                                 | 1                    | 0.05          |
| Hexachlorocyclohexane (beta)  | <0.05                           |                                 | 1                    | 0.05          |
| gamma-Hexachlorocyclohexane   | <0.05                           |                                 | 1                    | 0.05          |
| (Lindane)                     | <0.05                           |                                 |                      |               |
| Hexachlorocyclopentadiene     | <10                             |                                 | 1                    | 10            |
| Hexachloroethane              | <20                             |                                 | 1                    | 20            |
| Hexachlorophene               | <10                             |                                 | 1                    | 10            |
| Lead                          | <0.5                            |                                 | 1                    | 0.5           |
| Malathion                     | <0.1                            |                                 | 1                    | 0.1           |
| Mercury                       | <0.005                          |                                 | 1                    | 0.005         |
| Methoxychlor                  | <2                              |                                 | 1                    | 2             |
| Methyl Ethyl Ketone           | <50                             |                                 | 1                    | 50            |
| Mirex                         | <0.02                           |                                 | 1                    | 0.02          |
| Nickel                        | <2                              |                                 | 1                    | 2             |
| Nitrate-Nitrogen              | 16,000                          |                                 | 1                    | 100           |
| Nitrobenzene                  | <10                             |                                 | 1                    | 10            |
| N-Nitrosodiethylamine         | <20                             |                                 | 1                    | 20            |
| N-Nitroso-di-n-Butylamine     | <20                             |                                 | 1                    | 20            |
| Nonylphenol                   | <333                            |                                 | 1                    | 333           |
| Parathion (ethyl)             | <0.1                            |                                 | 1                    | 0.1           |
| Pentachlorobenzene            | <20                             |                                 | 1                    | 20            |
| Pentachlorophenol             | <5                              |                                 | 1                    | 5             |
| Phenanthrene                  | <10                             |                                 | 1                    | 10            |

| Pollutant                                      | AVG<br>Effluent<br>Conc. (µg/l) | MAX<br>Effluent<br>Conc. (µg/l) | Number of<br>Samples | MAL<br>(μg/l) |
|------------------------------------------------|---------------------------------|---------------------------------|----------------------|---------------|
| Polychlorinated Biphenyls (PCB's) (*3)         | <0.2                            |                                 | 1                    | 0.2           |
| Pyridine                                       | <20                             |                                 | 1                    | 20            |
| Selenium                                       | <5                              |                                 | 1                    | 5             |
| Silver                                         | <0.5                            |                                 | 1                    | 0.5           |
| 1,2,4,5-Tetrachlorobenzene                     | <20                             |                                 | 1                    | 20            |
| 1,1,2,2-Tetrachloroethane                      | <10                             |                                 | 1                    | 10            |
| Tetrachloroethylene                            | <10                             |                                 | 1                    | 10            |
| Thallium                                       | 0.7                             |                                 | 1                    | 0.5           |
| Toluene                                        | <10                             |                                 | 1                    | 10            |
| Toxaphene                                      | <0.3                            |                                 | 1                    | 0.3           |
| 2,4,5-TP (Silvex)                              | <0.3                            |                                 | 1                    | 0.3           |
| Tributyltin (see instructions for explanation) | N/A                             |                                 | 1                    | 0.01          |
| 1,1,1-Trichloroethane                          | <10                             |                                 | 1                    | 10            |
| 1,1,2-Trichloroethane                          | <10                             |                                 | 1                    | 10            |
| Trichloroethylene                              | <10                             |                                 | 1                    | 10            |
| 2,4,5-Trichlorophenol                          | <50                             |                                 | 1                    | 50            |
| TTHM (Total Trihalomethanes)                   | <10                             |                                 | 1                    | 10            |
| Vinyl Chloride                                 | <10                             |                                 | 1                    | 10            |
| Zinc                                           | 9                               |                                 | 1                    | 5             |

<sup>(\*1)</sup> Determined by subtracting hexavalent Cr from total Cr.

<sup>(\*2)</sup> Cyanide, amenable to chlorination or weak-acid dissociable.

<sup>(\*3)</sup> The sum of seven PCB congeners 1242, 1254, 1221, 1232, 1248, 1260, and 1016.

# **Section 2. Priority Pollutants**

For pollutants identified in Tables 4.0(2)A-E, indicate type of sample.

Grab 🗸 Composite 🗸

Date and time sample(s) collected: Feb 11, 2025 @ 0814 - Grab; 0800 Composite

Table 4.0(2)A - Metals, Cyanide, and Phenols

| Pollutant           | AVG<br>Effluent<br>Conc. (µg/l) | MAX<br>Effluent<br>Conc. (µg/l) | Number of<br>Samples | MAL<br>(μg/l) |
|---------------------|---------------------------------|---------------------------------|----------------------|---------------|
| Antimony            | <5                              |                                 | 1                    | 5             |
| Arsenic             | <0.5                            |                                 | 1                    | 0.5           |
| Beryllium           | <0.5                            |                                 | 1                    | 0.5           |
| Cadmium             | <1                              |                                 | 1                    | 1             |
| Chromium (Total)    | <3                              |                                 | 1                    | 3             |
| Chromium (Hex)      | <3                              |                                 | 1                    | 3             |
| Chromium (Tri) (*1) | <3                              |                                 | 1                    | N/A           |
| Copper              | 11                              |                                 | 1                    | 2             |
| Lead                | <0.5                            |                                 | 1                    | 0.5           |
| Mercury             | <0.005                          |                                 | 1                    | 0.005         |
| Nickel              | <2                              |                                 | 1                    | 2             |
| Selenium            | <5                              |                                 | 1                    | 5             |
| Silver              | <0.5                            |                                 | 1                    | 0.5           |
| Thallium            | 0.7                             |                                 | 1                    | 0.5           |
| Zinc                | 9                               |                                 | 1                    | 5             |
| Cyanide (*2)        | <10                             |                                 | 1                    | 10            |
| Phenols, Total      | 10                              |                                 | 1                    | 10            |

<sup>(\*1)</sup> Determined by subtracting hexavalent Cr from total Cr.

<sup>(\*2)</sup> Cyanide, amenable to chlorination or weak-acid dissociable

Table 4.0(2)B - Volatile Compounds

| Pollutant                                      | AVG<br>Effluent<br>Conc. (µg/l) | MAX<br>Effluent<br>Conc. (µg/l) | Number of<br>Samples | MAL<br>(µg/l) |
|------------------------------------------------|---------------------------------|---------------------------------|----------------------|---------------|
| Acrolein                                       | <50                             |                                 | 1                    | 50            |
| Acrylonitrile                                  | <50                             |                                 | 1                    | 50            |
| Benzene                                        | <10                             |                                 | 1                    | 10            |
| Bromoform                                      | <10                             |                                 | 1                    | 10            |
| Carbon Tetrachloride                           | <2                              |                                 | 1                    | 2             |
| Chlorobenzene                                  | <10                             |                                 | 1                    | 10            |
| Chlorodibromomethane                           | <10                             |                                 | 1                    | 10            |
| Chloroethane                                   | <50                             |                                 | 1                    | 50            |
| 2-Chloroethylvinyl Ether                       | <10                             |                                 | 1                    | 10            |
| Chloroform                                     | <10                             |                                 | 1                    | 10            |
| Dichlorobromomethane<br>[Bromodichloromethane] | <10                             |                                 | 1                    | 10            |
| 1,1-Dichloroethane                             | <10                             |                                 | 1                    | 10            |
| 1,2-Dichloroethane                             | <10                             |                                 | 1                    | 10            |
| 1,1-Dichloroethylene                           | <10                             |                                 | 1                    | 10            |
| 1,2-Dichloropropane                            | <10                             |                                 | 1                    | 10            |
| 1,3-Dichloropropylene                          | <10                             |                                 | 1                    | 10            |
| [1,3-Dichloropropene]                          |                                 |                                 |                      |               |
| 1,2-Trans-Dichloroethylene                     | <10                             |                                 | 1                    | 10            |
| Ethylbenzene                                   | <10                             |                                 | 1                    | 10            |
| Methyl Bromide                                 | <50                             |                                 | 1                    | 50            |
| Methyl Chloride                                | <50                             |                                 | 1                    | 50            |
| Methylene Chloride                             | <20                             |                                 | 1                    | 20            |
| 1,1,2,2-Tetrachloroethane                      | <10                             |                                 | 1                    | 10            |
| Tetrachloroethylene                            | <10                             |                                 | 1                    | 10            |
| Toluene                                        | <10                             |                                 | 1                    | 10            |
| 1,1,1-Trichloroethane                          | <10                             |                                 | 1                    | 10            |
| 1,1,2-Trichloroethane                          | <10                             |                                 | 1                    | 10            |
| Trichloroethylene                              | <10                             |                                 | 1                    | 10            |
| Vinyl Chloride                                 | <10                             |                                 | 1                    | 10            |

Table 4.0(2)C - Acid Compounds

| Pollutant             | AVG<br>Effluent<br>Conc. (µg/l) | MAX<br>Effluent<br>Conc. (µg/l) | Number of<br>Samples | MAL<br>(µg/l) |
|-----------------------|---------------------------------|---------------------------------|----------------------|---------------|
| 2-Chlorophenol        | <10                             |                                 | 1                    | 10            |
| 2,4-Dichlorophenol    | <10                             |                                 | 1                    | 10            |
| 2,4-Dimethylphenol    | <10                             |                                 | 1                    | 10            |
| 4,6-Dinitro-o-Cresol  | <50                             |                                 | 1                    | 50            |
| 2,4-Dinitrophenol     | <50                             |                                 | 1                    | 50            |
| 2-Nitrophenol         | <20                             |                                 | 1                    | 20            |
| 4-Nitrophenol         | <50                             |                                 | 1                    | 50            |
| P-Chloro-m-Cresol     | <10                             |                                 | 1                    | 10            |
| Pentalchlorophenol    | <5                              |                                 | 1                    | 5             |
| Phenol                | <10                             |                                 | 1                    | 10            |
| 2,4,6-Trichlorophenol | <10                             |                                 | 1                    | 10            |

Table 4.0(2)D - Base/Neutral Compounds

| Pollutant                             | AVG<br>Effluent<br>Conc. (µg/l) | MAX<br>Effluent<br>Conc. (µg/l) | Number of<br>Samples | MAL (µg/l) |
|---------------------------------------|---------------------------------|---------------------------------|----------------------|------------|
| Acenaphthene                          | <10                             |                                 | 1                    | 10         |
| Acenaphthylene                        | <10                             |                                 | 1                    | 10         |
| Anthracene                            | <10                             |                                 | 1                    | 10         |
| Benzidine                             | <50                             |                                 | 1                    | 50         |
| Benzo(a)Anthracene                    | <5                              |                                 | 1                    | 5          |
| Benzo(a)Pyrene                        | <5                              |                                 | 1                    | 5          |
| 3,4-Benzofluoranthene                 | <10                             |                                 | 1                    | 10         |
| Benzo(ghi)Perylene                    | <20                             |                                 | 1                    | 20         |
| Benzo(k)Fluoranthene                  | <5                              |                                 | 1                    | 5          |
| Bis(2-Chloroethoxy)Methane            | <10                             |                                 | 1                    | 10         |
| Bis(2-Chloroethyl)Ether               | <10                             |                                 | 1                    | 10         |
| Bis(2-Chloroisopropyl)Ether           | <10                             |                                 | 1                    | 10         |
| Bis(2-Ethylhexyl)Phthalate            | <10                             |                                 | 1                    | 10         |
| 4-Bromophenyl Phenyl Ether            | <10                             |                                 | 1                    | 10         |
| Butyl benzyl Phthalate                | <10                             |                                 | 1                    | 10         |
| 2-Chloronaphthalene                   | <10                             |                                 | 1                    | 10         |
| 4-Chlorophenyl phenyl ether           | <10                             |                                 | 1                    | 10         |
| Chrysene                              | <5                              |                                 | 1                    | 5          |
| Dibenzo(a,h)Anthracene                | <5                              |                                 | 1                    | 5          |
| 1,2-(o)Dichlorobenzene                | <10                             |                                 | 1                    | 10         |
| 1,3-(m)Dichlorobenzene                | <10                             |                                 | 1                    | 10         |
| 1,4-(p)Dichlorobenzene                | <10                             |                                 | 1                    | 10         |
| 3,3-Dichlorobenzidine                 | <5                              |                                 | 1                    | 5          |
| Diethyl Phthalate                     | <10                             |                                 | 1                    | 10         |
| Dimethyl Phthalate                    | <10                             |                                 | 1                    | 10         |
| Di-n-Butyl Phthalate                  | <10                             |                                 | 1                    | 10         |
| 2,4-Dinitrotoluene                    | <10                             |                                 | 1                    | 10         |
| 2,6-Dinitrotoluene                    | <10                             |                                 | 1                    | 10         |
| Di-n-Octyl Phthalate                  | <10                             |                                 | 1                    | 10         |
| 1,2-Diphenylhydrazine (as Azobenzene) | <20                             |                                 | 1                    | 20         |
| Fluoranthene                          | <10                             |                                 | 1                    | 10         |

| Pollutant                  | AVG<br>Effluent<br>Conc. (µg/l) | MAX<br>Effluent<br>Conc. (µg/l) | Number of<br>Samples | MAL<br>(µg/l) |
|----------------------------|---------------------------------|---------------------------------|----------------------|---------------|
| Fluorene                   | <10                             |                                 | 1                    | 10            |
| Hexachlorobenzene          | <5                              |                                 | 1                    | 5             |
| Hexachlorobutadiene        | <10                             |                                 | 1                    | 10            |
| Hexachlorocyclo-pentadiene | <10                             |                                 | 1                    | 10            |
| Hexachloroethane           | <20                             |                                 | 1                    | 20            |
| Indeno(1,2,3-cd)pyrene     | <5                              |                                 | 1                    | 5             |
| Isophorone                 | <10                             |                                 | 1                    | 10            |
| Naphthalene                | <10                             |                                 | 1                    | 10            |
| Nitrobenzene               | <10                             |                                 | 1                    | 10            |
| N-Nitrosodimethylamine     | <50                             |                                 | 1                    | 50            |
| N-Nitrosodi-n-Propylamine  | <20                             |                                 | 1                    | 20            |
| N-Nitrosodiphenylamine     | <20                             |                                 | 1                    | 20            |
| Phenanthrene               | <10                             |                                 | 1                    | 10            |
| Pyrene                     | <10                             |                                 | 1                    | 10            |
| 1,2,4-Trichlorobenzene     | <10                             |                                 | 1                    | 10            |

Table 4.0(2)E - Pesticides

| Pollutant                            | AVG<br>Effluent<br>Conc. (µg/l) | MAX<br>Effluent<br>Conc. (µg/l) | Number of<br>Samples | MAL<br>(μg/l) |
|--------------------------------------|---------------------------------|---------------------------------|----------------------|---------------|
| Aldrin                               | <0.01                           |                                 | 1                    | 0.01          |
| alpha-BHC (Hexachlorocyclohexane)    | <0.05                           |                                 | 1                    | 0.05          |
| beta-BHC (Hexachlorocyclohexane)     | <0.05                           |                                 | 1                    | 0.05          |
| gamma-BHC<br>(Hexachlorocyclohexane) | <0.05                           |                                 | 1                    | 0.05          |
| delta-BHC (Hexachlorocyclohexane)    | <0.05                           |                                 | 1                    | 0.05          |
| Chlordane                            | <0.2                            |                                 | 1                    | 0.2           |
| 4,4-DDT                              | <0.02                           |                                 | 1                    | 0.02          |
| 4,4-DDE                              | <0.1                            |                                 | 1                    | 0.1           |
| 4,4,-DDD                             | <0.1                            |                                 | 1                    | 0.1           |
| Dieldrin                             | <0.02                           |                                 | 1                    | 0.02          |
| Endosulfan I (alpha)                 | <0.01                           |                                 | 1                    | 0.01          |
| Endosulfan II (beta)                 | <0.02                           |                                 | 1                    | 0.02          |
| Endosulfan Sulfate                   | <0.1                            |                                 | 1                    | 0.1           |
| Endrin                               | <0.02                           |                                 | 1                    | 0.02          |
| Endrin Aldehyde                      | <0.1                            |                                 | 1                    | 0.1           |
| Heptachlor                           | <0.01                           |                                 | 1                    | 0.01          |
| Heptachlor Epoxide                   | <0.01                           |                                 | 1                    | 0.01          |
| PCB-1242                             | <0.2                            |                                 | 1                    | 0.2           |
| PCB-1254                             | <0.2                            |                                 | 1                    | 0.2           |
| PCB-1221                             | <0.2                            |                                 | 1                    | 0.2           |
| PCB-1232                             | <0.2                            |                                 | 1                    | 0.2           |
| PCB-1248                             | <0.2                            |                                 | 1                    | 0.2           |
| PCB-1260                             | <0.2                            |                                 | 1                    | 0.2           |
| PCB-1016                             | <0.2                            |                                 | 1                    | 0.2           |
| Toxaphene                            | <0.3                            |                                 | 1                    | 0.3           |

<sup>\*</sup> For PCBS, if all are non-detects, enter the highest non-detect preceded by a "<".

# Section 3. Dioxin/Furan Compounds

| Α. | . Indicate which of the following compounds from may be present in the influent from a contributing industrial user or significant industrial user. Check all that apply. |                                                                                                                                                                                                                       |  |  |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|    |                                                                                                                                                                           | 2,4,5-trichlorophenoxy acetic acid                                                                                                                                                                                    |  |  |  |  |
|    |                                                                                                                                                                           | Common Name 2,4,5-T, CASRN 93-76-5                                                                                                                                                                                    |  |  |  |  |
|    |                                                                                                                                                                           | 2-(2,4,5-trichlorophenoxy) propanoic acid                                                                                                                                                                             |  |  |  |  |
|    |                                                                                                                                                                           | Common Name Silvex or 2,4,5-TP, CASRN 93-72-1                                                                                                                                                                         |  |  |  |  |
|    |                                                                                                                                                                           | 2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate                                                                                                                                                               |  |  |  |  |
|    |                                                                                                                                                                           | Common Name Erbon, CASRN 136-25-4                                                                                                                                                                                     |  |  |  |  |
|    |                                                                                                                                                                           | 0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate                                                                                                                                                               |  |  |  |  |
|    |                                                                                                                                                                           | Common Name Ronnel, CASRN 299-84-3                                                                                                                                                                                    |  |  |  |  |
|    |                                                                                                                                                                           | 2,4,5-trichlorophenol                                                                                                                                                                                                 |  |  |  |  |
|    |                                                                                                                                                                           | Common Name TCP, CASRN 95-95-4                                                                                                                                                                                        |  |  |  |  |
|    |                                                                                                                                                                           | hexachlorophene                                                                                                                                                                                                       |  |  |  |  |
|    |                                                                                                                                                                           | Common Name HCP, CASRN 70-30-4                                                                                                                                                                                        |  |  |  |  |
|    |                                                                                                                                                                           |                                                                                                                                                                                                                       |  |  |  |  |
|    |                                                                                                                                                                           | ch compound identified, provide a brief description of the conditions of its/their nce at the facility.                                                                                                               |  |  |  |  |
|    | prese                                                                                                                                                                     |                                                                                                                                                                                                                       |  |  |  |  |
|    | prese                                                                                                                                                                     | nce at the facility.                                                                                                                                                                                                  |  |  |  |  |
|    | prese                                                                                                                                                                     | nce at the facility.                                                                                                                                                                                                  |  |  |  |  |
|    | prese                                                                                                                                                                     | nce at the facility.                                                                                                                                                                                                  |  |  |  |  |
| В. | Click                                                                                                                                                                     | nce at the facility.                                                                                                                                                                                                  |  |  |  |  |
| В. | Click                                                                                                                                                                     | to enter text.  u know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin                                                                                                                         |  |  |  |  |
| В. | Click  Do yo (TCDI                                                                                                                                                        | to enter text.  u know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin o) or any congeners of TCDD may be present in your effluent?                                                            |  |  |  |  |
| В. | Do yo (TCDI                                                                                                                                                               | u know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin o) or any congeners of TCDD may be present in your effluent?  Yes  No                                                                   |  |  |  |  |
| В. | Do yo (TCDI                                                                                                                                                               | u know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin o) or any congeners of TCDD may be present in your effluent?  Yes  No , provide a brief description of the conditions for its presence. |  |  |  |  |
| В. | Do yo (TCDI                                                                                                                                                               | u know or have any reason to believe that 2,3,7,8 Tetrachlorodibenzo-P-Dioxin o) or any congeners of TCDD may be present in your effluent?  Yes  No , provide a brief description of the conditions for its presence. |  |  |  |  |

**C.** If any of the compounds in Subsection A **or** B are present, complete Table 4.0(2)F. For pollutants identified in Table 4.0(2)F, indicate the type of sample.

Grab **☑** Composite □

Date and time sample(s) collected: Click to enter text.

#### Table 4.0(2)F - Dioxin/Furan Compounds

| Compound               | Toxic<br>Equivalenc<br>y Factors | Wastewater<br>Concentration<br>(ppq) | Wastewater<br>Equivalents<br>(ppq) | Sludge<br>Concentration<br>(ppt) | Sludge<br>Equivalents<br>(ppt) | MAL<br>(ppq) |
|------------------------|----------------------------------|--------------------------------------|------------------------------------|----------------------------------|--------------------------------|--------------|
| 2,3,7,8 TCDD           | 1                                |                                      |                                    |                                  |                                | 10           |
| 1,2,3,7,8 PeCDD        | 0.5                              |                                      |                                    |                                  |                                | 50           |
| 2,3,7,8 HxCDDs         | 0.1                              |                                      |                                    |                                  |                                | 50           |
| 1,2,3,4,6,7,8<br>HpCDD | 0.01                             |                                      |                                    |                                  |                                | 50           |
| 2,3,7,8 TCDF           | 0.1                              |                                      |                                    |                                  |                                | 10           |
| 1,2,3,7,8 PeCDF        | 0.05                             |                                      |                                    |                                  |                                | 50           |
| 2,3,4,7,8 PeCDF        | 0.5                              |                                      |                                    |                                  |                                | 50           |
| 2,3,7,8 HxCDFs         | 0.1                              |                                      |                                    |                                  |                                | 50           |
| 2,3,4,7,8<br>HpCDFs    | 0.01                             |                                      |                                    |                                  |                                | 50           |
| OCDD                   | 0.0003                           |                                      |                                    |                                  |                                | 100          |
| OCDF                   | 0.0003                           |                                      |                                    |                                  |                                | 100          |
| PCB 77                 | 0.0001                           |                                      |                                    |                                  |                                | 0.5          |
| PCB 81                 | 0.0003                           |                                      |                                    |                                  |                                | 0.5          |
| PCB 126                | 0.1                              |                                      |                                    |                                  |                                | 0.5          |
| PCB 169                | 0.03                             |                                      |                                    |                                  |                                | 0.5          |
| Total                  |                                  |                                      |                                    |                                  |                                |              |

# **Pollution Control Services**

Sample Log-In Checklist 7 9 1 2 5 8

| PCS Sample No(s) 791,258                                                                                                                                                                                | 791265 COC No.                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Client/Company Name: NB                                                                                                                                                                                 | Checklist Completed by: LMC                               |
| Sample Delivery to Lab Via:  Client Drop Off Commercial Carrier: Bus  PCS Field Services: Collection/Pick Up Other:                                                                                     | UPSLone StarFedExUSPS                                     |
| Sample Kit/Coolers                                                                                                                                                                                      |                                                           |
| Sample Kit/Cooler? Yes No Sample Kit/Co                                                                                                                                                                 | poler: Intact? Yes No                                     |
| Custody Seals on Sample Kit/Cooler: Not Pro<br>Sample Containers Intact; Unbroken and Not Leaking<br>Custody Seals on Sample Bottles: Not Present<br>COC Present with Shipment or Delivery or Completed | ? Yes No<br>nt If Present, Intact Broken                  |
| Has COC been properly Signed when Received/Reling                                                                                                                                                       | quished? Yes No                                           |
| Does COC agree with Sample Bottle Information, Bot                                                                                                                                                      | ttle Types, Preservation, etc.? Yes / No                  |
| All Samples Received before Hold Time Expiration?                                                                                                                                                       | Yes No                                                    |
| Sufficient Sample Volumes for Analysis Requested? Y Zero Headspace in VOA Vial? Yes No                                                                                                                  | resNo                                                     |
| Sample Preservation:                                                                                                                                                                                    |                                                           |
| * Cooling: Not Required or Required >                                                                                                                                                                   |                                                           |
| If cooling required, record temperature of submitted s                                                                                                                                                  | amples Observed/Corrected / / / / /                       |
| Lab Thermometer Make and Serial Number: Vaughan 180                                                                                                                                                     |                                                           |
|                                                                                                                                                                                                         |                                                           |
| Base Preserved Sample - If present, is pH >12? Other Preservation:  Sample Preservations Checked by:  pH paper used to check sample preservation (PCS log                                               | te <u>2 · 1   : 25                                   </u> |
|                                                                                                                                                                                                         |                                                           |
| -                                                                                                                                                                                                       |                                                           |
| Adjusted by Tech/Analyst:Date :                                                                                                                                                                         | Time:                                                     |
|                                                                                                                                                                                                         | " n                                                       |
| Client Notification/ Documentation for "No                                                                                                                                                              | " Responses Above/ Discrepancies/ RevisionComments        |
| Person Notified: C Notified Date: Time:                                                                                                                                                                 | Somacica by                                               |
| Method of Contact: At Drop Off: Phone Le                                                                                                                                                                |                                                           |
| Unable to Contact Authorized Laboratory to Pr                                                                                                                                                           |                                                           |
|                                                                                                                                                                                                         |                                                           |
|                                                                                                                                                                                                         | 1                                                         |
|                                                                                                                                                                                                         |                                                           |
| Receiving qualifier needed (requires client notification                                                                                                                                                | on above) Temp Holding Time Initails:<br>Initial/Date:    |
| -                                                                                                                                                                                                       | Initial Buto.                                             |
|                                                                                                                                                                                                         |                                                           |